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It is known that the steepest-descent method converges normally at the first few iterations, and then it slows down. We modify
the original steplength and descent direction by an optimization argument with the new steplength as being a merit function
to be maximized. An optimal iterative algorithm with 𝑚-vector descent direction in a Krylov subspace is constructed, of which
the 𝑚 optimal weighting parameters are solved in closed-form to accelerate the convergence speed in solving ill-posed linear
problems. The optimally generalized steepest-descent algorithm (OGSDA) is proven to be convergent with very fast convergence
speed, accurate and robust against noisy disturbance, which is confirmed by numerical tests of some well-known ill-posed linear
problems and linear inverse problems.

1. Introduction

The steepest-descent method (SDM), which can be traced
back to Cauchy (1847), is the simplest gradient method for
solving positive definite linear equations system. The SDM
is effective for well-posed and low-dimensional linear prob-
lems; however, for large scale linear system and ill-posed
linear system it converges very slowly.

Several modifications to the SDM have been addressed.
These modifications have led to a new interest in the SDM
that the gradient vector itself is not a bad choice but rather
that the original steplength used in the SDM leads to the slow
convergence behavior. Barzilai and Borwein [1] presented a
new choice of steplength through two-point stepsize. Altho-
ugh their method did not guarantee the monotonic descent
of the residual norms, Barzilai and Borwein [1] were able to
produce a substantial improvement of the convergence speed
for a certain test of a positive linear system. The results of
Barzilai and Borwein [1] have encouraged many researches
on the SDM, for example, Raydan [2, 3], Friedlander et al.
[4], Raydan and Svaiter [5], Dai et al. [6], Dai and Liao [7],
Dai and Yuan [8], Fletcher [9], and Yuan [10].

The iterative method for solving the system of algebraic
equations can be derived from the discretization of cer-
tain ordinary differential equations (ODEs) system [11]. In

particular, some descent methods can be interpreted as the
discretizations of gradient flows [12]. Indeed, the continuous
algorithms have been investigated in many literature works
for a long time, for example, Gavurin [13], Alber [14], Hirsch
and Smale [15], and Chu [16].The Lyapunovmethods used in
the analysis of iterative methods have been made by Ortega
and Rheinboldt [17] and Bhaya and Kaszkurewicz [11, 18, 19].
Liu [20] has developed a state feedback controlling method
together with a Lie-group differential algebraic equations
method to solve ill-posed linear systems.

In this paper we solve

Bx = b
1
, (1)

where x ∈ R𝑛 is an unknown vector determined from a given
coefficient matrix B ∈ R𝑛×𝑛, which might be unsymmetric,
and the input b

1
∈ R𝑛 which might be polluted by random

noise. A measure of the ill-posedness of (1) is the condition
number of B:

Cond (B) = ‖B‖ 

B−1

, (2)

where ‖B‖ is the Frobenius norm of B.
Instead of (1), we can solve a normal linear system:

Cx = b, (3)
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where

b = BTb
1
, C = BTB > 0. (4)

Throughout this paper the superscript “T” signifies the tra-
nspose.

We consider iterative method for solving (3) and define
for any vector x

𝑘
the steepest-descent vector:

r
𝑘
:= Cx

𝑘
− b. (5)

Ascher et al. [21] have viewed the gradient-descent method:

x
𝑘+1
= x
𝑘
− 𝜂
𝑘
r
𝑘
, (6)

as a forward Euler scheme of a time-dependent ODE:

ẋ = b − Cx. (7)

The absolute stability bound

𝜂
𝑘
≤

2

max
𝜎(C)𝜆

(8)

must be obeyed if a uniform stepsize is employed, where 𝜎(C)
is the set of all the eigenvalues of C.

Specifically, (6) presents a steepest-descent method
(SDM), if the steplength is taken to be

𝜂
𝑘
=





r
𝑘






2

rT
𝑘
Cr
𝑘

. (9)

When ‖r
𝑘
‖ is rather small the calculated r

𝑘
may deviate

from the real steepest-descent direction to a great extent due
to a round-off error of computing machine, which usually
leads to the numerical instability of SDM. An improvement
of SDM is the conjugate gradient method (CGM), which
enhances the search direction of the minimum by imposing
an orthogonality to the residual vector at each iterative step.

The relaxed SDM (RSDM) for solving (3) is summarized
as follows [22, 23].

(i) Give 𝛾 and an initial value of x
0
.

(ii) For 𝑘 = 0, 1, . . ., we repeat the following iterations:

r
𝑘
= Cx
𝑘
− b, 𝜂

𝑘
=





r
𝑘






2

rT
𝑘
Cr
𝑘

,

x
𝑘+1
= x
𝑘
− (1 − 𝛾) 𝜂

𝑘
r
𝑘
.

(10)

If x
𝑘+1

converges according to a given stopping criterion
‖r
𝑘+1
‖ < 𝜀, then stop; otherwise, go to step (ii).
The steepest-descent method is the basis of several gra-

dient-based methods [22, 23], and it is one of the most pro-
minent iterative methods for solving positive definite linear
equations system. Although the SDM works very well for
most linear systems, the SDM does lose some of its luster for
some ill-posed problems like inverse problems, image pro-
cessing, and box-constrained optimization. Both the effi-
ciency and robustness of the SDM iterative techniques can be
improved by using a suitable preconditioning technique.

However, we do not go to the details of the precondi-
tioning techniques of SDM, and instead we will propose
an alternative approach by modifying the search direction
and steplength used in the SDM by an argument from the
optimality of a suitably defined merit function. In this paper
we explore a generalization of the SDM by introducing the
concept of optimal descent vector to solve linear equations,
which is an optimal combination of the steepest-descent
vector −r and the 𝑚-dimensional search vector in a Krylov
subspace. Here we modify the direction r as well as the
steplength 𝜂 from a theoretical optimization being performed
on the derived steplength in an 𝑚-dimensional Krylov
subspace.

The remaining parts of this paper are arranged as fol-
lows. A numerical iterative scheme with −u as a descent
direction is proposed, and the convergence to the minimal
point x∗ = C−1b of a quadratic functional is proven in
Section 2. In Section 3 we propose a generalization of the
steepest-descent method to solve positive linear equations
systems, by using a new steplength as a merit function to
be optimized in an 𝑚-dimensional Krylov subspace. Then, a
genuine algorithm is constructed in Section 4, resulting in an
optimally generalized steepest-descent algorithm (OGSDA)
in terms of 𝑚 optimal weighting parameters which is being
derived explicitly tomaximize the introduced steplength.The
numerical examples are given in Section 5 to display some
advantages of the OGSDA, which is compared with CGM,
BBM, GMRES, and other algorithms. Finally, the conclusions
are drawn in Section 6.

2. The Convergence of New Algorithm

Solving (3) by the steepest-descent method (SDM) is equiva-
lent to solving the following minimum problem:

min
x∈R𝑛
𝜑 (x) = min

x∈R𝑛
[

1

2

xTCx − bTx] . (11)

In the SDM, we search the next x(𝑡 + Δ𝑡) from the current
state x(𝑡) by minimizing the functional 𝜑 along the direction
−r(𝑡); that is,

min
𝜂
𝜑 (x (𝑡) − 𝜂r (𝑡)) . (12)

Through some calculations we can obtain

𝜂 =

‖r(𝑡)‖2

rT (𝑡)Cr (𝑡)
. (13)

Thus we have the following iterative algorithm of SDM:

x (𝑡 + Δ𝑡) = x (𝑡) − ‖r(𝑡)‖2

rT (𝑡)Cr (𝑡)
r (𝑡) . (14)

A straightforward calculation reveals that

𝜑 (x (𝑡 + Δ𝑡)) < 𝜑 (x (𝑡)) . (15)

It means that the iterative sequences of SDM converge to the
minimal point.
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Then, we consider a more general scheme with the des-
cent direction −u(𝑡); that is,

x (𝑡 + Δ𝑡) = x (𝑡) − r (𝑡) ⋅ u (𝑡)
uT (𝑡)Cu (𝑡)

u (𝑡) . (16)

Similarly we have the following result.

Lemma 1. Equation (16) is a result of the following minimiza-
tion along the descent direction −u:

min
𝜂
𝜑 (x (𝑡) − 𝜂u (𝑡)) . (17)

The functional 𝜑 is decreasing stepwise and the iterative scheme
(16) is convergent to the minimal point x∗ = C−1b.

Proof. Inserting

x (𝑡 + Δ𝑡) = x (𝑡) − 𝜂u (𝑡) (18)

into the functional 𝜑 we have

𝜑 (𝑡 + Δ𝑡) =

1

2

[xTCx − 2𝜂uTCx + 𝜂2uTCu]

− bTx + 𝜂uTb,
(19)

where we simplify the notation of 𝜑(x(𝑡 + Δ𝑡)) by 𝜑(𝑡 + Δ𝑡)
and omit the terms (𝑡) in x(𝑡) and u(𝑡). Taking the derivative
of (19) with respect to 𝜂 and equating it to zero we can derive

𝜂 =

uTr
uTCu

. (20)

Because 𝜂 is a steplength, we demand it to be positive; that is,
r ⋅ u > 0. By feeding the above 𝜂 into (18) we can derive the
iterative scheme (16).

Inserting (20) into (19) and subtracting the resultant by

𝜑 (𝑡) =

1

2

xTCx − bTx, (21)

we can obtain

𝜑 (𝑡 + Δ𝑡) − 𝜑 (𝑡) =

1

2

𝜂
2uTCu − 𝜂uTr = −

(uTr)
2

2uTCu
.

(22)

It implies

𝜑 (𝑡 + Δ𝑡) = 𝜑 (𝑡) −

(uTr)
2

2uTCu
< 𝜑 (𝑡) ,

(23)

and the functional 𝜑 is strictly decreasing. Because the min-
imal point x∗ = C−1b of 𝜑 is just the exact solution of (3),
such that when the iterative sequences are generated from
scheme (16), the functional 𝜑 decreases step-wisely to its
minimal value and x(𝑡) tends to the minimal point gradually.
Thus we can conclude that the new scheme is convergent
absolutely.

3. A Generalized SDM and Its Optimization

In Lemma 1 we have proven that the new scheme (16) is
convergent, but it cannot tell us what descent direction −u
is the best. Although the SDM uses the steepest-descent
direction −r, it is well known that the steplength 𝜂 given in
(13) quickly tends to a small value, causing the slowdown of
the SDM scheme.

In order to overcome the slowness of SDM, Barzilai and
Borwein [1] have presented a new choice of the steplength
through two-point stepsize. The algorithm of the Barzilai-
Borwein method (BBM) is

x
𝑘+1
= x
𝑘
−

(Δr
𝑘−1
)
T
Δx
𝑘−1





Δr
𝑘−1






2
r
𝑘
, (24)

where Δr
𝑘−1
= r
𝑘
− r
𝑘−1

and Δx
𝑘−1
= x
𝑘
− x
𝑘−1

, with initial
guesses r

0
= 0 and x

0
= 0. Nowadays the improvements of the

original BBM have been developed in many literature works
[24–30] to treat different ill-posed and inverse problems.

In the numerical solution of linear equations system the
Krylov subspace method is one of the most important classes
of projective type numerical methods [31–35]. The iterative
algorithms that are applied to solve large scale linear systems
aremostly the preconditionedKrylov subspacemethods [36].

The GMRES used to solve (1) can be summarized as
follows [37, 38].

(i) Select𝑚 and give an initial x
0
.

(ii) For 𝑘 = 0, 1, . . ., we repeat the following computa-
tions:

r
𝑘
= b
1
− Bx
𝑘
,

Arnoldi procedure to set up

k𝑘
𝑗
, 𝑗 = 1, . . . , 𝑚, (from k𝑘

1
=

r
𝑘





r
𝑘






) ,

V
𝑘
= [k𝑘
1
, . . . , k𝑘

𝑚
] ,

Solve (HT
𝑘
H
𝑘
) y
𝑘
=




r
𝑘





HT
𝑘
e
1
, obtaining y

𝑘
,

z
𝑘
= V
𝑘
y
𝑘
,

x
𝑘+1
= x
𝑘
+ z
𝑘
.

(25)

If x
𝑘+1

converges according to a given stopping criterion
‖r
𝑘+1
‖ < 𝜀, then stop; otherwise, go to step (ii). In the above,

V
𝑘
is an 𝑛 × 𝑚matrix, whileH

𝑘
is an augmentedHeissenberg

upper triangular matrix with dimension (𝑚 + 1) × 𝑚, and e
1

is the first column of I
𝑚+1

.

3.1. A Generalized SDM. We suppose that the original ste-
epest-descent direction −r in the SDM is replaced by a new
descent vector −u:

u = r +
𝑚

∑

𝑘=1

𝛼kk𝑘, (26)
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which is an optimal combination of r and the𝑚-vector k
𝑘
, 𝑘 =

1, . . . , 𝑚. The coefficients 𝛼
𝑘
will be optimized in Section 3.2.

Now we describe how to set up the 𝑚-vector k
𝑘
, 𝑘 =

1, . . . , 𝑚, by the Krylov subspace method. Suppose that we
have an 𝑚-dimensional Krylov subspace generated by the
coefficient matrix C from the steepest-descent vector r:

K
𝑚
:= span {Cr, . . . ,C𝑚r} . (27)

Then the Arnoldi process is used to normalize and orthog-
onalize the Krylov vectors C𝑗r, 𝑗 = 1, . . . , 𝑚, such that the
resultant vectors k

𝑖
, 𝑖 = 1, . . . , 𝑚, satisfy k

𝑖
⋅ k
𝑗
= 𝛿
𝑖𝑗
, 𝑖, 𝑗 =

1, . . . , 𝑚, where 𝛿
𝑖𝑗
is the Kronecker delta tensor.

The other way to obtain k
𝑖
, 𝑖 = 1, . . . , 𝑚, is simply by

using the unit vectors in the Euclidean space, where k
𝑖
is the

𝑖th column vector of the identity matrix I
𝑛
. The resultant 𝑚-

dimensional space is named the unit subspace.

3.2. Optimization of Algorithm. Let J be an 𝑛 × 𝑚 matrix,
which consists of

J := [k
1
, . . . , k

𝑚
] . (28)

That is, the 𝑗th column of J is the vector k
𝑗
. Because k

1
, . . . , k

𝑚

are linearly independent vectors and 𝑚 < 𝑛, the expansion
matrix J has a full rank with rank(J) = 𝑚. Then, (26) can be
written as

u = r + J𝛼, (29)

where 𝛼 := (𝛼
1
, . . . , 𝛼

𝑚
)
T.

Now, in view of (16) the new steplength becomes

𝜂 =

rTu
uTCu

. (30)

When u = r, the above 𝜂 recovers to that defined in (13).
In order to speed up the convergence we can search a way
to maximize the steplength, such that we have the following
maximization problem:

max{𝜂 = rTu
uTCu

} . (31)

Here, we use the steplength 𝜂 as a merit function to be
optimized. Hence, we can prove the following result.

Theorem 2. For rank(J) = 𝑚 and u ∈ r +K
𝑚
, the descent

direction −u which maximizes (31) is given by

u = r − ECr + 𝜆Er, A = J T CJ, (32)

E = JA−1J T , 𝑏
0
= r T

(CEC − C) r < 0, (33)

𝑏
1
= r T

(I
𝑛
− CE) r > 0, (34)

𝑏
2
= r T Er > 0, (35)

𝜆 =

√𝑏
2

1
− 𝑏
0
𝑏
2
− 𝑏
1

𝑏
2

.
(36)

Moreover, the steplength 𝜂 defined in (30) is positive; that is,

𝜂 =

1

2𝜆

=

𝑏
2

2√𝑏
2

1
− 𝑏
0
𝑏
2
− 2𝑏
1

> 0. (37)

Proof. We divide this proof into three parts.

(A) A Minimization Problem. Inserting (29) into (31) we can
obtain the following minimization problem:

min
𝛼
1
,...,𝛼
𝑚

u ⋅ (Cu)
r ⋅ u

, (38)

where

r ⋅ u = ‖r‖2 + rTJ𝛼, (39)

u ⋅ (Cu) = rTCr + 2rTCJ𝛼 + 𝛼TA𝛼, (40)

in which

A := JTCJ (41)

is an𝑚×𝑚 positive definite matrix. Because the matrixC has
a full rank with rank(C) = 𝑛 and positive definite and J has a
full rankwith rank(J) = 𝑚, from the above equation it follows
that A has a full rank with rank(A) = 𝑚. Then, we confirm
that A is an𝑚 × 𝑚 positive definite matrix by (41).

From (39) and (40) we can derive

y
1
:= ∇
𝛼
r ⋅ u = JTr, (42)

y
2
:= ∇
𝛼
u ⋅ (Cu) = 2JTCr + 2A𝛼, (43)

where ∇
𝛼
denotes the gradient with respect to 𝛼.

By using

∇
𝛼

u ⋅ (Cu)
r ⋅ u

= 0 ⇒ r ⋅ u∇
𝛼
u ⋅ (Cu) − u ⋅ (Cu) ∇

𝛼
r ⋅ u = 0,

(44)

we can derive the following governing equation of vector
form to solve the optimal parameter 𝛼:

r ⋅ uy
2
− u ⋅ (Cu) y

1
= 0. (45)

Now we prove that 𝛼 solved from the above equation is a
minimal point of the functional in (38). We can compute the
Jacobian matrix of (45), which is denoted by J

𝛼
:

J
𝛼
= 2r ⋅ uA + y

2
yT
1
− y
1
yT
2
. (46)

It is an𝑚×𝑚 positive definite matrix, because for any z ̸= 0 ∈
R𝑚 we have

zTJ
𝛼
z = 2r ⋅ uzTAz > 0, (47)

where we have used the positive definite property of A, and
r ⋅u > 0. Because 𝜂 defined by (20) is a steplength, we demand
it to be positive; that is, r ⋅ u > 0 (see the proof given below
for r ⋅ u > 0).
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(B) A Quadratic Equation. Equations (40) and (43) can be
written as

u ⋅ (Cu) = rTCr + 2yT
0
J𝛼 + 𝛼TA𝛼, (48)

y
2
= 2JTy

0
+ 2A𝛼, (49)

where

y
0
:= Cr. (50)

From (45) we can observe that y
2
is proportional to y

1
,

which is supposed to be

y
2
=

u ⋅ (Cu)
r ⋅ u

y
1
= 2𝜆y

1
, (51)

where 2𝜆 is a multiplier to be determined. From (51), two
equations follow

y
2
= 2𝜆y

1
, (52)

u ⋅ (Cu) = 2𝜆r ⋅ u. (53)

Then, by (42), (49), and (52) we can solve 𝛼 by

𝛼 = 𝜆A−1JTr − A−1JTy
0
. (54)

Inserting (54) for 𝛼 into (39) and (48) we have that

r ⋅ u = ‖r‖2 − yT
0
Er + 𝜆rTEr,

u ⋅ (Cu) = rTCr − yT
0
Ey
0
+ 𝜆
2rTEr,

(55)

where

E := JA−1JT (56)

is an 𝑛 × 𝑛 positive semi-definite matrix.
Now, from (53) and (55) we can derive a quadratic

equation to solve 𝜆:

𝑎
2
𝜆
2
+ 𝑎
1
𝜆 + 𝑎
0
= 0, (57)

where

𝑎
0
:= yT
0
Ey
0
− rTCr,

𝑎
1
:= 2‖r‖2 − 2yT

0
Er, 𝑎

2
:= rTEr.

(58)

(C) A Closed-Form Solution of Optimal Parameter 𝛼. Now we
prove 𝑎

0
< 0. By using (50) we have

𝑎
0
= rT [CEC − C] r < 0, (59)

if we can prove

CEC − C < 0. (60)

From (56) and (41) it follows that

ECJ = J(JTCJ)
−1

JTCJ = J, (61)

JTCE = JTCJ(JTCJ)
−1

JT = JT, (62)

JT [CEC] J = JT [CJ(JTCJ)
−1

JTC] J = JTCJ. (63)

They indicate that E is a Penrose pseudoinverse of C in the
Krylov subspace; hence, (60) follows.

According to (58), it is obvious that 𝑎
2
> 0; hence, by (59)

we have

𝑎
2

1
− 4𝑎
0
𝑎
2
> 0. (64)

As a consequence, (57) has a closed-form positive real
solution:

𝜆 =

√𝑎
2

1
− 4𝑎
0
𝑎
2
− 𝑎
1

2𝑎
2

.
(65)

Inserting it into (54) we can obtain the closed-form solution
of 𝛼:

𝛼 =

√𝑎
2

1
− 4𝑎
0
𝑎
2
− 𝑎
1

2𝑎
2

A−1JTr − A−1JTy
0
.

(66)

Upon comparing (53) and (30) we can derive (37) with
the steplength 𝜂 being positive. Moreover, as a direct result of
(30) and (37) we have r ⋅ u > 0.

Remark 3. Because of 𝑎
2
> 0 and 𝑎

0
< 0 in (57), it has a

positive solution as shown in (65) and in addition a negative
solution as follows:

𝜆 =

−√𝑎
2

1
− 4𝑎
0
𝑎
2
− 𝑎
1

2𝑎
2

,
(67)

where

𝑎
1
= 2rT (I

𝑛
− CE) r > 0, (68)

in view of (58), (50), and (62). Hence, by (30) and (37) we
have

r ⋅ u = ‖r‖2 − yT
0
Er + 𝜆rTEr < 0, (69)

which contradicts (20), where 𝜂 is a steplength being positive.
Below we will give a numerical example to demonstrate this
fact.

Corollary 4. If𝑚 = 𝑛, then one has

𝛼 = J−1C−1r − J−1r. (70)

Proof. If𝑚 = 𝑛, then J defined by (28) is an 𝑛×𝑛 nonsingular
matrix. Simultaneously,E defined by (56) is equal toC−1, 𝑎

0
=

0, 𝑎
1
= 0, 𝑎

2
> 0, and meanwhile (66) reduces to (70), where

we have taken 𝜆 = 1 according to the above condition.
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Remark 5. If𝑚 = 𝑛, by (29) and (70) we have

u = r + J𝛼 = r + J [J−1C−1r − J−1r] = C−1r, (71)

and inserting it into (31) we can prove 𝜂 = 1. In any way,
under this condition we have the fastest convergent behavior,
because the solution x = C−1b is already obtained. Usually,
we cannot take 𝑚 = 𝑛, which leads to a quite difficult task to
find the inverse of A = JTCJ when𝑚 = 𝑛 is a large number.

4. An Optimal Generalized
Steepest-Descent Algorithm

Thus, we arrive at the following optimally generalized steepest-
descent algorithm (OGSDA).

(i) Select𝑚 and 0 ≤ 𝛾 < 1, and give an initial value of x
0
.

(ii) For 𝑘 = 0, 1, . . ., we repeat the following computa-
tions:

r
𝑘
= Cx
𝑘
− b,

Arnoldi procedure to set up

k𝑘
𝑗
, 𝑗 = 1, . . . , 𝑚, (from k𝑘

1
=

Cr
𝑘





Cr
𝑘






) ,

J
𝑘
= [k𝑘
1
, . . . , k𝑘

𝑚
] ,

A
𝑘
= JT
𝑘
CJ
𝑘
,

E
𝑘
= J
𝑘
A−1
𝑘
JT
𝑘
,

Compute (36) , obtaining 𝜆
𝑘
,

u𝑘 = r
𝑘
− E
𝑘
Cr
𝑘
+ 𝜆
𝑘
E
𝑘
r
𝑘
,

𝜂
𝑘
=

1

2𝜆
𝑘

,

x
𝑘+1
= x
𝑘
− (1 − 𝛾) 𝜂

𝑘
u𝑘.

(72)

If x
𝑘+1

converges according to a given stopping criterion
‖r
𝑘+1
‖ < 𝜀, then stop; otherwise, go to step (ii).

Remark 6. Depending on the different choice of k
𝑗
, 𝑗 =

1, . . . , 𝑚, the optimal algorithm is further classified into two
types.When k

𝑗
, 𝑗 = 1, . . . , 𝑚, are constructed from theKrylov

subspace and followed by the Arnoldi process to orthonor-
malize the Krylov vectors, the resultant optimal algorithm is
named the OGSDA with Krylov subspace method. On the
other hand, if k

𝑗
is simply the 𝑗th column of the unit matrix

I
𝑛
, then the resultant optimal algorithm is named theOGSDA

with unit subspace method. Both methods have their own
advantage. In the Krylov subspace method, the expansion
matrix J is not fixed, and it can adjust its configuration
at each iterative step to accelerate the convergence, which
however leads to a consumption of computational time in the
calculation of the inverse ofA = JTCJ to obtainA−1 andE. On
the other hand, in the unit subspace method, the expansion

matrix J is fixed, and we only need to calculate A = JTCJ,
A−1 and E one time, which is much time saving than that by
using the Krylov subspace method; however, it cannot adjust
the configuration of the descent direction at each iterative
step, which might lead to an ill-condition in the course of
computation.

We can evaluate the cost of computing the approximate
solution x

𝑘
by OGSDA with 𝑘 steps. We can estimate the cost

of the computation of the scalar 𝜆, which at each iterative
step requires an inversion of 𝑚 × 𝑚 matrix, the matrix-
vector multiplications of 𝑛 × 𝑛-matrix and 𝑛-vector three
times, and the inner products of two 𝑛-vectors five times.This
portion is very time saving with totally 3𝑘𝑛 + 𝑘𝑚2, because
of 𝑚 ≪ 𝑛. The computation of the Arnoldi vectors needs
totally 𝑘(𝑘 + 1)𝑛 + 𝑘𝑛2 multiplications. In the computation
of u it requires 2𝑘𝑛 multiplications. The 𝑘 steps OGSDA
therefore requires totally 𝑘(𝑘+6)𝑛+𝑘𝑛2+𝑘𝑚2multiplications.
Dividing by the total number of steps 𝑘 we can obtain that
each step requires (𝑘 + 6)𝑛 + 𝑛2 + 𝑚2 multiplications on the
average. The computational cost of OGSDA is slightly larger
than that of GMRES and BBM per step. However, because
the convergence speed of the OGSDA is very fast, the total
computational time is less than that of GMRES and BBM.

5. Numerical Examples

In order to evaluate the performance of the OGSDA, we test
some well-known ill-posed linear problems of the Hilbert
problem, the backward heat conduction problem, the heat
source identification problem, and the inverse Cauchy prob-
lem.

5.1. Example 1. First by testing the performance of OGSDA
on the solution of linear equations system, we consider
the following convex quadratic programming problem with
equality constraint:

min {𝑓 = 1
2

xTPx + qTx} , (73)

Qx = b
0
, (74)

where P is an 𝑛
1
× 𝑛
1
matrix, Q is an 𝑚

1
× 𝑛
1
matrix, and

b
0
is an𝑚

1
-vector, which means that (74) provides𝑚

1
linear

constraints. According to the Lagrange theory we need to
solve (1) with the following b and B:

b
1
:= [

−q
b
0

] , B = [P QT

Q 0
𝑚
1
×𝑚
1

] . (75)

For definite we take 𝑛
1
= 3 and𝑚

1
= 2 with

min {𝑓 = 𝑥2
1
+ 2𝑥
2

2
+ 𝑥
2

3
− 2𝑥
1
𝑥
2
+ 𝑥
3
} ,

𝑥
1
+ 𝑥
2
+ 𝑥
3
= 4, 2𝑥

1
− 𝑥
2
+ 𝑥
3
= 2.

(76)

Under the following parameters𝑚 = 2, 𝛾 = 0.2, and 𝜀 = 10−5
and starting from the initial values of 𝑥

1
= 𝑥
2
= 𝑥
3
= 1

and two Lagrange multipliers 𝜆
1
= −2 and 𝜆

2
= 2 we
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Figure 1: Example 1 showing (a) residual, ((b) and (c)) optimal
parameters, and (d) steplength and 𝑎

0
.

apply the OGSDA to solve the resultant five-dimensional
linear equations system, which is convergent with 38 steps
as shown in Figure 1(a) for the residual. In Figures 1(b) and
1(c) we show, respectively, the optimal parameters 𝛼

1
and

𝛼
2
and the values of 𝜂

𝑘
and 𝑎𝑘

0
. It can be seen that 𝑎𝑘

0
∈

[−22.16, −5.72 × 10
−13
], as proven by (59) 𝑎𝑘

0
< 0. Now

we raise 𝑚 to 𝑚 = 𝑛 = 5 and also the convergence
criterion to 𝜀 = 10−5 and 𝛾 = 0 is fixed. The numerical
results obtained by the OGSDA with Krylov subspace is
convergent with only three steps. The final solution is a
minimal value min𝑓 = 3.977273 at the point (𝑥

1
, 𝑥
2
, 𝑥
3
) =

(1.909090909092, 1.954545454479, 0.13636363636).
In order to claim that the solution of 𝜆 given by (67) is

incorrect, we use the corresponding algorithm to solve the
above problem under the parameters 𝑚 = 2 and 𝛾 = 0.2.
First the algorithm does not converge within 500 steps under
a weak convergence criterion with 𝜀 = 10−2 as shown in
Figure 2(a). Then the algorithm gives negative steplength of
𝜂 as shown in Figure 2(b).
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Figure 2: For Example 1, using (67) the algorithmdoes not converge
and gives a negative steplength.

5.2. Example 2. Finding an 𝑛-order polynomial function
𝑝(𝑥) = 𝑎

0
+𝑎
1
𝑥+⋅ ⋅ ⋅+𝑎

𝑛
𝑥
𝑛 to bestmatch a continuous function

𝑓(𝑥) in the interval of 𝑥 ∈ [0, 1]

min
deg(𝑝)≤𝑛

∫

1

0

[𝑓 (𝑥) − 𝑝 (𝑥)]
2

𝑑𝑥, (77)

leads to a problem governed by (3), where C is the (𝑛 + 1) ×
(𝑛 + 1)Hilbert matrix defined by

𝐶
𝑖𝑗
=

1

𝑖 + 𝑗 − 1

, (78)

x is composed of the 𝑛 + 1 coefficients 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
that

appeared in 𝑝(𝑥), and

b =

[

[

[

[

[

[

[

[

[

[

∫

1

0
𝑓 (𝑥) 𝑑𝑥

∫

1

0
𝑥𝑓 (𝑥) 𝑑𝑥

...
∫

1

0
𝑥
𝑛
𝑓 (𝑥) 𝑑𝑥

]

]

]

]

]

]

]

]

]

]

(79)

is uniquely determined by the function 𝑓(𝑥).
The Hilbert matrix is a notorious example of highly ill-

conditioned matrices. Equation (3) with the matrix C having
a large condition number usually displays that an arbitrarily
small perturbation of data on the right-hand side may lead
to an arbitrarily large perturbation to the solution on the left-
hand side.

In this example we consider a highly ill-conditioned
linear system (3) with C given by (78). The ill-posedness of
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Table 1: Comparing the numerical results for Example 2 with different methods.

Solutions 𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

𝑥
9

Exact 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SVD 0.9999 1.008 0.985 0.995 1.007 1.012 1.009 0.999 0.984
SDM 1.00001 0.99980 1.00091 0.99910 0.99928 1.00035 1.00103 1.00062 0.99898
CGM 1.00000 1.00001 0.99924 1.00019 0.99988 0.99985 1.00008 1.00019 0.99987
RSDM 1.00000 0.99986 1.00087 0.99888 0.99928 1.00058 1.00128 1.00066 0.99856
OGSDA 0.9999999999 1.000000005 0.9999999185 1.000000569 0.9999979488 1.000004126 0.9999953195 1.000002797 0.9999993151

(3) increases fast with 𝑛. We consider an exact solution with
𝑥
𝑗
= 1 and 𝑏

𝑖
is given by

𝑏
𝑖
=

𝑛

∑

𝑗=1

1

𝑖 + 𝑗 − 1

+ 𝜎𝑅 (𝑖) , (80)

with 𝑅(𝑖) being random numbers between [−1, 1].
Liu [22] has applied the relaxed steepest-descent method

(RSDM) with 𝛾 = 0.06, starting from 𝑥
1
= ⋅ ⋅ ⋅ = 𝑥

9
= 0.5, to

solve theHilbert problemwith 𝑛 = 9with a stopping criterion
𝜀 = 10

−8 for the relative residual. Through 50000 iterations
the numerical solution converges to the exact solution very
accurately as shown in Table 1 with themaximum error being
1.44 × 10

−3. When we apply the OGSDA with the unit
subspace method under𝑚 = 𝑛 = 9 and 𝛾 = 10−5 to solve this
problem it converges only three steps and with the maximum
error being 4.68×10−6. It is very time saving because we only
need to calculate A−1 one time, by which using the matrix
conjugate gradient method (MCGM) developed by Liu et al.
[39] we only spend 103 steps under the convergence criterion
𝜀
1
= 10
−5 to find A−1. For the purpose of comparison, the

values obtained by other numerical methods are also listed in
Table 1.

As shown in Corollary 4 when𝑚 is taken to be𝑚 = 𝑛 we
have the fastest convergent solution. Usually, we can take a
smaller𝑚 for the easy solution ofA−1. For example, if we take
𝑚 = 5 in the OGSDA with the Krylov subspace method, we
can obatin the solution with the maximum error being 4.45×
10
−4 through only four steps. Under the same conditions, the

CGM is convergent with six steps with the maximum error
being 7.857 × 10−3.

Next we consider a more difficult case with 𝑛 = 300. In
the computation a random noise in the level of 𝜎 = 10−6 is
imposed on the right-hand side, and the convergence criteria
used in CGM and OGSDA are both 𝜀 = 10−2 for the relative
residual. The CGM converges very fast with 4 iterations
as shown in Figure 3(a); however, the maximum error of
CGM is large up to 0.25. For this noised case the OGSDA
is applicable and convergent with 4 iterations, where 𝛾 =
0.15 and 𝑚 = 10 are used. The maximum error of OGSDA
is 0.0113. In Figure 3 we compare (a) relative residuals, (b)
steplength of OGSDA, and (c) numerical errors of OGSDA,
CGM, GMRES, and BBM. It is obvious that for this highly ill-
posed problem the OGSDA is convergent fast, and accurate.
The solutions obtained by the CGM, GMRES, and BBM are
not good, although the GMRES with 𝑚 = 9 converges with
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Figure 3: Example 2 of the Hilbert problem with 𝑛 = 300, showing
(a) relative residuals, (b) steplength of OGSDA, and (c) comparing
the numerical errors of CGM, GMRES, OGSDA, and BBM.

only two steps, CGM with four steps, and the BBM with ten
steps.

5.3. Example 3. When we apply a central difference scheme
to the following two-point boundary value problem:

−𝑢

(𝑥) = 𝑓 (𝑥) , 0 < 𝑥 < 1,

𝑢 (0) = 𝑎, 𝑢 (1) = 𝑏,

(81)
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we can derive a linear equations system

Cu =

[

[

[

[

[

[

[

[

2 −1

−1 2 −1

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

−1 2

]

]

]

]

]

]

]

]

[

[

[

[

[

𝑢
1

𝑢
2

...
𝑢
𝑛

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

(Δ𝑥)
2
𝑓 (Δ𝑥) + 𝑎

(Δ𝑥)
2
𝑓 (2Δ𝑥)

...
(Δ𝑥)
2
𝑓 ((𝑛 − 1) Δ𝑥)

(Δ𝑥)
2
𝑓 (𝑛Δ𝑥) + 𝑏

]

]

]

]

]

]

]

]

]

,

(82)

whereΔ𝑥 = 1/(𝑛+1) is the spatial length and 𝑢
𝑖
= 𝑢(𝑖Δ𝑥), 𝑖 =

1, . . . , 𝑛, are unknown values of 𝑢(𝑥) at the grid points 𝑥
𝑖
=

𝑖Δ𝑥. 𝑢
0
= 𝑎 and 𝑢

𝑛+1
= 𝑏 are the given boundary condi-

tions. The above matrix C is known as a central difference
matrix.

The eigenvalues of C are found to be

4 sin2 𝑘𝜋

2 (𝑛 + 1)

, 𝑘 = 1, 2, . . . , 𝑛, (83)

which together with the symmetry of C indicates that C is
positive definite, and

Cond (C) = sin2 (𝑛𝜋/2 (𝑛 + 1))
sin2 (𝜋/2 (𝑛 + 1))

(84)

is a large number when the grid number 𝑛 is very large.
In this numerical test we fix 𝑛 = 200 and thus the con-

dition number of C is 16210.7. Let us consider the boundary
value problem in (81) with 𝑓(𝑥) = sin𝜋𝑥. The exact solution
is

𝑢 (𝑥) = 𝑎 + (𝑏 − 𝑎) 𝑥 +

1

𝜋
2
sin𝜋𝑥, (85)

where we fix 𝑎 = 1 and 𝑏 = 2.
A relative random noise with intensity 𝜎 = 0.01 is added

by ̂𝑓(𝑖Δ𝑥) = 𝑓(𝑖Δ𝑥)[1+𝜎𝑅(𝑖)] into the right-hand side data of
(82). Under a moderate convergence criterion with 𝜀 = 10−7
for the relative residual, we compare (a) relative residuals and
(c) numerical errors of OGSDA, CGM, GMRES, and BBM in
Figure 4. The number of iterations of CGM is 1325, and the
maximum error is 3.14 × 10−5. Then we apply the OGSDA
with 𝛾 = 0.25 and 𝑚 = 30 to this problem, whose number
of iterations is 66, and the maximum error is 1.9 × 10−5. The
number of iterations of GMRES with 𝑚 = 10 is 811, and the
maximum error is 4.21×10−5, while the number of iterations
of BBM is 1708, and the maximum error is 1.06 × 10−5.

It can be seen that the OGSDA is more convergent, faster,
and more accurate than CGM and GMRES and much faster
than the BBM; however, the accuracy of BBM is slightly better
than that obtained by the OGSDA.
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Figure 4: Example 3, comparing (a) relative residuals, (b) conver-
gence rates, and (c) numerical errors of CGM, OGSDA, GMRES,
and BBM.

In order to demonstrate the efficiency of the present
OGSDA with that of the CGM we can compare the conver-
gence rate of these two algorithms. According to Liu [40, 41]
the convergence rate is given by

Convergence RateOGSDA:=
1

√𝑠𝑘

,

𝑠
𝑘
= 1 −

(1 − 𝛾
2
) [(Cx

𝑘
− b) ⋅ Cu𝑘]

2





Cx
𝑘
− b


2



Cu𝑘


2
,

Convergence RateCGM:=
1

√𝑠𝑘

, 𝑠
𝑘
= 1 −

𝜂
𝑘





Bx
𝑘
− b
1






2
,

(86)

where 𝜂
𝑘
= ‖r
𝑘
‖
2
/pT
𝑘
Cp
𝑘
, in which p

𝑘
is the supplemental

vector used in the CGM. In Figure 4(b) we compare the
convergence rates of CGM and OGSDA, of which we can see
that the convergence rate of OGSDA is much larger than that
of CGM.
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5.4. Example 4. When the backward heat conduction prob-
lem (BHCP) is considered in a spatial interval of 0 < 𝑥 < ℓ by
subjecting to the boundary conditions at two ends of a slab:

𝑢
𝑡
(𝑥, 𝑡) = 𝜅𝑢

𝑥𝑥
(𝑥, 𝑡) , 0 < 𝑡 < 𝑇, 0 < 𝑥 < ℓ, (87)

𝑢 (0, 𝑡) = 𝑢
0
(𝑡) , 𝑢 (ℓ, 𝑡) = 𝑢

ℓ
(𝑡) , (88)

we solve 𝑢 under a final time condition:

𝑢 (𝑥, 𝑇) = 𝑢
𝑇
(𝑥) . (89)

The fundamental solution of (87) is given by

𝐾 (𝑥, 𝑡) =

𝐻 (𝑡)

2√𝜅𝜋𝑡

exp(−𝑥
2

4𝜅𝑡

) , (90)

where𝐻(𝑡) is the Heaviside function.
Themethod of fundamental solutions (MFS) has a serious

drawback that the resulting linear equations system is always
highly ill-conditioned, when the number of source points
is increased, or when the distances of source points are
increased.

In the MFS the solution of 𝑢 at the field point z = (𝑥, 𝑡)
can be expressed as a linear combination of the fundamental
solutions 𝑈(z, s

𝑗
):

𝑢 (z) =
𝑛

∑

𝑗=1

𝑐
𝑗
𝑈(z, s

𝑗
) , s

𝑗
= (𝜂
𝑗
, 𝜏
𝑗
) ∈ Ω

𝑐
, (91)

where 𝑛 is the number of source points, 𝑐
𝑗
are unknown

coefficients, and s
𝑗
are source points being located in the

complementΩ𝑐 ofΩ = [0, ℓ]×[0, 𝑇]. For the heat conduction
equation we have the basis functions:

𝑈(z, s
𝑗
) = 𝐾 (𝑥 − 𝜂

𝑗
, 𝑡 − 𝜏
𝑗
) . (92)

It is known that the location of source points in the
MFS has a great influence on the accuracy and stability. In a
practical application of MFS to solve the BHCP, the source
points are uniformly located on two vertical straight lines
parallel to the 𝑡-axis, not over the final time, which was
adopted by Hon and Li [42] and Liu [43], showing a large
improvement than the line location of source points below
the initial time. After imposing the boundary conditions
and the final time condition to (91) we can obtain a linear
equations system:

Bx = b
1
, (93)

where

𝐵
𝑖𝑗
= 𝑈 (z

𝑖
, s
𝑗
) , x = (𝑐

1
, . . . , 𝑐

𝑛
)
T
,

b
1
= (𝑢
ℓ
(𝑡
𝑖
) , 𝑖 = 1, . . . , 𝑚

1
; 𝑢
𝑇
(𝑥
𝑗
) ,

𝑗 = 1, . . . , 𝑚
2
; 𝑢
0
(𝑡
𝑘
), 𝑘 = 𝑚

1
, . . . , 1)

T
,

(94)

and 𝑛 = 2𝑚
1
+ 𝑚
2
.

Since the BHCP is highly ill-posed, the ill-condition of
the coefficient matrix B in (93) is serious. To overcome the
ill-posedness of (93) we can use the OGSDA to solve this
problem. Here we compare the numerical solution with an
exact solution:

𝑢 (𝑥, 𝑡) = cos (𝜋𝑥) exp (−𝜋2𝑡) . (95)

For the case with 𝑇 = 1 the value of final time data is in the
order of 10−4, which is small by comparing with the value
of the initial temperature 𝑓(𝑥) = 𝑢

0
(𝑥) = cos(𝜋𝑥) to be

retrieved, which is 𝑂(1). First we impose a relative random
noise with an intensity 𝜎 = 10% being imposed on the final
time data. Under the following parameters 𝑚

1
= 11, 𝑚

2
= 6,

𝑚 = 10, 𝛾 = 0.25, and 𝜀 = 𝜀
1
= 10
−5, we solve this problem

by the OGSDA with the Krylov subspace method. With 28
iterations the OGSDA can obtain a very accurate solution
with the maximum error being 9.877 × 10−4, which is better
than 1.247 × 10−3 calculated by Liu [35] using the optimal
multivector iterative algorithm (OMVIA). In Figures 5(a) and
5(b) we plot the relative residual and steplength, of which
we can see that the minimal steplength is 1. The numerical
result is compared with the exact initial value in Figure 5(c),
whose numerical error as shown in Figure 5(d) indicates
that the present OGSDA is very robust against noise. Under
the same parameters we also apply the BBM and GMRES
with 𝑚 = 10 to solve the BHCP, of which both algorithms
cannot converge to satisfy the convergence criterion with
𝜀 = 10

−5, and we let BBM run 100 steps and the GMRES run
30 steps with the residuals being shown in Figure 5(a). The
maximum error obtained by the BBM is 0.151, while that for
theGMRES is 0.809 as shown in Figure 5(d). For this problem
we can quickly provide a very accurate numerical result by
using the OGSDA, which is much better than the other three
algorithms.

5.5. Example 5. Let us consider the inverse Cauchy problem
for the Laplace equation:

Δ𝑢 = 𝑢
𝑟𝑟
+

1

𝑟

𝑢
𝑟
+

1

𝑟
2
𝑢
𝜃𝜃
= 0, (96)

𝑢 (𝜌, 𝜃) = ℎ (𝜃) , 0 ≤ 𝜃 ≤ 𝜋, (97)

𝑢
𝑛
(𝜌, 𝜃) = 𝑔 (𝜃) , 0 ≤ 𝜃 ≤ 𝜋, (98)

where ℎ(𝜃) and 𝑔(𝜃) are given function. The inverse Cauchy
problem is specified as follows.

To seek an unknown boundary function 𝑓(𝜃) on the part
Γ
2
:= {(𝑟, 𝜃) | 𝑟 = 𝜌(𝜃), 𝜋 < 𝜃 < 2𝜋} of the boundary under

(96)–(98) with the overspecified data being given on Γ
1
:=

{(𝑟, 𝜃) | 𝑟 = 𝜌(𝜃), 0 ≤ 𝜃 ≤ 𝜋}.
It is well known that themethod of fundamental solutions

(MFS) can be used to solve the Laplace equation when a
fundamental solution is known. In the MFS the solution of
𝑢 at the field point x = (𝑟 cos 𝜃, 𝑟 sin 𝜃) can be expressed as a
linear combination of fundamental solutions 𝑈(x, s

𝑗
):

𝑢 (x) =
𝑛

∑

𝑗=1

𝑐
𝑗
𝑈(x, s

𝑗
) , s

𝑗
∈ Ω
𝑐
. (99)



Journal of Applied Mathematics 11

BBM
GMRES
OGSDA

1E − 6
1E − 5
1E − 4
1E − 3
1E − 2
1E − 1
1E + 0
1E + 1

Re
sid

ua
l

(a)

1 10 100
Number of steps

1E + 0
1E + 1
1E + 2
1E + 3
1E + 4
1E + 5
1E + 6

St
ep

le
ng

th

(b)

−1.0

−0.5

0.0

0.5

1.0

OGSDA
Exact

In
iti

al
 v

al
ue

(c)

0.0 0.2 0.4 0.6 0.8 1.0

OGSDA

OMVIA
BBM

GMRES

1E − 7

1E − 6

1E − 5

1E − 4

1E − 3

1E − 2

1E − 1

1E + 0

N
um

er
ic

al
 er

ro
r

x

(d)

Figure 5: Example 4 showing (a) relative residual and (b) steplength
of OGSDA, (c) comparing numerical and exact initial value, and
(d) comparing numerical errors of OMVIA, OGSDA, BBM, and
GMRES.

For the Laplace equation (96) we have the fundamental
solutions:

𝑈(x, s
𝑗
) = ln 𝑟

𝑗
, 𝑟
𝑗
=






x − s
𝑗






. (100)

In the practical application of MFS, by imposing the
boundary conditions (97) and (98) at 𝑁 points on (99) we
can obtain a linear equations system:

Bc = b
1
, (101)

where

x
𝑖
= (𝑥
1

𝑖
, 𝑥
2

𝑖
) = (𝜌 (𝜃

𝑖
) cos 𝜃

𝑖
, 𝜌 (𝜃
𝑖
) sin 𝜃

𝑖
) ,

s
𝑗
= (𝑠
1

𝑗
, 𝑠
2

𝑗
) = (𝑅 (𝜃

𝑗
) cos 𝜃

𝑗
, 𝑅 (𝜃
𝑗
) sin 𝜃

𝑗
) ,

𝐵
𝑖𝑗
= ln 

x
𝑖
− s
𝑗






, if 𝑖 is odd,

𝐵
𝑖𝑗
=

𝜂 (𝜃
𝑖
)






x
𝑖
− s
𝑗







2
(𝜌 (𝜃

𝑖
) − 𝑠
1

𝑗
cos 𝜃
𝑖
− 𝑠
2

𝑗
sin 𝜃
𝑖
−

𝜌

(𝜃
𝑖
)

𝜌 (𝜃
𝑖
)

× [𝑠
1

𝑗
sin 𝜃
𝑖
− 𝑠
2

𝑗
cos 𝜃
𝑖
] ) , if 𝑖 is even,

c = (𝑐
1
, . . . , 𝑐

𝑛
)
T
,

b
1
= (ℎ (𝜃

1
) , 𝑔 (𝜃

1
) , . . . , ℎ (𝜃

𝑁
) , 𝑔 (𝜃

𝑁
))

T
,

(102)

in which 𝑛 = 2𝑁, and

𝜂 (𝜃) =

𝜌 (𝜃)

√𝜌
2
(𝜃) + [𝜌


(𝜃)]
2

. (103)

The above 𝑅(𝜃) = 𝜌(𝜃) + 𝐷 with an offset 𝐷 can be used to
locate the source points along a contour with a radius 𝑅(𝜃).
When the linear equations system (101) is established, we can
apply the OGSDA to solve it.

For the purpose of comparison we consider the following
exact solution:

𝑢 (𝑥, 𝑦) = cos𝑥 cosh𝑦 + sin𝑥 sinh𝑦, (104)

defined in a domain with a complex amoeba-like irregular
shape as a boundary:

𝜌 (𝜃) = exp (sin 𝜃) sin2 (2𝜃) + exp (cos 𝜃) cos2 (2𝜃) . (105)

After imposing the boundary conditions (97) and (98) at 𝑁
points on (99) we can obtain a linear equations system. The
noise being imposed on the measured data ℎ and 𝑔 is 𝜎 =
0.01.

We solve this problem by the OGSDA with 𝑚 = 10 and
𝛾 = 0.2. Through 15 iterations the residual is smaller than the
convergence criterion 𝜀 = 10−5 as shown in Figure 6(a), and
also the steplength is shown there. We compare the recove-
red data computed by the OGSDA with the exact one in
Figure 6(b). The numerical error as shown in Figure 6(c) is
smaller than 0.062. It can be seen that the OGSDA with
Krylov subspace can accurately recover the unknown bou-
ndary condition.

We also apply the GMRES with 𝑚 = 5 and the BBM to
this inverse Cauchy problem, whose residuals are shown in
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Figure 6: Example 5 showing (a) residual and steplength ofOGSDA,
(b) comparing numerical and exact solutions, and (c) numerical
errors of OGSDA, GMRES, and BBM.

Figure 7.They fast tend to a plateau and then the residuals are
no more reduced. The numerical solutions are very bad with
the maximum error of BBM being 3.79 and the maximum
error of GMRES being 2.81. As comparedwith those obtained
by OGSDA, the accuracy and convergence speed of OGSDA
are much better than those obtained by the GMRES and the
BBM.

5.6. Example 6. In this section we apply the OGSDA to
identify an unknown space-dependent heat source function
𝐻(𝑥) for a one-dimensional heat conduction equation:

𝑢
𝑡
(𝑥, 𝑡) = 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝐻 (𝑥) , 0 < 𝑥 < ℓ, 0 < 𝑡 < 𝑡

𝑓
,

(106)

𝑢 (0, 𝑡) = 𝑢
0
(𝑡) , 𝑢 (ℓ, 𝑡) = 𝑢

ℓ
(𝑡) , (107)

𝑢 (𝑥, 0) = 𝑓 (𝑥) . (108)
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Figure 7: Example 5 showing residuals of GMRES and BBM.

In order to identify𝐻(𝑥) we impose a Neumann type boun-
dary condition:

𝑢
𝑥
(0, 𝑡) = 𝑞 (𝑡) . (109)

We propose a numerical differential method by letting
V = 𝑢
𝑡
. Taking the differentials of (106), (107), and (109) with

respect to 𝑡 and letting V = 𝑢
𝑡
we can derive

V
𝑡
(𝑥, 𝑡) = V

𝑥𝑥
(𝑥, 𝑡) , 0 < 𝑥 < ℓ, 0 < 𝑡 < 𝑡

𝑓
, (110)

V (0, 𝑡) = �̇�
0
(𝑡) , (111)

V (ℓ, 𝑡) = �̇�
ℓ
(𝑡) , (112)

V
𝑥
(0, 𝑡) = ̇𝑞 (𝑡) . (113)

This is an inverse heat conduction problem (IHCP) for V(𝑥, 𝑡)
without using the initial condition.

Therefore as being a numerical method, we can first solve
the above IHCP for V(𝑥, 𝑡) by using the MFS in Section 5.4
to obtain a linear equations system and then the method
introduced in Section 4 to solve the resultant linear equations
system. Thus, we can construct 𝑢(𝑥, 𝑡) by

𝑢 (𝑥, 𝑡) = ∫

𝑡

0

V (𝑥, 𝜉) 𝑑𝜉 + 𝑓 (𝑥) , (114)

which automatically satisfies the initial condition in (108).
From (114) it follows that

𝑢
𝑥𝑥
(𝑥, 𝑡) = ∫

𝑡

0

V
𝑥𝑥
(𝑥, 𝜉) 𝑑𝜉 + 𝑓


(𝑥) , (115)

which together with 𝑢
𝑡
= V being inserted into (106) leads to

V (𝑥, 𝑡) = ∫
𝑡

0

V
𝑥𝑥
(𝑥, 𝜉) 𝑑𝜉 + 𝑓


(𝑥) + 𝐻 (𝑥) . (116)

Inserting (110) for V
𝑥𝑥
= V
𝑡
into the above equation and

integrating it we can derive the following equation to recover
𝐻(𝑥):

𝐻(𝑥) = V (𝑥, 0) − 𝑓 (𝑥) . (117)
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Figure 8: Example 6 showing (a) steplength of OGSDA, (b)
comparing numerical and exact solutions, and (c) numerical error
of OGSDA.

This approach exhibits threefold ill-posedness: one is the use
of the IHCP to solve V(𝑥, 𝑡) which is used to provide the data
of V(𝑥, 0) used in (117), one is all the boundary conditions
being obtained from the first-order differentials of measured
data as shown in (111)–(113), and another is the second-order
differential of the data 𝑓(𝑥) in (117).

We consider

𝑢 (𝑥, 𝑡) = 𝑥
2
+ 2𝑥𝑡 + sin (2𝜋𝑥) ,

𝐻 (𝑥) = 2𝑥 − 2 + 4𝜋
2 sin (2𝜋𝑥) .

(118)

In (117) we disregard the ill-posedness of 𝑓(𝑥) and suppose
that the data𝑓(𝑥) are given exactly.We solve this problemby
the OGSDAwith unit subspace method, where we fix𝑚 = 10
and 𝛾 = 0.05. The maximum number of iterations is set to be
100. A random noise with intensity 𝜎 = 0.05 is added on the
data ̇𝑞(𝑡). We have obtained the numerical solution with the
steplength being shown in Figure 8(a), which is very small.
We compare the heat source computed by the OGSDA with

the exact one in Figure 8(b). The numerical error is smaller
than 0.568 as shown in Figure 8(c).

6. Conclusions

In the present paper, we have derived an optimal algorithm
including an 𝑚-vector optimal search direction in an 𝑚-
dimensional Krylov subspace or a unit subspace as an
optimally generalized steepest-descent algorithm (OGSDA)
to solve highly ill-posed linear systems. This algorithm has
good computational efficiency and accuracy in solving the
ill-posed linear equations for the linear Hilbert problem
with 𝑛 = 300 and three famous linear inverse problems of
backward heat conduction problem, inverseCauchy problem,
and inverse heat source problem. In particular, the OGSDA
has a better filtering effect against noise, such that for all
the numerical examples of inverse problems the numerical
results recovered are quite smooth. The robustness of the
OGSDAwas confirmed by imposing noisy disturbance on the
given data even with an intensity being large up to 10%. In all
the numerical examples the convergence steps are among 4
to 100 steps, which is very time saving, no one case running
over one second in the PC computer. For highly ill-posed
problems the performance of OGSDA without needing of
large value𝑚 of the Krylov subspace dimension is better than
other algorithms investigated in this paper.
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