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The steady two-dimensional boundary layer flow of a viscous, incompressible, and electrically conducting dusty fluid past a vertical
permeable stretching sheet under the influence of a transverse magnetic field with the viscous and Joule dissipation is investigated.
The fluid particles are assumed to be heat absorbing and the temperature at the surface of the sheet is a result of convective heating.
The governing nonlinear partial differential equations are transformed to a set of highly nonlinear coupled ordinary differential
equations using a suitable similarity transformation and the resulting system is then solved numerically. It is found inter alia that
the contributions of viscous and Joule dissipation in the flow are to increase the thickness of the thermal boundary layer.

1. Introduction

The study of boundary layer flows through continuously
stretching sheet has attracted many researchers due to its
bearing in many fluid engineering processes such as extru-
sion processes, melt spinning, hot rolling, wire drawing,
glass-fiber production, manufacture of plastics, polymer and
rubber sheets, performance of lubricants and paints, and
movement of biological fluids Crane [1] first considered the
steady two-dimensional boundary layer flow of a Newtonian
fluid driven by a stretching elastic sheet moving in its own
plane with a velocity varying linearly with the distance
from a fixed point. Later, this work was extended by many
researchers to investigate different aspects of the flowandheat
transfer in a fluid of infinite extent surrounding a stretching
sheet [2–7].

Magnetohydrodynamic flow through stretching sheets
in the presence of free convective heat transfer has been
investigated by a number of researchers due to its applications
in metallurgical industry, such as the cooling of continuous
strips and filaments drawn through a quiescent fluid. It
is known that the properties of the final product depend
significantly on the rate of cooling during the manufac-
turing processes. The rate of cooling can be controlled

by drawing the strips in an electrically conducting fluid
subject to a magnetic field, so that a final product of desired
characteristics can be obtained [8, 9]. The free convection
effect on MHD heat and mass transfer of a continuously
moving permeable vertical surface was studied numerically
by Yih [10]. He found that the Nusselt number and the
Sherwood number increase with the increase in suction
through the permeable wall. Ishak et al. [11] investigated
the mixed convection boundary layer in the stagnation-
point flow towards a stretching vertical sheet. Ishak et al.
[12] also made an analysis for the steady two-dimensional
magnetohydrodynamic flow of an incompressible viscous
and electrically conducting fluid over a stretching sheet in its
own plane. In this study, the stretching velocity, the surface
temperature, and the transverse magnetic field were assumed
to vary in a power law with the distance from the origin.
Pal and Mondal [13] investigated the hydromagnetic non-
Darcy flow and heat transfer characteristics over a stretching
sheet taking into account the effect of Ohmic dissipation and
thermal radiation. The internal heat absorption/generation
exerts significant influence on the rate of heat transfer from
a heated surface in several practical situations [14–17]. The
effect of internal heat absorption/generation plays important
role in the heat transfer of fluids undergoing exothermic
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or endothermic chemical reactions [14, 15]. Abo-Eldahab
and El Aziz [15] studied the problem of hydromagnetic
heat transfer over a continuously stretching surface in the
presence of internal heat generation/absorption.Theproblem
of magnetohydrodynamic mixed convection flow and heat
transfer of a power-law fluid past a stretching surface in
the presence of heat generation/absorption and thermal
radiation is investigated by Chen [9].

The presence of dust particles in the flow of a viscous fluid
has significant effects. The dust particles tend to retard the
flow and to decrease the fluid temperature. Such flows are
encountered in a wide variety of engineering problems such
as nuclear reactor cooling, rain erosion, paint spraying, trans-
port, waste water treatment, and combustion, The presence
of solid particles such as ash or soot in combustion energy
generators and their effect on performance of such devices led
to studies of particulate suspension in electrically conducting
fluid in the presence of magnetic field. Saffman [18] initiated
the study of dusty fluids and discussed the stability of the
laminar flow of a dusty gas in which the dust particles are
uniformly distributed. Chamkha [19] considered unsteady
laminar hydromagnetic fluid particle flow and heat transfer
in channels and circular pipes considering two-phase contin-
uummodels. Attia [20] investigated effects of Hall current on
Couette flow with heat transfer of a dusty conducting fluid in
the presence of uniform suction/injection. S. Ghosh and A.
K. Ghosh [21] studied hydromagnetic rotating flow of a dusty
fluid near a pulsating plate when the flow is generated in the
fluid particle system due to velocity tooth pulses subjected
on the plate in the presence of a transverse magnetic field.
Makinde and Chinyoka [22] studied unsteady fluid flow and
heat transfer of a dusty fluid between two parallel plates with
variable viscosity and thermal conductivity when the fluid
is driven by a constant pressure gradient and subjected to
a uniform external magnetic field applied perpendicular to
the plates with a slip boundary condition. In all the above
investigations, it has consistently been assumed that the
temperature at the plate surface is constant. However, there
exist several problems of physical interest which may require
non-uniform conditions. Gireesha et al. [23] investigated
the boundary flow and heat transfer of a dusty fluid flow
over a stretching sheet with nonuniform heat source/sink.
They considered two types of heating processes namely, (i)
prescribed surface temperature and (ii) prescribed surface
heat flux. Ramesh et al. [24] analyzed the steady two-
dimensional MHD flow of a dusty fluid near the stagnation
point over a permeable stretching sheet with the effect of non-
uniform source/sink. Recently, the effects of time-dependent
surface temperature on the flow and heat transfer of a viscous,
incompressible, and electrically conducting dusty fluid are
studied by Nandkeolyar et al. [25] and Nandkeolyar and
Das [26]. They assumed that the temperature of the surface
increases to a specific time and then remains constant.
They also compared the flow of dusty fluids through a wall
having time-dependent temperature with that of flow past an
isothermal wall.

The aim of the present work is to investigate the steady
two-dimensional boundary layer flow of a viscous, incom-
pressible, and electrically conducting dusty fluid past a
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Figure 1: Geometry of the problem.

vertical permeable stretching sheet in the presence of a
transverse magnetic field considering the effects of viscous
and Joule dissipation and internal heat absorption. The
governing nonlinear partial differential equations are subject
to suitable similarity transformation and transformed to a set
of nonlinear ordinary differential equations and solved using
bvp4c routine of Matlab. The effects of several important
parameters affecting the flow and heat transfer are studied
with the help of suitable graphs and tables.

2. Mathematical Formulation of the Problem

We consider the steady two-dimensional boundary layer flow
of a viscous, incompressible, electrically conducting, and heat
absorbing dusty fluid past a vertical permeable stretching
sheet under the influence of a transverse magnetic field. A
cartesian coordinate system is used with the 𝑥-axis along the
sheet and the 𝑦-axis normal to the sheet. The geometry of
the problem is depicted in Figure 1. Two equal but opposite
forces are applied along the sheet so that the wall is stretched,
keeping the position of the origin unaltered. The flow is
induced due to the stretching of the sheet in its own plane
with the surface velocity𝑈

𝑤
(𝑥).The transversemagnetic field

of strength 𝐵
0
is acting normally to the stretching sheet.

The temperature of the sheet is the result of a convective
heating process via conduction which is characterized by a
temperature𝑇

𝑤
and a heat transfer coefficient ℎ.The fluid and

the dust particle are assumed to be at rest at the beginning. It is
also assumed that the dust particles are spherical in shape and
uniform in size, and the number density of the dust particles
is constant throughout the flow. Further, it is assumed that
the induced magnetic field produced by the fluid motion is
negligible in comparison to the applied one.This assumption
is valid for low magnetic Reynolds number fluids [27].
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Under the above assumptions, the equations governing
the flow and heat transfer for the flow of a dusty fluid
including the viscous and Joule dissipation effects are
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where (𝑢, V) and (𝑢
𝑝
, V
𝑝
) are the velocity components of

the fluid and dust particles along the 𝑥 and 𝑦 directions,
respectively, 𝜌 and 𝜌

𝑝
are density of the fluid and particle

phase, respectively, 𝜇, 𝐵
0
, 𝐾, 𝑔, and 𝛽∗ are the coefficient

of viscosity of the fluid, applied magnetic field, Stokes’ resis-
tance coefficient, acceleration due to gravity, and volumetric
coefficient of thermal expansion, respectively. 𝜏 = 𝑚/𝐾 is
the relaxation time of particle phase, 𝑚 and 𝑁 are the mass
concentration and number density of the particle phase, and
𝑇, 𝑇
𝑝
, and𝑇

∞
are the fluid temperature, particle temperature,

and the fluid temperature in the free stream, respectively. 𝑘
is the thermal conductivity of the fluid. 𝜏

𝑇
is the thermal

equilibrium time and is the time required by a dust phase to
adjust its temperature to that of fluid and 𝜏V is the relaxation
time of the dust particle, that is, the time required by the
dust phase to adjust its velocity relative to fluid. 𝑐

𝑝
, 𝑐
𝑚
are the

specific heat of fluid and dust particles.𝑄
0
is the internal heat

absorption coefficient.
The boundary conditions for the flow problem are

𝑢 = 𝑈
𝑤
(𝑥) = 𝑐𝑥, V = −V

0
,

− 𝑘

𝜕𝑇
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= ℎ (𝑇
𝑤
− 𝑇) at 𝑦 = 0,

Table 1: Comparison of −𝑓(0) values for various values of𝑀when
𝑁 = Gr = 𝑆 = 0.

𝑀 = 0 𝑀 = 0.5 𝑀 = 1 𝑀 = 1.5 𝑀 = 2

Yih [10] 1.0000 1.2247 1.4142 1.5811 1.7321
Present results 1.000000 1.224745 1.414214 1.581139 1.732051

Table 2: Comparison of −𝜃(0) values for various values of Pr when
𝑀 = Gr = 𝑁 = 𝑆 = 0.

Grubka and
Bobba [5] Ishak et al. [12] Present results

Pr = 1 0.5820 0.5820 0.581977
Pr = 3 1.1652 1.1652 1.165246
Pr = 10 2.3080 2.3080 2.308003
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∞
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as 𝑦 → ∞,

(8)

where 𝑐 > 0 is the stretching rate of the sheet, 𝐸 is the density
ratio, V

0
> 0 is the suction velocity, and ℎ is the heat transfer

coefficient.
Equation (1) is automatically satisfied through introduc-

ing the stream function 𝜓(𝑥, 𝑦) = √𝑐]𝑥𝑓(𝜂), such that 𝑢 =

𝜕𝜓/𝜕𝑦 and V = −𝜕𝜓/𝜕𝑥. We further introduce the following
variables:
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where 𝜌
𝑟
is the relative density. Substituting (9) in (2)–(7), we
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Boundary conditions (8) are transformed to
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The nondimensional parameters appearing in (10)-(11) and
defined in (12) are the magnetic parameter 𝑀, the mass
concentration of dust particles 𝑙, the fluid particle interaction
parameter 𝛼, the local thermal buoyancy parameter 𝜆, the
local Grashof number Gr

𝑥
, the local Reynolds number Re

𝑥
,

the Prandtl number Pr, the Eckert number Ec, the suction
parameter 𝑆, the Biot number Bi, the heat absorption param-
eter 𝛽

ℎ
, the local fluid particle interaction parameters for

heat transfer 𝑐
1
and 𝑐
3
, and the local fluid particle interaction

parameter for velocity 𝑐
2
. The value of 𝜆 > 0 corresponds

to the buoyancy assisting flow while the value of 𝜆 < 0

corresponds to the buoyancy opposing flows and 𝜆 = 0

corresponds to the case of pure forced convection flow.
Apart from the velocity and temperature of the fluid and

dust phases, the other physical quantities of practical interest
are the skin friction coefficient 𝐶

𝑓
and the local Nusselt

number Nu
𝑥
.

The skin friction coefficient 𝐶
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is defined as
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Using (14) in (13), we obtain
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3. Numerical Solution and
Validation of Results

Equations (10) are highly nonlinear coupled ordinary dif-
ferential equations, which are solved by the bvp4c routine
of Matlab. In order to solve these equations they are first
reduced to nine simultaneous ordinary differential equations
as follows:
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where 𝑦
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The boundary conditions for the above simultaneous

ordinary differential equations are

𝑦
1
= 𝑆, 𝑦

2
= 1, 𝑦

3
= 𝑠
1
,

𝑦
4
= 𝑠
2
, 𝑦

5
= 𝑠
3
, 𝑦

6
= 𝑠
4
,

𝑦
7
= −Bi (1 − 𝑠

4
) , 𝑦

8
= 𝑠
5
, 𝑦

9
= 𝑠
6
,

at 𝜂 = 0,

𝑦
2
= 0, 𝑦

4
= 0, 𝑦

5
= −𝑦
1
,

𝑦
6
= 0, 𝑦

8
= 0, 𝑦

9
= 𝐸,

as 𝜂 → ∞,

(20)



Journal of Applied Mathematics 5

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fluid velocity
Dust velocity

𝜂

M = 1, 2, 3

f
 (
𝜂
),
F
(𝜂
)

(a)

0.2

0.1

0.15

0.25

0.3

0

0.05

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

Fluid temperature 
Dust temperature 

0 0.5 1 1.5 2 2.5 3
𝜂

M = 1, 2, 3

𝜃
(𝜂
),
𝜃 p
(𝜂
)

(b)

Figure 2: Effect of𝑀 on (a) 𝑓, 𝐹 and (b) 𝜃, 𝜃
𝑝
when 𝑆 = 2, 𝛽

ℎ
= 1,𝑁 = 1, Bi = 1, and Ec = 0.1.

0 0.5 1 1.5 2 2.5 3 3.5 4
𝜂

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
 (
𝜂
),
F
(𝜂
)

Fluid velocity
Dust velocity

S = 1, 1.5, 2

(a)

0 0.5 1 1.5 2 2.5 3
𝜂

0.2

0.1

0.15

0.25

0.3

0.35

0.4

0

0.05

𝜃
(𝜂
),
𝜃 p
(𝜂
)

Fluid temperature 
Dust temperature 

S = 1, 1.5, 2

(b)

Figure 3: Effect of 𝑆 on (a) 𝑓, 𝐹 and (b) 𝜃, 𝜃
𝑝
when𝑀 = 1, 𝛽

ℎ
= 1,𝑁 = 1, Bi = 1, and Ec = 0.1.

where 𝑠
𝑖
(𝑖 = 1, 2, 3, 4, 5, 6) are the initial guesses for 𝑦

3
, 𝑦
4
,

𝑦
5
, 𝑦
6
, 𝑦
8
, and𝑦

9
, respectively.

The above simultaneous ordinary differential equations
are solved subject to the boundary conditions using bvp4c
routine. To validate the results of the present work, a com-
parison of values of −𝑓(0) is presented in Table 1 and the
comparison of values of −𝜃(0) is presented in Table 2. The
present results are found to be in excellent agreement with
those of Yih [10], Grubka and Bobba [5], and Ishak et al. [12].

4. Results and Discussion

The effects of various flow parameters, namely, the magnetic
parameter 𝑀, the suction parameter 𝑆, the heat absorption
parameter 𝛽

ℎ
, the Biot number Bi, and the Eckert number Ec

on the flow andheat transfer of the dusty fluid are investigated
with the help of figures and tables. For the computation work,
the default values of the parameters are taken as 𝛼 = 5,
𝑐
1
= 𝑐
2
= 𝑐
3
= 1, 𝐸 = 1, 𝜆 = 10 (corresponding to buoyancy
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Figure 5: Effect of Bi on (a) 𝑓, 𝐹 and (b) 𝜃, 𝜃
𝑝
when𝑀 = 1, 𝑆 = 2,𝑁 = 1, 𝛽
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assisting flow), Pr = 0.71, and 𝑙 = 0.2. Figure 2 shows
the effect of magnetic parameter𝑀 on the fluid and particle
velocities and fluid and particle temperatures.The increase in
the magnetic parameter signifies the increase in the strength
of the applied magnetic field. It is observed that an increase
in𝑀 causes a decrease in the fluid and particle velocities but
an increase in the fluid and particle temperatures. This effect
on flow and heat transfer with respect to magnetic field is due
to the resistive force which appears in the flow field due to
the presence of magnetic field. The effect of Joule dissipation
is important because it increases the temperature of the fluid

and the dust phase with increases in the magnetic field. The
thickness of momentum boundary layer decreases while the
thermal boundary layer increases with an increase in the
strength of the applied magnetic field.

Figure 3 exhibits the effect of suction parameter 𝑆 on the
flow and heat transfer. An increase in 𝑆, which marks the
increase in the suction velocity through the sheet, decreases
the velocity and temperature for both the fluid and dust
phases.The cause of the decreasing effect on the fluid velocity
is acceleration of the velocity towards the plate due to the
flow through the pores of the plate. This has importance
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Figure 7: Effect of𝑁 on (a) 𝑓, 𝐹 and (b) 𝜃, 𝜃
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in delaying the boundary layer formation in the flow field.
The fluid temperature decreases as a result of the heat
removal with the fluid flowing through the pores. Both
the momentum and thermal boundary layer thicknesses are
decreased with the increase in the suction through the pores
of the sheet.

The effect of heat absorption parameter 𝛽
ℎ
on the velocity

and temperature for both the fluid and dust phases is
demonstrated in Figure 4. The heat absorption parameter 𝛽

ℎ

measures the amount of heat flux absorbed by the fluid. It is
noticed that an increase in 𝛽

ℎ
causes a decrease in the velocity

and temperature for both the fluid and dust phases. The
behavior is as per expectations as the heat absorption by the
fluid causes a decrease in the kinetic and thermal energy of
the fluid and as a result the velocity and temperature for both
the phases decrease. The thickness of both the momentum
and thermal boundary layers decreases with an increase in
the heat absorption by the fluid.

Figure 5 presents the effect of increase in the Biot number
Bi on the flow and heat transfer. Biot number Bi gives the
ratio of the heat transfer resistances inside and at the surface
of a body which measures the convective heat transfer rate
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Table 3: Values of −𝑓(0) and −𝜃(0) for different values of the parameters.

𝑀 𝑆 𝛽
ℎ

Bi Ec 𝑁 −𝑓


(0) −𝜃


(0)

1 2 1 1 0.1 1 1.73694589 0.66142424
2 — — — — — 2.03962304 0.65409733
3 — — — — — 2.30749884 0.64766402
1 1 1 1 0.1 1 0.68814355 0.60401190
— 1.5 — — — — 1.20287314 0.63508597
— 2 — — — — 1.73694589 0.66142424
1 2 1 1 0.1 1 1.73694589 0.66142424
— — 2 — — — 1.88561032 0.68377933
— — 3 — — — 1.99471106 0.70124323
1 2 1 0.5 0.1 1 2.11897411 0.39070844
— — — 1 — — 1.73694589 0.66142424
— — — 1.5 — — 1.46083806 0.85993205
1 2 1 1 0.1 1 1.73694589 0.66142424
— — — — 0.3 — 1.49212499 0.61949317
— — — — 0.5 — 1.25526077 0.58242785
1 2 1 1 0.1 1 1.73694589 0.66142424
— — — — — 2 1.86119164 0.67973786
— — — — — 3 1.95733253 0.69468425

between fluid and the surface of the sheet. It is shown that
the increase in Bi has an increasing effect on the velocity and
temperature for both the fluid and dust phases. An increase in
the convective heat transfer rate contributes to the thickening
of the momentum and thermal boundary layers.

The effect of Eckert number Ec, which signifies the
viscous dissipation of the fluid, on the flow and heat transfer
is exhibited in Figure 6. It is observed that an increase in the
viscous dissipation of the fluid tends to increase the velocity
and temperature for both the phases. The reason for this
effect is that the viscosity of the fluid takes energy from
the motion of the fluid and transforms it into the internal
energy of the fluid which results in the heating up of the fluid,
and an increase in the fluid temperature is encountered. The
momentum and thermal boundary layers get thicker with the
increase in the viscous dissipation.

The effect of number density of dust particles 𝑁 is
depicted in Figure 7. Number density of dust particles
measures the density of dust particles in the flow system
so that the value 𝑁 = 0 corresponds to the clean fluid. It
is depicted in the figures that the increase in the number
density of dust particles causes a decrease in the velocity and
temperature for both the fluid and dust phases. The central
reason for this is the presence of dust particles which causes
retardation into the fluid flow. The dust particles tend to
absorb the heat when they come in contact with the fluid and
this causes a decrease in the fluid temperature. The presence
of dust particles causes a decrease in both themomentum and
thermal boundary layer thicknesses.

The effects of magnetic field, suction, heat absorption,
convective heat transfer at the plate, viscous dissipation, and
number density of dust particles on −𝑓(0) and −𝜃(0)which
measures the coefficient of skin friction and local Nusselt
number at the sheet, respectively, are presented in Table 3.

We found that the skin friction increases with an increase
in strength of magnetic field, suction, heat absorption, and
the number density of dust particles while it is oppositely
affected by convective heat transfer rate at the plate and
viscous dissipation of the fluid. The Nusselt number at the
plate is increasedwith an increase in suction, heat absorption,
convective heat transfer, and number density of dust particles
whereas it is reversely influenced by the magnetic field and
viscous dissipation.

5. Conclusions

The combined effects of viscous and Joule dissipation on the
steady two-dimensional boundary layer flow of a viscous,
incompressible, and electrically conducting dusty fluid past
a vertical permeable stretching sheet under the influence
of a transverse magnetic field with internal heat absorption
effects are investigated numerically. The important findings
of practical interest are as follows.

(i) The momentum boundary layer thickness increases
with an increase in the convective heat transfer rate
from the plate and viscous dissipation whereas it
decreases with an increase in magnetic field strength,
suction, heat absorption, and number density of dust
particles.

(ii) The contribution of viscous and Joule dissipation is
to increase the thickness of the thermal boundary
layer while its thickness decreases with the increase
in suction, heat absorption, convective heat transfer,
and the number density of dust particles.
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