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Wu (2013) proposed an estimator, principal component Liu-type estimator, to overcomemulticollinearity.This estimator is a general
estimator which includes ordinary least squares estimator, principal component regression estimator, ridge estimator, Liu estimator,
Liu-type estimator, 𝑟-𝑘 class estimator, and 𝑟-𝑑 class estimator. In this paper, firstly we use a new method to propose the principal
component Liu-type estimator; then we study the superior of the new estimator by using the scalar mean squares error criterion.
Finally, we give a numerical example to show the theoretical results.

1. Introduction

Consider the multiple linear regression model

𝑦 = 𝑋𝛽 + 𝜖, (1)

where 𝑦 is an 𝑛×1 vector of observation,𝑋 is an 𝑛×𝑝 known
matrix of rank 𝑝, 𝛽 is a 𝑝 × 1 vector of unknown parameters,
and 𝜖 is an 𝑛×1 vector of disturbanceswith expectation𝐸(𝜖) =
0 and variance-covariance matrix Cov(𝜖) = 𝜎2𝐼

𝑛
.

According to the Gauss-Markov theorem, the classical
ordinary least squares estimator (OLSE) is obtained as fol-
lows:

̂
𝛽 = (𝑋


𝑋)

−1

𝑋

𝑦. (2)

The OLSE has been regarded as the best estimator for a long
time. However, when multicollinearity is present and the
matrix 𝑋𝑋 is ill-conditioned, the OLSE is no longer a good
estimator. To improveOLSE,manyways have been proposed.
One way is to consider biased estimator, such as, principal
component regression estimator [1], ridge estimator [2], Liu
estimator [3], Liu-type estimator [4], two-parameter ridge
estimator [5], 𝑟-𝑘 class estimator [6], 𝑟-𝑑 class estimator [7],
and modified 𝑟-𝑘 class estimator [8].

An alternative method to overcome the multicollinearity
is to consider the restrictions. Xu and Yang [9] introduced

a stochastic restricted Liu estimator; Li and Yang [10] intro-
duced a stochastic restricted ridge estimator.

To overcome multicollinearity, Hoerl and Kennard [2]
solve the following problem:

min
𝛽

{(𝑦 − 𝑋𝛽)


(𝑦 − 𝑋𝛽) + 𝑘 (𝛽𝛽

− 𝑐)} , (3)

where 𝑘 is a Lagrangian multiplier and 𝑐 is a constant, and
obtain the ridge estimator (RE):

̂
𝛽 (𝑘) = (𝑋


𝑋 + 𝑘𝐼)

−1

𝑋

𝑦, 𝑘 > 0. (4)

Liu [3] introduced the Liu estimator (LE):

̂
𝛽 (𝑑) = (𝑋


𝑋 + 𝐼)

−1

(𝑋

𝑦 + 𝑑

̂
𝛽) , 0 < 𝑑 < 1, (5)

where ̂𝛽 is OLSE. This estimator can be obtained by solving
the following problem:

min
𝛽

{(𝑦 − 𝑋𝛽)


(𝑦 − 𝑋𝛽) + (𝛽 − 𝑑
̂
𝛽) (𝛽 − 𝑑

̂
𝛽)



} . (6)

This estimator can also be obtained by the following ways.
Suppose that 𝛽 satisfied 𝑑 ̂𝛽 = 𝛽 + 𝑒. Then, we use the mixed
method [11]; we can obtain the Liu estimator.
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Recently, Huang et al. [4] introduced a Liu-type estimator
which includes the OLSE, RE, and LE, defined as follows:

̂
𝛽 (𝑘, 𝑑) = (𝑋


𝑋 + 𝑘𝐼)

−1

(𝑋

𝑦 + 𝑑

̂
𝛽) , 𝑘 > 0, 0 < 𝑑 < 1,

(7)

where ̂𝛽 is OLSE. This estimator can be obtained by solving
the following problem:

min
𝛽

{(𝑦 − 𝑋𝛽)


(𝑦 − 𝑋𝛽)

+(𝑘
1/2
𝛽 −

𝑑
̂
𝛽

𝑘
1/2
)(𝑘
1/2
𝛽 −

𝑑
̂
𝛽

𝑘
1/2
)



} .

(8)

Let us consider the following transformation for the
model (1):

𝑦 = 𝑋𝑇𝑇

𝛽 + 𝜖 = 𝑍𝛼 + 𝜖, (9)

where

𝑋

𝑋 = (𝑇

𝑟
, 𝑇
𝑝−𝑟
) (

Λ
𝑟

0

0 Λ
𝑝−𝑟

)(

𝑇


𝑟

𝑇


𝑝−𝑟

) . (10)

Λ
𝑟
and Λ

𝑝−𝑟
are diagonal matrices such that that the main

diagonal elements of the 𝑟 × 𝑟 matrix Λ
𝑟
are the 𝑟 largest

eigenvalues of 𝑋𝑋, while Λ
𝑝−𝑟

are the remaining 𝑝 − 𝑟

eigenvalues. The 𝑝 × 𝑝 matrix 𝑇 = (𝑇
𝑟
, 𝑇
𝑝−𝑟
) is orthogonal

with 𝑇
𝑟
= (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑟
) consisting of its first 𝑟 columns and

𝑇
𝑝−𝑟

= (𝑡
𝑟+1
, 𝑡
𝑟+2
, . . . , 𝑡

𝑝
) consisting of the remaining 𝑝 − 𝑟

columns of the matrix 𝑇. The PCRE for 𝛽 can be written as

̂
𝛽
𝑟
= 𝑇
𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
)

−1

𝑇


𝑟
𝑋

𝑦. (11)

Baye and Parker [6] introduced the application of ridge
approach to improve the PCR estimator, namely, 𝑟-𝑘 class
estimator as

̂
𝛽
𝑟
(𝑘) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝑘𝐼
𝑟
)

−1

𝑇


𝑟
𝑋

𝑦, 𝑘 > 0. (12)

Alternatively, Kaçıranlar and Sakallıoğlu [7] introduced
the 𝑟-𝑑 class estimator which is the combination of the LE
and the PCRE, which is defined as follows:

̂
𝛽
𝑟
(𝑑) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝐼
𝑟
)

−1

(𝑇


𝑟
𝑋

𝑦 + 𝑑𝑇



𝑟

̂
𝛽
𝑟
) ,

0 < 𝑑 < 1.

(13)

Wu [12] proposed the principal component Liu-type
estimator (PCTTE), which is defined as

̂
𝛽
𝑟
(𝑘, 𝑑) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝑘𝐼
𝑟
)

−1

(𝑇


𝑟
𝑋

𝑦 + 𝑑𝑇



𝑟

̂
𝛽
𝑟
) ,

𝑘 > 0, 0 < 𝑑 < 1.

(14)

In this paper, firstly we use a new method to propose the
principal component Liu-type estimator.Then, we show that,
under certain conditions, the PCTTE is superior to the related
estimator in the mean square error criterion. Finally, we give
a numerical example to illustrate the theoretical results.

2. The Principal Component
Liu-Type Estimator

Using the symbols in (9) and (10), (1) can bewritten as follows:

𝑦 = 𝑋𝑇
𝑟
𝑇


𝑟
𝛽 + 𝑋𝑇

𝑝−𝑟
𝑇


𝑝−𝑟
𝛽 + 𝜖

= 𝑍
𝑟
𝛼
𝑟
+ 𝑍
𝑝−𝑟
𝛼
𝑝−𝑟

+ 𝜖.

(15)

The PCRE can be obtained by omitted 𝑍
𝑝−𝑟
𝛼
𝑝−𝑟

, and the
model (15) reduced to:

𝑦 = 𝑍
𝑟
𝛼
𝑟
+ 𝜖. (16)

Then, solve the following problem:

(𝑦 − 𝑍
𝑟
𝛼
𝑟
)


(𝑦 − 𝑍
𝑟
𝛼
𝑟
) , (17)

we obtain

�̂�
𝑟
= (𝑍


𝑟
𝑍
𝑟
)

−1

𝑍


𝑟
𝑦. (18)

Then, transforming �̂�
𝑟
to the original parameter space, we can

get the PCRE of parameter 𝛽.
Now,we give amethod to obtain the principal component

Liu-type estimator. Let 𝑐 be a constant and 𝑘 a Lagrangian
multiplier, minimizing

(𝑦 − 𝑍
𝑟
𝛼
𝑟
)


(𝑦 − 𝑍
𝑟
𝛼
𝑟
) +

1

𝑘

[(𝑘𝛼
𝑟
− 𝑑�̂�
𝑟
) (𝑘𝛼
𝑟
− 𝑑�̂�
𝑟
)


− 𝑐] ,

(19)

where �̂�
𝑟
= (𝑍


𝑟
𝑍
𝑟
)
−1
𝑍


𝑟
𝑦. Then we get

�̂�
𝑟
(𝑘, 𝑑) = (𝑍



𝑟
𝑍
𝑟
+ 𝑘𝐼
𝑟
)

−1

(𝑍


𝑟
𝑦 + 𝑑�̂�

𝑟
) . (20)

After transforming back to original parameters pace, we
obtain
̂
𝛽
𝑟
(𝑘, 𝑑) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝑘𝐼
𝑟
)

−1

× (𝑇


𝑟
𝑋

𝑦 + 𝑑𝑇



𝑟

̂
𝛽
𝑟
) , 𝑘 > 0, 0 < 𝑑 < 1.

(21)

This estimator can also be got by minimizing the function

(𝑘𝛼
𝑟
− 𝑑�̂�
𝑟
) (𝑘𝛼
𝑟
− 𝑑�̂�
𝑟
)


+ 𝑘 [(𝑦 − 𝑍
𝑟
𝛼
𝑟
)


(𝑦 − 𝑍
𝑟
𝛼
𝑟
) − 𝑐] .

(22)

It is easy to see that the new estimator ̂𝛽
𝑟
(𝑘, 𝑑) has the follow-

ing properties:

(1) ̂𝛽
𝑟
(1, 1) =

̂
𝛽
𝑟
= 𝑇
𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
)
−1
𝑇


𝑟
𝑋

𝑦 is the PCRE;

(2) ̂𝛽
𝑝
(1, 1) =

̂
𝛽OLS = (𝑋


𝑋)
−1
𝑋

𝑦 is the OLSE;

(3) ̂𝛽
𝑟
(1, 𝑑) =

̂
𝛽
𝑟
(𝑑) =

̂
𝛽
𝑟
(𝑑) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝐼
𝑟
)
−1

(𝑇


𝑟
𝑋

𝑦 + 𝑑𝑇



𝑟

̂
𝛽
𝑟
) is the 𝑟-𝑑 class estimator;

(4) ̂𝛽
𝑝
(1, 𝑑) =

̂
𝛽(𝑑) = (𝑋


𝑋+𝐼)

−1
(𝑋

𝑦+𝑑

̂
𝛽OLS) is the LE;

(5) ̂𝛽
𝑟
(𝑘, 0) =

̂
𝛽
𝑟
(𝑘) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝑘𝐼
𝑟
)
−1
𝑇


𝑟
𝑋

𝑦 is the

𝑟-𝑘 class estimator;
(6) ̂𝛽
𝑝
(𝑘, 0) =

̂
𝛽(𝑘) = (𝑋


𝑋 + 𝑘𝐼)

−1
𝑋

𝑦 is the RE;

(7) ̂𝛽
𝑝
(𝑘, 𝑑) =

̂
𝛽(𝑘, 𝑑) = (𝑋


𝑋 + 𝑘𝐼)

−1
(𝑋

𝑦 + 𝑘𝑑

̂
𝛽OLS) is

the LTE.
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3. Superiority of the Principal Component
Liu-Type Estimator over Some Estimators in
the Mean Square Error Criterion

Themean square error (MSE) of an estimator ̂𝛽 is defined as

𝑀(
̂
𝛽) = 𝐸 [(

̂
𝛽 − 𝛽)



(
̂
𝛽 − 𝛽)]

= tr𝑉( ̂𝛽) + [Bias ( ̂𝛽)]


[Bias ( ̂𝛽)] ,
(23)

where 𝑉( ̂𝛽) is the dispersion matrix and Bias( ̂𝛽) is the bias
vector. For two given estimators ̂𝛽

1
and ̂

𝛽
2
, the estimator ̂𝛽

2

is said to be superior to ̂
𝛽
1
in the MSE criterion, if and only if

Δ (
̂
𝛽
1
,
̂
𝛽
2
) = 𝑀(

̂
𝛽
1
) −𝑀(

̂
𝛽
2
) ≥ 0. (24)

3.1. ̂𝛽
𝑟
(𝑘, 𝑑) versus ̂𝛽

𝑟
. Firstly, we compute that

𝑉(
̂
𝛽
𝑟
(𝑘, 𝑑)) = 𝜎

2
𝑇
𝑟
𝑆
𝑟
(𝑘)
−1
𝑆
𝑟
(𝑑) Λ
−1

𝑟
𝑆
𝑟
(𝑑) 𝑆
𝑟
(𝑘)
−1
𝑇


𝑟
,

𝐸 (
̂
𝛽
𝑟
(𝑘, 𝑑)) = 𝑇

𝑟
𝑆
𝑟
(𝑘)
−1
𝑆
𝑟
(𝑑) 𝑇


𝑟
𝛽,

(25)

where 𝑆
𝑟
(𝑘) = Λ

𝑟
+ 𝑘𝐼
𝑟
. Then, the mean square error (MSE)

of ̂𝛽
𝑟
(𝑘, 𝑑) is given as follows:

𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) = tr𝑉( ̂𝛽

𝑟
(𝑘, 𝑑))

+ [Bias ( ̂𝛽
𝑟
(𝑘, 𝑑))]



[Bias ( ̂𝛽
𝑟
(𝑘, 𝑑))]

=

𝑟

∑

𝑖=1

𝜎
2
(𝜆
𝑖
+ 𝑑)
2

+ (𝑘 − 𝑑)
2
𝛼
2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖
.

(26)

Let 𝑘 = 𝑑 in (26); we obtain the MSE of ̂𝛽
𝑟
as follows:

𝑀(
̂
𝛽
𝑟
) =

𝑟

∑

𝑖=1

𝜎
2

𝜆
𝑖

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖
. (27)

Now we consider the following difference:

𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) −𝑀(

̂
𝛽
𝑟
)

=

𝑟

∑

𝑖=1

𝜎
2
(𝜆
𝑖
+ 𝑑)
2

+ (𝑘 − 𝑑)
2
𝛼
2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖

− {

𝑟

∑

𝑖=1

𝜎
2

𝜆
𝑖

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖
}

=

𝑟

∑

𝑖=1

(𝑑 − 𝑘)

(𝛼
2

𝑖
𝜆
𝑖
+ 𝜎
2
) 𝑑 + 2𝜎

2
𝜆
𝑖
+ (𝜎
2
− 𝛼
2

𝑖
𝜆
𝑖
) 𝑘

𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2

.

(28)

If 𝜎2−𝛼2
𝑖
𝜆
𝑖
> 0, then when 0 < 𝑑 < 𝑘, 𝑀(

̂
𝛽
𝑟
(𝑘, 𝑑))−𝑀(

̂
𝛽
𝑟
) <

0. If𝜎2−𝛼2
𝑖
𝜆
𝑖
< 0, thenwhen 0 < 𝑑 < 𝑘 < min{((𝛼2

𝑖
𝜆
𝑖
+𝜎
2
)𝑑+

2𝜎
2
𝜆
𝑖
)/(𝛼
2

𝑖
𝜆
𝑖
− 𝜎
2
)} and max{((𝛼2

𝑖
𝜆
𝑖
+ 𝜎
2
)𝑑 + 2𝜎

2
𝜆
𝑖
)/(𝛼
2

𝑖
𝜆
𝑖
−

𝜎
2
)} < 𝑘 < 𝑑 < 1, 𝑀(

̂
𝛽
𝑟
(𝑘, 𝑑)) − 𝑀(

̂
𝛽
𝑟
) < 0. So we have the

following theorem.

Theorem 1. The estimator ̂𝛽
𝑟
(𝑘, 𝑑) is superior to the estimator

for ̂𝛽
𝑟
under the mean square error criterion for:

(a) 0 < 𝑑 < 𝑘 if 𝜎2 − 𝛼2
𝑖
𝜆
𝑖
> 0 for all 𝑖 = 1, . . . , 𝑟,

(b) 0 < 𝑑 < 𝑘 < min{((𝛼2
𝑖
𝜆
𝑖
+ 𝜎
2
)𝑑 + 2𝜎

2
𝜆
𝑖
)/(𝛼
2

𝑖
𝜆
𝑖
− 𝜎
2
)}

and max{((𝛼2
𝑖
𝜆
𝑖
+ 𝜎
2
)𝑑 + 2𝜎

2
𝜆
𝑖
)/(𝛼
2

𝑖
𝜆
𝑖
− 𝜎
2
)} < 𝑘 <

𝑑 < 1, 𝑖 = 1, . . . , 𝑟 if 𝜎2 − 𝛼2
𝑖
𝜆
𝑖
< 0 for all 𝑖 = 1, . . . , 𝑟.

3.2. ̂𝛽
𝑟
(𝑘, 𝑑) versus ̂𝛽

𝑟
(𝑘). From the definition of the ̂𝛽

𝑟
(𝑘), we

know that let 𝑑 = 0 in ̂
𝛽
𝑟
(𝑘, 𝑑), and we obtain the ̂𝛽

𝑟
(𝑘).

Theorem 2. Let 𝑘𝛼2
𝑖
− 𝜎
2
> 0 for all 𝑖 = 1, . . . , 𝑟. Then, there

exists a strictly positive 𝑑 such that ̂𝛽
𝑟
(𝑘, 𝑑) is superior to ̂𝛽

𝑟
(𝑘)

in the mean square error criterion for 0 < 𝑑 < (∑
𝑟

𝑖=1
((𝑘𝛼
2

𝑖
−

𝜎
2
)/(𝜆
𝑖
+ 𝑘)
2
))/(∑
𝑟

𝑖=1
((𝜎
2
+ 𝛼
2

𝑖
𝜆
𝑖
)/(𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2
))) < 1.

Proof. We know that 𝑀(
̂
𝛽
𝑟
(𝑘)) = 𝑀

̂
𝛽
𝑟
(𝑘, 0), so that by

continuity it is sufficient to show that𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) decreasing

in the neighborhood of 𝑑 = 0.
Performing the calculus for fixed 𝑘, we can see that

𝜕𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑))

𝜕𝑑

= 2

𝑟

∑

𝑖=1

𝜎
2
(𝜆
𝑖
+ 𝑑) − (𝑘 − 𝑑) 𝛼

2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2

. (29)

So when 0 < 𝑑 < (∑
𝑟

𝑖=1
((𝑘𝛼
2

𝑖
− 𝜎
2
)/(𝜆
𝑖
+ 𝑘)
2
))/(∑
𝑟

𝑖=1
((𝜎
2
+

𝛼
2

𝑖
𝜆
𝑖
)/(𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2
))) < 1, (𝜕𝑀(

̂
𝛽
𝑟
(𝑘, 𝑑)))/(𝜕𝑑) < 0; that is

to say,𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) < 𝑀(

̂
𝛽
𝑟
(𝑘, 0)) = 𝑀(

̂
𝛽
𝑟
(𝑘)). The proof of

Theorem 2 is completed.

3.3. ̂𝛽
𝑟
(𝑘, 𝑑) versus ̂𝛽

𝑟
(𝑑). From the definition of the ̂

𝛽
𝑟
(𝑑),

we know that let 𝑘 = 1 in ̂
𝛽
𝑟
(𝑘, 𝑑), and we obtain that ̂𝛽

𝑟
(𝑑),

𝑀(
̂
𝛽
𝑟
(𝑑)) =

𝑟

∑

𝑖=1

𝜎
2
(𝜆
𝑖
+ 𝑑)
2

+ (1 − 𝑑)
2
𝛼
2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 1)
2

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖
.

(30)

Now, we discuss the following difference:

Δ = 𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) −𝑀(

̂
𝛽
𝑟
(𝑘))

=

𝑟

∑

𝑖=1

𝜎
2
(𝜆
𝑖
+ 𝑑)
2

+ (𝑘 − 𝑑)
2
𝛼
2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖

− {

𝑟

∑

𝑖=1

𝜎
2
(𝜆
𝑖
+ 𝑑)
2

+ (1 − 𝑑)
2
𝛼
2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 1)
2

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖
}

=

𝑟

∑

𝑖=1

𝜎
2
(1 − 𝑘) (𝜆

𝑖
+ 𝑑) (𝜆

𝑖
+ 𝑑) (2𝜆

𝑖
+ 𝑘 + 1)

𝜆
𝑖
(𝜆
𝑖
+ 1)
2

(𝜆
𝑖
+ 𝑘)
2

−

𝑟

∑

𝑖=1

( (𝜎
2
(1 − 𝑘) (𝜆

𝑖
+ 𝑑) 𝛼

2

𝑖
𝜆
𝑖

× [(𝑘 + 1 − 2𝑑) 𝜆
𝑖
+ 2𝑘 − 𝑑 − 𝑑𝑘] )

× (𝜆
𝑖
(𝜆
𝑖
+ 1)
2

(𝜆
𝑖
+ 𝑘)
2

)

−1

) .

(31)
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Then by (31), if we want Δ < 0, then

𝑑 < 𝑑
1

=

𝑟

∑

𝑖=1

(2𝜆
𝑖
+ 𝑘 + 1) 𝜎

2
+ 2𝛼
2

𝑖
𝜆
2

𝑖
+ (1 + 𝑘) 𝛼

2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 1)
2

(𝜆
𝑖
+ 𝑘)
2

× (

𝑟

∑

𝑖=1

𝜆
𝑖
𝜎
2
(2𝜆
𝑖
+ 𝑘 + 1) − 𝛼

2

𝑖
𝜆
2

𝑖
(𝑘 + 1) − 2𝑘𝛼

2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 1)
2

(𝜆
𝑖
+ 𝑘)
2

)

−1

(32)

when 𝑘 < 1, it is easy to know that 𝑑
1
is always less than 1,

and 𝑑
1
is to be bigger than 0, if

𝑟

∑

𝑖=1

𝜆
𝑖
𝜎
2
(2𝜆
𝑖
+ 𝑘 + 1) − 𝛼

2

𝑖
𝜆
2

𝑖
(𝑘 + 1) − 2𝑘𝛼

2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 1)
2

(𝜆
𝑖
+ 𝑘)
2

> 0. (33)

Then, we get

𝑘 >

(2𝜆
𝑖
+ 1) 𝜎

2
− 𝛼
2

𝑖
𝜆
𝑖

𝛼
2

𝑖
(𝜆
𝑖
+ 2) − 𝜎

2
(34)

for 𝛼2
𝑖
(𝜆
𝑖
+ 2) − 𝜎

2
> 0 with all 𝑖 = 1, . . . , 𝑟.

Thus, we obtain the following theorem.

Theorem 3. If 𝛼2
𝑖
(𝜆
𝑖
+2)−𝜎

2
> 0 and 𝑘 > {max(((2𝜆

𝑖
+1)𝜎
2
−

𝛼
2

𝑖
𝜆
𝑖
)/(𝛼
2

𝑖
(𝜆
𝑖
+2)−𝜎

2
)), 0} for all 𝑖 = 1, . . . , 𝑟, then the ̂𝛽

𝑟
(𝑘, 𝑑)

is better than the ̂𝛽
𝑟
(𝑑) in the mean square error sense for 𝑘 < 1

and

𝑑 <

𝑟

∑

𝑖=1

(2𝜆
𝑖
+ 𝑘 + 1) 𝜎

2
+ 2𝛼
2

𝑖
𝜆
2

𝑖
+ (1 + 𝑘) 𝛼

2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 1)
2

(𝜆
𝑖
+ 𝑘)
2

× (

𝑟

∑

𝑖=1

𝜆
𝑖
𝜎
2
(2𝜆
𝑖
+ 𝑘 + 1) − 𝛼

2

𝑖
𝜆
2

𝑖
(𝑘 + 1) − 2𝑘𝛼

2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 1)
2

(𝜆
𝑖
+ 𝑘)
2

)

−1

.

(35)

3.4. ̂𝛽
𝑟
(𝑘, 𝑑) versus ̂𝛽. In this subsection,wewill give the com-

parison of the ̂
𝛽
𝑟
(𝑘, 𝑑) and ̂

𝛽 under the mean square error
criterion.

Let 𝑘 = 𝑑 and 𝑟 = 𝑝 in (26); we obtain the MSE of ̂𝛽
𝑟
as

follows:

𝑀(
̂
𝛽) =

𝑝

∑

𝑖=1

𝜎
2

𝜆
𝑖

. (36)

In order to compare the ̂𝛽
𝑟
(𝑘, 𝑑) and ̂

𝛽, now we consider
the following difference:

𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) −𝑀(

̂
𝛽)

=

𝑟

∑

𝑖=1

𝜎
2
(𝜆
𝑖
+ 𝑑)
2

+ (𝑘 − 𝑑)
2
𝛼
2

𝑖
𝜆
𝑖

𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖
−

𝑝

∑

𝑖=1

𝜎
2

𝜆
𝑖

=

𝑟

∑

𝑖=1

(𝑑 − 𝑘)

×

(𝛼
2

𝑖
𝜆
𝑖
+ 𝜎
2
) 𝑑 + 2𝜎

2
𝜆
𝑖
+ (𝜎
2
− 𝛼
2

𝑖
𝜆
𝑖
) 𝑘

𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2

+

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖
𝜆
𝑖
− 𝜎
2

𝜆
𝑖

(37)

when 𝑘 > 𝑑 > 𝑑
2
= (∑
𝑟

𝑟=1
(((𝛼
2

𝑖
𝜆
𝑖
− 𝜎
2
)𝑘 − 2𝜎

2
𝜆
𝑖
)/(𝜆
𝑖
(𝜆
𝑖
+

𝑘)
2
)))/(∑

𝑟

𝑟=1
((𝛼
2

𝑖
𝜆
𝑖
+ 𝜎
2
)/(𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2
))), then

𝑟

∑

𝑖=1

(𝑑 − 𝑘)

(𝛼
2

𝑖
𝜆
𝑖
+ 𝜎
2
) 𝑑 + 2𝜎

2
𝜆
𝑖
+ (𝜎
2
− 𝛼
2

𝑖
𝜆
𝑖
) 𝑘

𝜆
𝑖
(𝜆
𝑖
+ 𝑘)
2

< 0.

(38)

Since the lower bound of 𝑑 is less than 1, the lower bound of
𝑑 may be less than 0. If the lower bound of of 𝑑 is less than
0, then we can choose any 𝑑 in [0, 1]. Thus, we can get the
following theorem.

Theorem 4.

(1) If 𝛼2
𝑖
𝜆
𝑖
− 𝜎
2
< 0 for all 𝑖 = 1, 2, . . . , 𝑝, then ̂

𝛽
𝑟
(𝑘, 𝑑)

is superior to ̂
𝛽 in the mean square error sense for any

𝑘 > 0 and 0 < 𝑑 < 1.

(2) If 𝛼2
𝑖
𝜆
𝑖
− 𝜎
2
< 0 for some 𝑖 = 1, 2, . . . , 𝑟, then ̂

𝛽
𝑟
(𝑘, 𝑑)

is superior to ̂
𝛽 in the mean square error sense for

𝑘 > 𝑑 > (∑
𝑟

𝑟=1
(((𝛼
2

𝑖
𝜆
𝑖
− 𝜎
2
)𝑘 − 2𝜎

2
𝜆
𝑖
)/(𝜆
𝑖
(𝜆
𝑖
+

𝑘)
2
)))/(∑

𝑟

𝑟=1
((𝛼
2

𝑖
𝜆
𝑖
+ 𝜎
2
)/(𝜆
𝑖
(𝜆
𝑖
+ 𝑘)

2
))) when

∑
𝑝

𝑖=𝑟+1
((𝛼
2

𝑖
𝜆
𝑖
− 𝜎
2
)/𝜆
𝑖
) < 0.

3.5. ̂𝛽
𝑟
(𝑘, 𝑑) versus ̂𝛽(𝑘, 𝑑). In this subsection, we will com-

pare ̂𝛽
𝑟
(𝑘, 𝑑) with ̂

𝛽(𝑘, 𝑑) in the mean square error sense.
Define 𝜐

𝑖
= (𝜆
𝑖
+ 𝑑)/(𝜆

𝑖
+ 𝑘), then the mean square error

of ̂𝛽
𝑟
(𝑘, 𝑑) can be written as

𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) =

𝑟

∑

1=1

[

𝜎
2
𝜐
2

𝑖

𝜆
𝑖

+ (𝜐
𝑖
− 1)
2

𝛼
2

𝑖
] +

𝑝

∑

𝑖=𝑟+1

𝛼
2

𝑖
. (39)
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Figure 1: The MSE values of OLSE and PCTTE when 𝑑 = 0.6.
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Figure 2: The MSE values of OLSE and PCTTE when 𝑘 = 0.56.

Firstly, we discuss the difference between 𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) and

𝑀(
̂
𝛽
𝑟−1
(𝑘, 𝑑)):

𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) −𝑀(

̂
𝛽
𝑟−1

(𝑘, 𝑑))

= 𝜐
𝑟
[𝜐
𝑟
(

𝜎
2

𝜆
𝑟

+ 𝛼
2

𝑟
) − 2𝛼

2

𝑟
]

=

𝜐
𝑟

𝜆
𝑖
+ 𝑘

[𝑑(

𝜎
2

𝜆
𝑟

+ 𝛼
2

𝑟
) + 𝜎

2
− 𝛼
2

𝑟
𝜆
𝑟
− 2𝑘𝛼

2

𝑟
] .

(40)
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Figure 3: The MSE values of PCRE and PCTTE when 𝑑 = 0.6.
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Figure 4: The MSE values of PCRE and PCTTE when 𝑘 = 0.56.

So when 𝜎2 < 𝛼
2

𝑟
𝜆
𝑟
+ 2𝑘𝛼

2

𝑟
, if 1 > 𝑑 > ((𝛼

2

𝑟
𝜆
𝑟
+ 2𝑘𝛼

2

𝑟
−

𝜎
2
)/((𝜎
2
/𝜆
𝑟
)+𝛼
2

𝑟
)) > 0, then𝑀(

̂
𝛽
𝑟
(𝑘, 𝑑))−𝑀(

̂
𝛽
𝑟−1
(𝑘, 𝑑)) > 0.

If 0 < 𝑑 < ((𝛼2
𝑟
𝜆
𝑟
+ 2𝑘𝛼

2

𝑟
− 𝜎
2
)/((𝜎
2
/𝜆
𝑟
) + 𝛼
2

𝑟
)) < 1, then

𝑀(
̂
𝛽
𝑟
(𝑘, 𝑑)) − 𝑀(

̂
𝛽
𝑟−1
(𝑘, 𝑑)) < 0.

Then we have the following theorem.

Theorem 5.
(1) If 𝜎2 < 𝛼2

𝑖
𝜆
𝑖
+2𝑘𝛼

2

𝑖
for some 𝑖 ∈ 𝑁

𝑝
, then there exists a

nonnegative𝑑
3
such that𝑀(

̂
𝛽(𝑘, 𝑑)) > 𝑀(

̂
𝛽
𝑟
(𝑘, 𝑑)) for

0 < 𝑑
3
< 𝑑 < 1, where𝑁

𝑝
= 𝑟 + 1, . . . , 𝑝.
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Figure 5: The MSE values of 𝑟-𝑘 class estimator and PCTTE when
𝑑 = 0.1.
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Figure 6: The MSE values of 𝑟-𝑑 class estimator and PCTTE when
𝑘 = 0.9.

(2) If 𝜎2 < 𝛼
2

𝑖
𝜆
𝑖
+ 2𝑘𝛼

2

𝑖
for all 𝑖 ∈ 𝑁

𝑝
, then there exists a

nonnegative 𝑑
3
such that 𝑀(

̂
𝛽(𝑘, 𝑑)) < 𝑀(

̂
𝛽
𝑟
(𝑘, 𝑑))

for 0 < 𝑑 < 𝑑
4
< 1, where𝑁

𝑝
= 𝑟 + 1, . . . , 𝑝, where

𝑑
3
= min
𝑖∈𝑁𝑝

{1,max
𝑖∈𝑁𝑝

𝛼
2

𝑖
𝜆
𝑖
+ 2𝑘𝛼

2

𝑖
− 𝜎
2

(𝜎
2
/𝜆
𝑖
) + 𝛼
2

𝑖

} ,

𝑑
4
= min
𝑖∈𝑁𝑝

𝛼
2

𝑖
𝜆
𝑖
+ 2𝑘𝛼

2

𝑖
− 𝜎
2

(𝜎
2
/𝜆
𝑖
) + 𝛼
2

𝑖

.

(41)
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Figure 7: The MSE values of LTE and PCTTE when 𝑘 = 0.8.

4. Numerical Example

To illustrate our theoretical results, firstly we use a numerical
example to investigate the estimators studied in the dataset
originally due toGruber [13], and later considered byAkdeniz
and Erol [14]. We assemble the data as follows:

𝑋 =

(

(

(

(

(

(

(

(

(

(

(

1.9 2.2 1.9 3.7

1.8 2.2 2.0 3.8

1.8 2.4 2.1 3.6

1.8 2.4 2.2 3.8

2.0 2.5 2.3 3.8

2.1 2.6 2.4 3.7

2.1 2.6 2.6 3.8

2.2 2.6 2.6 4.0

2.3 2.8 2.8 3.7

2.3 2.7 2.8 3.8

)

)

)

)

)

)

)

)

)

)

)

,

𝑦 =

(

(

(

(

(

(

(

(

(

(

(

2.3

2.2

2.2

2.3

2.4

2.5

2.6

2.6

2.7

2.7

)

)

)

)

)

)

)

)

)

)

)

.

(42)

Firstly, we can compute the OLSE of 𝛽 as follows:

̂
𝛽 = (0.6921, 0.6258, −0.1154, 0.2866, 0.0256)


. (43)
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Figure 8: The MSE values of LTE and PCTTE when 𝑑 = 0.3.

For the OLSE, PCRE, 𝑟-𝑘 class estimator, 𝑟-𝑑 class estimator,
Liu-type estimator (LTE), and new estimator (PCTTE), their
estimated mean square error (MSE) values are obtained by
replacing all unknown model parameters by their, respec-
tively, least squares estimators in corresponding expressions.

Firstly, we see the comparison of the OLSE and the
PCTTE. When 𝑑 = 0.6 is fixed, then if the values of 𝑘 is big
then the new estimator has smaller MSE values than OLSE;
that is to say, the new estimator is better than the OLSE. So
we see that the new estimator improved the OLSE.

From Figure 3, we see that when 𝑑, fixed, if 0 < 𝑑 < 𝑘,
then the new estimator is better than the PCRE. InTheorem 1,
we see that if 0 < 𝑑 < 𝑘, the new estimator is better. For the
numerical example, when 0 < 𝑑 < 𝑘, the new estimator is
more efficient than the PCRE.

By Figures 1, 2, 3, 4, 5, 6, 7, and 8, we see that when 0 < 𝑑 <
𝑘, then new estimator is better than the LTE. So in practice,
we can choose bigger 𝑘 and smaller 𝑑.

5. Conclusion

In this paper, we use a new method to propose the principal
component Liu-type estimator. Then, we discuss the superi-
ority of the new estimator with the OLSE, PCRE, 𝑟-𝑘 class
estimator, 𝑟-𝑑 class estimator, and Liu-type estimator in the
sense of mean square error. We also give a method to choose
the biasing parameters. Finally, we give a numerical example
to illustrate the performance the various estimators.
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