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The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant
coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are
adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-
difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in
physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral
of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this
paper.

1. Introduction

Certainty barely exists as a natural phenomenon in isolation.
On the contrary, the phenomenon of certainty is an integral
part of a complex environment full of interrelations and inter-
actions. Physics is the general analysis of nature, including
elements of matter, motion, space, and time, all of which are
relevant to the concept of certainty and uncertainty. In order
to capture a clear understanding of physicalmovements in the
natural world by using modeling techniques, it is inevitable
to take the effects, as the result of the uncertainty upon any
development course of any entities, into full consideration.
The stochastic differential equations are one of the best
known techniques to depict physical movement in precision.
For instance, statistical physics is based on the ergodicity
assumption of the development of a system and stochastic
differential equations can give perfect solutions to such
scenarios. Moreover, the stochastic differential equations and
relevant applications have been applied in such a variety of
scientific fields such as stochastic control, stochastic neural
network, financial economic studies, species dynamics, and

electronic engineering [1–5]. In this regard, it is of crucial
importance to explore stochastic differential equations.Major
research findings of the stochastic differential equations can
be found in [4, 5].

Although Mao [4] and Kloeden and Platen [6] have
managed to calculate the expression of the explicit solution
to certain types of stochastic differential equations, it is not
always possible to derive the explicit solution to equations of
such kind. Strong nonlinearity and coupling characteristics
of stochastic differential equations are the major reason and,
in this sense, it is of significant importance to establish
an effective numerical method [6–15] that is able to make
rational judgment by using computer simulations. In saying
so, a new branch of computational mathematics is emerging
as the numerical solutions to stochastic differential equations.
The fundamental theories in this area can be found in [6, 15].

In recent years, the exact finite-difference schemes of
ordinary differential equations have capturedmore andmore
attention from the academia. Such exact finite-difference
schemes are the same to the solutions to the original
equations, whilst being able to retain the characteristics of
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the solutions. Further, such exact finite-difference schemes
can be utilized to rationalize the construction of nonstan-
dardized finite-difference schemes [16], for example, the
exponentially fitted method [17–19]. As is well known, the
linear ordinary differential equations with constant coeffi-
cients involve an exact finite-difference scheme (see [16, 20,
21]) and some scholars have discussed exact discretizations
of other systems, for example, Vigo-Aguiar and Ferràndiz
[22], Cieśliński [23, 24], Sakamoto et al. [25], Mickens and
Washington [26], Roeger et al. [27–29], and so on. However,
there are only a few published papers [30–32] discussing
whether an exact finite-difference scheme exists for widely
applied linear stochastic differential equations with constant
coefficients. In order to bridge the gap, this paper aims
to calculate the exact finite-difference schemes of general
𝑑-dimensional linear stochastic differential equations with
constant coefficients and hence apply the results to the Kubo
oscillator so as to prove the structure-preserving property
of the exact finite-difference schemes, which is a stochastic
sample from [24].

The following part of the paper is organized as follows. In
Section 2, the authors will discuss the exact finite-difference
schemes for Itô and Stratonovich type stochastic differential
equations. In Section 3, the authors demonstrate how to apply
the findings generalized from Section 2 to theKubo oscillator.
Finally, the authors will use numerical examples to illustrate
the validity of the findings.

2. The Exact Finite-Difference Schemes for
Linear Stochastic Differential Equations
with Constant Coefficients

Let (Ω, 𝐹, 𝑃) be a complete probability space with a filtration
{𝐹
𝑡
}. The filtration {𝐹

𝑡
} is increasing and right continu-

ous, and 𝐹
0
contains all 𝑃-null sets. Let 𝐵(𝑡) = (𝐵

1
(𝑡),

𝐵
2
(𝑡), . . . , 𝐵

𝑚
(𝑡))
𝑇 be a standard 𝑚-dimensional Brownian

motion defined on (Ω, 𝐹, 𝑃), whose increment Δ𝐵
𝑘
= 𝐵
𝑘
(𝑡 +

ℎ) − 𝐵
𝑘
(𝑡) (𝑘 = 1, 2, . . . , 𝑚) is a Gaussian random variable

𝑁(0, ℎ).
Then we discuss numerical methods for strong solutions

to stochastic differential equations:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡)) 𝑑𝑡

+

𝑚

∑

𝑘=1

𝑔
𝑘
(𝑥 (𝑡)) 𝑑𝐵

𝑘
(𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑑
,

(1)

where the deterministic term 𝑓(𝑥) is the drift coefficient and
the stochastic terms 𝑔

𝑘
(𝑥) (𝑘 = 1, 2, . . . , 𝑚) are diffusion

coefficients. The solution of (1) can be written as

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

0

𝑓 (𝑥 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑘=1

∫

𝑡

𝑡0

𝑔
𝑘
(𝑥 (𝑠)) 𝑑𝐵

𝑘
(𝑠) .

(2)

Given an equidistant discretization of the interval [0, 𝑡] with
grid points 𝑡

𝑛
(𝑛 = 1, 2, . . . , 𝑁) and letting 𝜉

𝑛
= 𝜃𝑡

𝑛
+

(1 − 𝜃)𝑡
𝑛−1
(𝜃 ∈ [0, 1]), the stochastic integrals in (2) can be

calculated by the limit of the approximating sums in themean
square sense, as 𝑁 → ∞,

𝑁

∑

𝑛=1

𝑔
𝑘
(𝑥 (𝜉
𝑛
)) (𝐵
𝑘
(𝑡
𝑛
) − 𝐵
𝑘
(𝑡
𝑛−1
)) (𝑘 = 1, 2, . . . , 𝑚) .

(3)

The values of stochastic integrals depend on the choice
of 𝜃 and the Itô integrals when 𝜃 = 0. The corresponding
Itô type stochastic differential equations are the equations
using the usual notation (1) and the Stratonovich integrals
when 𝜃 = 1/2.The corresponding Stratonovich type stochas-
tic differential equations are denoted by

𝑑𝑥 (𝑡) = 𝑓
1
(𝑥 (𝑡)) 𝑑𝑡

+

𝑚

∑

𝑘=1

𝑔
𝑘
(𝑥 (𝑡)) ∘ 𝑑𝐵

𝑘
(𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑑
.

(4)

The relationships between these two types of stochastic
differential equations are given by

𝑓
1
(𝑥 (𝑡)) = 𝑓 (𝑥 (𝑡))

−
1

2

𝑚

∑

𝑘=1

𝑔


𝑘
(𝑥 (𝑡)) 𝑔

𝑘
(𝑥 (𝑡)) .

(5)

The exact finite-difference schemes of 𝑑-dimensional lin-
ear stochastic differential equations with constant coefficients
of Itô type can be discussed as

𝑑𝑥 (𝑡) = 𝐹𝑥 (𝑡) 𝑑𝑡 +

𝑚

∑

𝑘=1

𝐺
𝑘
𝑥 (𝑡) 𝑑𝐵

𝑘
(𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑑
,

(6)

where 𝐹 and𝐺
𝑘
(𝑘 = 1, 2, . . . , 𝑚) are 𝑑×𝑑matrices and 𝐵

𝑘
(𝑡)

(𝑘 = 1, 2, . . . , 𝑚) are independent one-dimensional Brown-
ian motion. Suppose that the matrices 𝐹, 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑚
are

commutative; that is,

𝐹𝐺
𝑘
= 𝐺
𝑘
𝐹, 𝐺

𝑘
𝐺
𝑗
= 𝐺
𝑗
𝐺
𝑘
, 𝑘, 𝑗 = 1, 2, . . . , 𝑚. (7)

Let ℎ be the time step and 𝑡
𝑛
= 𝑛ℎ. Δ𝐵𝑘

𝑛
= 𝐵
𝑘
(𝑡
𝑛+1
) −

𝐵
𝑘
(𝑡
𝑛
) (𝑘 = 1, 2, . . . , 𝑚) denotes the increment of Brownian

motion. Then the following theorem can be derived.

Theorem 1. Equation (6) admits the exact finite-difference
schemes given by

𝑥
𝑛+1

= exp{(𝐹 − 1
2

𝑚

∑

𝑘=1

𝐺
2

𝑘
)ℎ +

𝑚

∑

𝑘=1

𝐺
𝑘
Δ𝐵
𝑘

𝑛
}𝑥
𝑛
, (8)

where 𝑥
𝑛
is the exact value of solution 𝑥(𝑡) to (6) at 𝑡 = 𝑡

𝑛
.
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Proof. Using the theories in [4, Chapter 3], the general solu-
tion of (6) can be expressed in terms of 𝐹, 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑚
as

follows:

𝑥 (𝑡) = exp{(𝐹 − 1
2

𝑚

∑

𝑘=1

𝐺
2

𝑘
) 𝑡 +

𝑚

∑

𝑘=1

𝐺
𝑘
𝐵
𝑘
(𝑡)} 𝑥

0
. (9)

Inserting 𝑡
𝑛
and 𝑡
𝑛+1

into (9), it can be deduced that

𝑥
𝑛
= 𝑥 (𝑡

𝑛
) = exp{(𝐹 − 1

2

𝑚

∑

𝑘=1

𝐺
2

𝑘
) 𝑡
𝑛
+

𝑚

∑

𝑘=1

𝐺
𝑘
𝐵
𝑘
(𝑡
𝑛
)} 𝑥
0
,

𝑥
𝑛+1

= 𝑥 (𝑡
𝑛+1
)

= exp{(𝐹 − 1
2

𝑚

∑

𝑘=1

𝐺
2

𝑘
) 𝑡
𝑛+1
+

𝑚

∑

𝑘=1

𝐺
𝑘
𝐵
𝑘
(𝑡
𝑛+1
)} 𝑥
0

= exp{(𝐹 − 1
2

𝑚

∑

𝑘=1

𝐺
2

𝑘
)(ℎ + 𝑡

𝑛
)

+

𝑚

∑

𝑘=1

𝐺
𝑘
(Δ𝐵
𝑘

𝑛
+ 𝐵
𝑘
(𝑡
𝑛
))}𝑥

0

= exp{(𝐹 − 1
2

𝑚

∑

𝑘=1

𝐺
2

𝑘
)ℎ +

𝑚

∑

𝑘=1

𝐺
𝑘
Δ𝐵
𝑘

𝑛
}𝑥
𝑛
,

(10)

which ends the proof.

Consider a 𝑑-dimensional linear stochastic differential
equationwith constant coefficient of Stratonovich type driven
by 𝑚 independent one-dimensional Brownian motion:

𝑑𝑦 (𝑡) = 𝐴𝑦 (𝑡) 𝑑𝑡 +

𝑚

∑

𝑘=1

𝐶
𝑘
𝑦 (𝑡) ∘ 𝑑𝐵

𝑘
(𝑡) , 𝑡 ≥ 0,

𝑦 (0) = 𝑦
0
∈ 𝑅
𝑑
,

(11)

where 𝐴 and 𝐶
𝑘
(𝑘 = 1, 2, . . . , 𝑚) are 𝑑 × 𝑑 matrices. It is

assumed that the matrices 𝐴,𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
are commuta-

tive; that is,

𝐴𝐶
𝑘
= 𝐶
𝑘
𝐴, 𝐶

𝑘
𝐶
𝑗
= 𝐶
𝑗
𝐶
𝑘
, 𝑘, 𝑗 = 1, 2, . . . , 𝑚.

(12)

The exact finite-difference schemes can be constructed by
using the general solution of (11).

Theorem 2. Equation (11) admits the exact finite-difference
schemes given by

𝑦
𝑛+1

= exp{𝐴ℎ +
𝑚

∑

𝑘=1

𝐶
𝑘
Δ𝐵
𝑘

𝑛
}𝑦
𝑛
, (13)

where 𝑦
𝑛
is the exact value of solution 𝑦(𝑡) to (11) at 𝑡 = 𝑡

𝑛
.

Proof. Firstly, we prove that the general solution to (11) is
given by

𝑦 (𝑡) = exp{𝐴𝑡 +
𝑚

∑

𝑘=1

𝐶
𝑘
𝐵
𝑘
(𝑡)} 𝑦

0
. (14)

Equation (14) follows (9) by a known relation (5) between Itô
and Stratonovich type stochastic differential equations. Tak-
ing into account that 𝑦

𝑛
= 𝑦(𝑡

𝑛
) and, in particular, 𝑦(0) =

𝑦
0
, it can be obtained that

𝑦
𝑛
= 𝑦 (𝑡

𝑛
) = exp{𝐴𝑡

𝑛
+

𝑚

∑

𝑘=1

𝐶
𝑘
𝐵
𝑘
(𝑡
𝑛
)}𝑦
0
,

𝑦
𝑛+1

= 𝑦 (𝑡
𝑛+1
)

= exp{𝐴𝑡
𝑛+1
+

𝑚

∑

𝑘=1

𝐶
𝑘
𝐵
𝑘
(𝑡
𝑛+1
)}𝑦
0

= exp{𝐴 (ℎ + 𝑡
𝑛
) +

𝑚

∑

𝑘=1

𝐶
𝑘
(Δ𝐵
𝑘

𝑛
+ 𝐵
𝑘
(𝑡
𝑛
))}𝑦

0

= exp{𝐴ℎ +
𝑚

∑

𝑘=1

𝐶
𝑘
Δ𝐵
𝑘

𝑛
}𝑦
𝑛
.

(15)

This completes the proof of the theorem.

Remark 3. Although the existence of the exact solution of (6)
and (11) is known, it is impossible to compute the exact value
of the solution at a fixed time, because of the randomness
of Brownian motion. The author of [33] has used a Matlab
program to simulate the exact solution of one-dimensional
linear stochastic differential equations. The codes in the
program produce a discretized Brownian path 𝑊

𝑖
(𝑖 =

1, 2, . . . , 𝑁) with the help of the computer. The value of
Brownian motion 𝐵(𝑡) at 𝑡 = 𝑡

𝑘
is obtained by 𝐵(𝑡

𝑘
) =

∑
𝑘−1

𝑙=1
𝑊
𝑙
. Then it is possible to derive the value of exact

solution 𝑥(𝑡) at 𝑡 = 𝑡
𝑘
. Such summust be calculated in every

step of the iteration, increasing the amount of computation
needed. However, the scheme proposed in this paper can
overcome such a problem.

3. An Application to the Kubo Oscillator

Consider the Kubo oscillator [34]:

𝑑𝑝 (𝑡) = −𝑎𝑞 (𝑡) 𝑑𝑡 − 𝑏𝑞 (𝑡) ∘ 𝑑𝐵 (𝑡) , 𝑝 (0) = 𝑝
0
∈ 𝑅,

𝑑𝑞 (𝑡) = 𝑎𝑝 (𝑡) 𝑑𝑡 + 𝑏𝑝 (𝑡) ∘ 𝑑𝐵 (𝑡) , 𝑞 (0) = 𝑞
0
∈ 𝑅,

(16)

where 𝑎 and 𝑏 are constants and 𝐵(𝑡) is a standard
one-dimensional Brownian motion. The small circle “∘”
before 𝑑𝐵(𝑡) denotes stochastic differential equations of
Stratonovich type. Using (14), the exact solution to (16) is
illustrated as follows.

Theorem 4. The exact solution of (16) is given by

𝑝 (𝑡) = 𝑝
0
cos (𝑎𝑡 + 𝑏𝐵 (𝑡)) − 𝑞

0
sin (𝑎𝑡 + 𝑏𝐵 (𝑡)) ,

𝑞 (𝑡) = 𝑝
0
sin (𝑎𝑡 + 𝑏𝐵 (𝑡)) + 𝑞

0
cos (𝑎𝑡 + 𝑏𝐵 (𝑡)) .

(17)

Further, the exact finite-difference scheme for (16) can be
constructed by applying (17). Assume ℎ is the time increment
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and Δ𝐵
𝑛
= 𝐵(𝑡
𝑛+1
)−𝐵(𝑡

𝑛
) is independent 𝑁(0, ℎ)-distributed

Gaussian random variables. 𝑃
𝑛
and 𝑄

𝑛
(𝑛 = 0, 1, 2, . . .) are

the exact discrete values to 𝑝(𝑡) and 𝑞(𝑡) when 𝑡 = 𝑡
𝑛
= 𝑛ℎ.

The exact finite-difference scheme of (16) is given by

𝑃
𝑛+1

= 𝑝 (𝑡
𝑛+1
)

= 𝑝
0
cos (𝑎𝑡

𝑛+1
+ 𝑏𝐵 (𝑡

𝑛+1
))

− 𝑞
0
sin (𝑎𝑡

𝑛+1
+ 𝑏𝐵 (𝑡

𝑛+1
))

= 𝑝
0
cos (𝑎𝑡

𝑛
+ 𝑏𝐵 (𝑡

𝑛
) + 𝑎ℎ + 𝑏Δ𝐵

𝑛
)

− 𝑞
0
sin (𝑎𝑡

𝑛
+ 𝑏𝐵 (𝑡

𝑛
) + 𝑎ℎ + 𝑏Δ𝐵

𝑛
)

= 𝑝
0
cos 𝑎
𝑛
cos 𝑏
𝑛
− 𝑝
0
sin 𝑎
𝑛
sin 𝑏
𝑛

− 𝑞
0
sin 𝑎
𝑛
cos 𝑏
𝑛
− 𝑞
0
cos 𝑎
𝑛
sin 𝑏
𝑛

= (𝑝
0
cos 𝑎
𝑛
− 𝑞
0
sin 𝑎
𝑛
) cos 𝑏

𝑛

− (𝑝
0
sin 𝑎
𝑛
+ 𝑞
0
cos 𝑎
𝑛
) sin 𝑏

𝑛

= 𝑃
𝑛
cos 𝑏
𝑛
− 𝑄
𝑛
sin 𝑏
𝑛
,

𝑄
𝑛+1

= 𝑞 (𝑡
𝑛+1
)

= 𝑝
0
sin (𝑎𝑡

𝑛+1
+ 𝑏𝐵 (𝑡

𝑛+1
))

+ 𝑞
0
cos (𝑎𝑡

𝑛+1
+ 𝑏𝐵 (𝑡

𝑛+1
))

= 𝑝
0
sin (𝑎𝑡

𝑛
+ 𝑏𝐵 (𝑡

𝑛
) + 𝑎ℎ + 𝑏Δ𝐵

𝑛
)

+ 𝑞
0
cos (𝑎𝑡

𝑛
+ 𝑏𝐵 (𝑡

𝑛
) + 𝑎ℎ + 𝑏Δ𝐵

𝑛
)

= 𝑝
0
sin 𝑎
𝑛
cos 𝑏
𝑛
+ 𝑝
0
cos 𝑎
𝑛
sin 𝑏
𝑛

+ 𝑞
0
cos 𝑎
𝑛
cos 𝑏
𝑛
− 𝑞
0
sin 𝑎
𝑛
sin 𝑏
𝑛

= (𝑝
0
sin 𝑎
𝑛
+ 𝑞
0
cos 𝑎
𝑛
) cos 𝑏

𝑛

+ (𝑝
0
cos 𝑎
𝑛
− 𝑞
0
sin 𝑎
𝑛
) sin 𝑏

𝑛

= 𝑄
𝑛
cos 𝑏
𝑛
+ 𝑃
𝑛
sin 𝑏
𝑛
,

(18)

where 𝑎
𝑛
= 𝑎𝑡
𝑛
+ 𝑏𝐵(𝑡

𝑛
) and 𝑏

𝑛
= 𝑎ℎ + 𝑏Δ𝐵

𝑛
.

Due to

𝑑𝛾 (𝑝 (𝑡) , 𝑞 (𝑡))

𝑑𝑡

=
𝑑 (𝑝(𝑡)

2
+ 𝑞(𝑡)

2
)

𝑑𝑡

= 2𝑝 (𝑡) �̇� (𝑡) + 2𝑞 (𝑡) ̇𝑞 (𝑡)

= 2𝑝 (𝑡) (−𝑎𝑞 (𝑡) − 𝑏𝑞 (𝑡) ∘ �̇� (𝑡))

+ 2𝑞 (𝑡) (𝑎𝑝 (𝑡) + 𝑏𝑝 (𝑡) ∘ �̇� (𝑡))

= 0,

(19)

then 𝛾(𝑝, 𝑞) = 𝑝2 + 𝑞2 is conservative along the phase flow of
(16). That is, 𝛾(𝑝, 𝑞) is a first integral of (16), indicating that a
phase trajectory of (16) is a circle with the center at (0, 0) and

with the radius √𝐻(𝑝
0
, 𝑞
0
). It can be proved that scheme (18)

can preserve the first integral 𝛾(𝑝, 𝑞) exactly.

Theorem 5. Scheme (18) for solving (16) has the
property 𝛾(𝑃

𝑛+1
, 𝑄
𝑛+1
) = 𝛾(𝑃

𝑛
, 𝑄
𝑛
) for any 𝑛 = 0, 1, 2, . . ..

Proof. Substitution of (18) into 𝛾(𝑝, 𝑞) yields

𝛾 (𝑃
𝑛+1
, 𝑄
𝑛+1
) = 𝑃
2

𝑛+1
+ 𝑄
2

𝑛+1

= (𝑃
𝑛
cos 𝑏
𝑛
− 𝑄
𝑛
sin 𝑏
𝑛
)
2

+ (𝑄
𝑛
cos 𝑏
𝑛
+ 𝑃
𝑛
sin 𝑏
𝑛
)
2

= 𝑃
2

𝑛
cos2𝑏
𝑛
+ 𝑄
2

𝑛
sin2𝑏
𝑛

+ 𝑄
2

𝑛
cos2𝑏
𝑛
+ 𝑃
2

𝑛
sin2𝑏
𝑛

= 𝑃
2

𝑛
+ 𝑄
2

𝑛
.

(20)

This completes the proof.

It is obvious that (16) is a stochastic Hamiltonian system
with 𝐻(𝑝, 𝑞) = 𝑎(𝑝2 + 𝑞2)/2 and 𝐻

1
(𝑝, 𝑞) = 𝑏(𝑝

2
+ 𝑞
2
)/2,

and thus the phase flow of (16) preserves the symplectic
structure 𝑑𝑝(𝑡) ∧ 𝑑𝑞(𝑡) = 𝑑𝑝

0
∧ 𝑑𝑞
0
for all 𝑡 ≥ 0. A good

analytical and numerical study of stochastic Hamiltonian
systems can be found in [34, 35].The following theoremelicits
whether scheme (18) is symplectic.

Theorem6. Scheme (18) for solving (16) preserves the symplec-
tic structure; that is, 𝑑𝑃

𝑛+1
∧ 𝑑𝑄
𝑛+1

= 𝑑𝑃
𝑛
∧ 𝑑𝑄
𝑛
.

Proof. Differentiating (18), it is known that

𝑑𝑃
𝑛+1

= cos 𝑏
𝑛
𝑑𝑃
𝑛
− sin 𝑏

𝑛
𝑑𝑄
𝑛
,

𝑑𝑄
𝑛+1

= cos 𝑏
𝑛
𝑑𝑄
𝑛
+ sin 𝑏

𝑛
𝑑𝑃
𝑛
.

(21)

From the exterior product, it can be derived as

𝑑𝑃
𝑛+1
∧ 𝑑𝑄
𝑛+1

= cos2𝑏
𝑛
𝑑𝑃
𝑛
∧ 𝑑𝑄
𝑛
− sin2𝑏

𝑛
𝑑𝑄
𝑛
∧ 𝑑𝑃
𝑛

= 𝑑𝑃
𝑛
∧ 𝑑𝑄
𝑛
.

(22)

This completes the proof.

4. Numerical Experiments

A linear stochastic differential equation of Itô type can be
written as

𝑑𝑥 (𝑡) = 2𝑥 (𝑡) 𝑑𝑡 + 𝑥 (𝑡) 𝑑𝐵 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = 1.

(23)

The exact solution to (23) is given by

𝑥 (𝑡) = exp (1.5𝑡 + 𝐵 (𝑡)) . (24)
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Figure 1:The exact solution of (23) simulated by (25) with fixed step
size ℎ = 2−8.
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Figure 2:Applying (18) to simulate (16)with fixed step size ℎ = 0.02.

By (8), the exact finite-difference scheme of (23) is

𝑥
𝑛+1

= exp (1.5ℎ + Δ𝐵
𝑛
) 𝑥
𝑛
. (25)

Figure 1 exhibits the exact solution of a sample phase
trajectory of (23) simulated by (25).

Next, the exact finite-difference scheme (18) can be
applied to solve the Kubo oscillator (16). The coefficients
of (16) are chosen as 𝑎 = 0.2, 𝑏 = 0.01, 𝑝

0
= 1, 𝑞

0
=

0, ℎ = 0.02, and 𝑡 ∈ [0, 400]. Figure 2 exhibits the numerical
solutions of a sample phase trajectory of (16) simulated by
(18). Figure 3 shows that the numerical solutions created by
(18) could preserve the first integral 𝛾(𝑝, 𝑞) of (16).

5. Conclusions

In this paper, the authors extend the exact finite-difference
schemes to linear stochastic differential equations with
constant coefficients. The exact finite-difference schemes

1.1
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1.02

1

0.98

0.96

0.94

0.92

0.9
0 50 100 150 200 250 300 350 400

tn

P
2 n
+
Q
2 n

Figure 3: Preservation of first integral 𝛾(𝑝, 𝑞) by numerical solu-
tions produced by (18).

have been calculated for general 𝑑-dimensional Itô and
Stratonovich type stochastic differential equations. By using
the exact finite-difference schemes to solve the Kubo oscil-
lator, the authors have proven that the findings illustrated
in this paper can preserve the symplectic structure and first
integral. Numerical examples demonstrate the validity of the
exact finite-difference schemes in this paper.
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