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The precision of design storm estimation depends on the selection of an appropriate probability distribution model (PDM) and
parameter estimation techniques. Generally, estimated parameters for PDMs are provided based on the method of moments,
probability weighted moments, and maximum likelihood (ML). The results using ML are more reliable than the other methods.
However, theML is more laborious than the other methods because an iterative numerical solutionmust be used. In the meantime,
metaheuristic approaches have been developed to solve various engineering problems. A number of studies focus on using
metaheuristic approaches for estimation of hydrometeorological variables. Appliedmetaheuristic approaches offer reliable solutions
but usemore computation time than derivative-basedmethods.Therefore, the purpose of the current study is to enhance parameter
estimation of PDMs for design storms using a recently developed metaheuristic approach known as a harmony search (HS). The
HS is compared to the genetic algorithm (GA) and ML via simulation and case study. The results of this study suggested that the
performance of the GA and HS was similar and showed more accurate results than that of the ML. Furthermore, the HS required
less computation time than the GA.

1. Introduction

Floods that occurred due to severe rain or major storm
generally result in damage to properties and negative impacts
on human activity. Flood estimation is the process of mini-
mizing property damage and reducing the threat to human
activity. Design storm based on precipitation frequency
analysis is one of the main procesess for flood estimation as
well as a statistical representation of a precipitation event.

The primary purpose of precipitation frequency analysis
in hydrometeorology is to estimate the magnitude of a
storm event with a given frequency of occurrence. It can
also be used to estimate the frequency of occurrence of a
storm event with a given magnitude [1]. The precision of
precipitation frequency analysis depends on the selection of
an appropriate probability distribution model (PDM) and
parameter estimation techniques. A number of PDMs have
been developed to describe the probability distribution of the
hydrometeorological variables. In practice, it is often assumed
that the correct PDM is a member of the developed PDMs.

However, the selection of an appropriate PDM is still one of
the major problems in precipitation frequency analysis [2].

For each of the developed PDMs, estimated parameters
are provided based on alternative estimation techniques, such
as the method of moments (MOM), probability weighted
moments (PWM), linear function of ranked observations (L-
moments), and maximum likelihood (ML) [1–5]. The MOM
is one of the most simple and commonly used methods
for estimating the parameters. PWM and L-moments are
discussed by Stedinger et al. [6]. Estimates for PWM can
be obtained from order statics. Additionally, Stedinger et
al. [6] recommended a parameter estimator for PWM in
regionalization studies. L-moments tend to produce less
variable estimates for higher moments, when an unusually
large or small observation happens to be present in a sample
[1]. The moment estimators, including MOM, PWM, and L-
moments, are a simpler way to obtain the PDM parameters
but are less accurate than the ML estimators. The results
usingML are generally more reliable than the other methods.
However, the ML is more laborious than the other methods
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because an iterative numerical solution, such as the Newton-
Raphsonmethod [7], must be used for estimating the param-
eters.

Metaheuristic approaches have been developed to solve
various engineering optimization problems (e.g., linear
and stochastic, dynamic, and nonlinear). These approaches
include genetic algorithms [8, 9], ant colony optimization
[10], simulated annealing [11], tabu searches [12], and evo-
lutionary computation methods. Metaheuristic approaches
use a stochastic random search instead of a gradient search
so that intricate derivative information is unnecessary [13].
Therefore, the metaheuristic approaches have been shown
to be a useful strategy to solve optimization problems in
hydrology [5, 14–21].

Karahan et al. [22] used the genetic algorithm (GA) to
predict rainfall intensities for a given set of return periods.
The results showed that the proposed GA could be used to
develop rainfall intensity-duration-frequency relationships
with the lowest mean-squared error between the observed
and predicted intensities. Karahan et al. [22] concluded
that predicted intensities were in good agreement with the
analyzed return period. Hassanzadeh et al. [23] studied the
most suitable PDM for annual maximum discharge in East-
Azerbaijan, Iran. Hassanzadeh et al. [23] employed the GA
and ant colony optimization (ACO) techniques to find the
parameters of PDMs. The performance of these algorithms
was evaluated by comparison with conventional methods,
such as MOM, ML, and PWM. The results showed that the
GA and ACO were effective optimization tools compared to
other methods for the parameter estimation of PDMs. The
GA and ACO techniques could also be used for systems
that are more complex and involve nonlinear optimization
problems. However, the GA and ACO techniques need more
computation time than the MOM, ML, and PWM methods
to find the parameters of PDMs. Although the GA and ACO
techniques are reasonable alternatives to solve hydrological
problems, large computation time is an obvious disadvantage.

Therefore, the purpose of this study is to enhance the
design storm estimation with improving parameter esti-
mation of PDMs using a recently developed metaheuristic
approach, a harmony search (HS) by Geem et al. [24]. The
performance of the HS approach is compared with the GA
and conventional methods (i.e., ML).

This paper is organized in the followingmanner. Section 2
introduces themethodology for the parameters of PDMswith
statistical test criteria.The results of the simulation are shown
in Section 3, and a case study is reported in Section 4. Finally,
the summary and conclusions are presented in Section 5.

2. Methodology

2.1. Probability Distribution Models. To test the perfor-
mance of the proposed parameter estimation approach,
the two-parameter lognormal (LN2), two-parameter gamma
(GAM2), generalized extreme value (GEV), and Gumbel
(GUM) distribution models are used. The general properties
of the PDMs are given in Appendices.
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(b) Mutation

Figure 1: Illustration of crossover and mutation.

2.2. Metaheuristic Approaches. In the current study, two
metaheuristic approaches (i.e., GA and HS) were used to
estimate the parameters of PDMs.

2.2.1. Genetic Algorithms. The GA is a stochastic search
algorithm based on natural evolution and mechanisms of
population genetics [8, 9]. The simple ideas of GA are based
on the biological processes of survival and adaption. Only the
best of the population is allowed to survive and propagate to
successive generations. Therefore, the GA does not require
derivatives of the objective function to solve complex and
discontinuous optimization problems. A number of GAs are
introduced, but the following general description encom-
passes most of the important features.

The analogy with nature is established by the creation of a
set of solutions, called a population.The initial population of
solutions is usually chosen at random and allowed to evolve
over a number of generations. Each individual in a population
is represented by a set of parameter values that completely
describe a solution and undergo constant change bymeans of
genetic operations of reproduction, crossover, and mutation.
At each generation, the fitness of individuals with respect
to the objective function is calculated for reproduction and
propagated to the next generation. Based on the fitness,
individuals with relatively high fitness (called parent) are
selected for reproduction of the next generation. For example,
as shown in Figure 1(a), there are two parents selected with
binary cording. The strings, including the last three digits of
two parents (i.e., 110 and 011), are recombined to produce
offspring that will comprise the next generation. Then, the
parents are replaced in the population by the offspring to
keep a stable population size.The recombination operation is
usually called the crossover.The offsprings (new generations)
have a higher average fitness than their parents (previous
generations). Occasionally, mutation is introduced into the
population to prevent the convergence to a local optimum
and help generate unexpected directions in the parameter
space, as shown in Figure 1(b). A fixed fitness of generations
has been created when a generation has reached the highest
fitness and there is no further improvement with repeated
iteration [23].

The GA method has been widely applied in a variety of
engineering optimization problems. It has been established
that the GA approach is an attractive alternative to solve
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optimization problemswith nondifferentiable, nonlinear, and
multimodal objective functions [9, 25, 26].

2.2.2. Harmony Search. The HS developed by Geem et al.
[24] is a phenomenon-mimicking algorithm inspired by the
improvisational processes of musicians. The algorithm is
based on natural musical performance processes in which a
musician searches for a better state of harmony. Assume that
the optimization problem is

Minimize 𝑂𝑏 (𝑎) ,

Subject to 𝑎𝑖 ∈ {Low𝑖,Up𝑖} , 𝑖 = 1, . . . , 𝑁,

(1)

where 𝑂𝑏(𝑎) is an objective function; 𝑎 is the set of each
decision variable 𝑎𝑖; 𝑖 = 1, . . . , 𝑁 (representing probability
parameter); 𝑁 is the number of decision variables (the
number of parameters for a probability distribution); and
Low𝑖 and Up

𝑖
are the upper and lower limits, respectively, of

the decision variable 𝑎𝑖.
To solve the optimization problem, the procedure of the

HS is as follows.

(1) Generate the harmony memory (HM) randomly up
to the harmony memory size (HMS) from a uniform
distribution, denoted as

𝑎
𝑗

𝑖
∼ 𝑈 [Low𝑖,Up𝑖] , (2)

where 𝑖 = 1, . . . , 𝑁; 𝑗 = 1, . . . ,HMS; and 𝑈[𝑎, 𝑏]
represents the uniform distribution ranging from 𝑎 to
𝑏. The generated HM is
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(2) Improvise a new set (𝑎𝑖) by

𝑎𝑖 = {
𝑎𝑖 ∈ {𝑎

1

𝑖
, 𝑎
2

𝑖
, . . . , 𝑎

HMS
𝑖

} w.p. HMCR
𝑎𝑖 ∼ 𝑈 [Low𝑖,Up𝑖] otherwise,

(4)

where HMCR is the harmony memory considering
rate for all the variables 𝑎𝑖 and 𝑖 = 1, . . . , 𝑁. Equation
(4) implies that each decision variable of a new har-
mony set is sampled from the same variable of HM in
(3) for the probability of HMCR. Otherwise, generate
the harmony set from the uniform distribution as in
(2).

(3) Adjust each variable of the improvised new set (𝑎𝑖)
with the probability of the pitch adjusting rate (PAR)
as

𝑎
∗

𝑖
= {
𝑎𝑖 + 𝜀 w.p. PAR
𝑎𝑖 otherwise,

(5)

where 𝜀 is generated from 𝑈[−ℎ, ℎ]. Here, ℎ is the
arbitrary distance bandwidth. If ℎ is large, the vari-
ability of the adjusted value 𝑎∗

𝑖
is also large.

(4) Update the HM by replacing the worst harmony
corresponding to the worst objective function with
the improvised and adjusted new set.

(5) Repeat steps (2) to (4) until the termination criterion
has been met.

Following the empirically based HS parameter range is
recommended to produce a sufficient solution of 0.7–0.95 for
HMCR, 0.2–0.5 for PAR, and 10–50 for HMS [24].

2.2.3. Optimization Function. The derivative-based method
usually uses the integral of the square of the error (ISE) as
an optimization function to find a global solution because
a derivative of ISE can be obtained relatively well. The
metaheuristic approaches use a stochastic random search
instead of a derivative search to find global optimization,
so that various forms of the optimization function based on
the integral of the absolute magnitude of the error (IAE),
the integral of the time-absolute error (ITAE), and ISE are
applied.

In this study, we use two metaheuristic approaches to
estimate the parameters of PDMs. To attain the optimum
result, an equivalent objective function (or target function)
is used with two metaheuristic approaches. The objective
function in this study is constructed using ISE with observed
and estimated values and is expressed by

Minimize (𝑂𝑏 =

𝑛

∑

𝑖=1

(
𝑥𝑖 − 𝑋𝑖

𝑥𝑖

)

2

) , (6)

where 𝑂𝑏 is an objective function; 𝑥𝑖 is the 𝑖th ordered
observation value; and 𝑋𝑖 is the estimated value from the
corresponding 𝑖th empirical cumulative probability of the
selected PDM.

2.3. Statistical Test Criteria. Three test criteria are used to
assess the adequacy of the proposed parameter estimation
method: the correlation coefficient (CC), coefficient of effi-
ciency (CE), and rootmean square error (RMSE) [27, 28].The
mathematical forms of these criteria are as follows:
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, (7)

where 𝑥 and 𝑋 are the mean of the observed data and the
mean computed data from the fitted PDM, respectively. The
range of CC is −1 ≤ CC ≤ 1. Here, the CC is also equivalent
to the Filliben Q-Q correlation test, which was proposed
by Filliben [29] as a test of normality. Vogel [30] extended
this approach to lognormal and Gumbel distributions for the
goodness-of-fit test and GEV [31]:
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(8)
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Table 1: Strategy for the GA and HS.

Metaheuristic
approach Strategy Value

Genetic
algorithm

Population size 500
Generations 1000

Stall generation 100
Selection Stochastic uniform

Crossover function Scattered
Mutation function Gaussian

Harmony search

HMS 500
Maximum iteration 100000

HMCR 0.8
PAR 0.4

GA HS
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GA HS
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Figure 2: Boxplots of estimated GEV parameters using 100 sim-
ulations based on GA and HS; (a) scale parameter, 𝛼; (b) shape
parameter, 𝛽; and (c) location parameter, 𝑥0.

Note that higher CC and CE values and lower RMSE
values represent better performance. Estimated statistics are
described with boxplots. Boxes indicate the interquartile
range (IQR), and whiskers extend to 1.5 IQR. The horizontal
lines inside the boxes depict the median of the data.

3. Simulation Study

In the simulation study, we employ the GEV distribution
model and estimate the parameters (i.e., scale (𝛼), shape (𝛽),
and location (𝑥0)) using the GA and HS techniques. For
the simulation study, we produce 100 data sets using a GEV
random number. An individual data set with a record length
of 100 has the same parameters, which are 𝛼 = 30, 𝛽 = 0.1,
and 𝑥0 = 100. The strategies for the GA and HS are shown in
Table 1.

One hundred series are simulated for the parameter
estimation of the GEV distribution model. The results of the
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Figure 3: Boxplots of test criteria for estimated GEV parameters
using 100 simulations based on GA and HS; (a) correlation coeffi-
cient; (b) coefficient of efficiency; and (c) root mean square error.

parameter estimation based on the GA and HS methods are
compared using boxplots, as shown in Figure 2. As shown
in Figures 2(a) and 2(b), the 𝛼 and 𝛽 derived from the
HS indicate a better performance than those of the GA. In
addition, the variability of 𝛼 and 𝛽 derived from the GA is
greater than that of theHS. However, as shown in Figure 2(c),
the 𝑥0 derived from the HS and GA shows similar results.

The statistical test criteria in (7) and (8) were computed
using the estimated parameters. In Figure 3, the test criteria
for the proposed metaheuristic approaches are shown. Recall
that higher CC and CE values and lower RMSE values
represent better performance. As shown in Figure 3(a), the
CCs for the HS are higher, while the variability is narrower
than the CCs for the GA. The CE shows a similar pattern to
the CC, as shown in Figure 3(b).The RMSE for the HS shows
lower values than that of the GA, as shown in Figure 3(c).The
RMSE indicates that theHS results havemore accurate values
than the GA results.

Although the metaheuristic approaches (e.g., the GA
and ACO) are reasonable alternatives to solve hydrological
problems, significant computation time is an obvious disad-
vantage [23]. Therefore, we investigate the computation time
of two metaheuristic approaches. The computation time for
GEV parameter estimation using 100 simulations based on
the GA and HS is compared using boxplots, and the results
are shown in Figure 4. The computation time for the GA is
in the range of 10 to 20 minutes. However, the computation
time for the HS is very short and is less than 1 minute.
To determine computation time by varying conditions, the
population size for the GA is changed to 100, 500, and 1000,
while the harmony size forHS is also changed to 100, 500, and
1000. As shown in Figure 5, the computation time for the GA
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Table 2: Target values for the parameters of employed PDMs and estimated parameters by the GA and HS.

Distribution Parameters Value
Target GA HS

LN2 Location 4.7 4.60∼4.81∗ (4.70)∗∗ 4.60∼4.81 (4.70)
Scale 0.4 0.32∼0.50 (0.40) 0.32∼0.50 (0.40)

GAM2 Shape 7 4.15∼11.38 (7.17) 4.03∼11.38 (7.16)
Scale 17 10.29∼30.49 (17.16) 10.29∼31.27 (17.18)

GUM Location 140 125.08∼147.08 (136.93) 125.06∼147.04 (136.93)
Scale 30 24.18∼37.73 (29.92) 24.16∼37.80 (29.92)

∗The values are presented in the range of min to max.
∗∗() shows mean of values.

Table 3: Comparison of test criteria for the three PDMs.

Distribution Criteria Metaheuristic approach
GA HS

LN2
CC

0.96∼1.00∗ (0.99)∗∗ 0.96∼1.00 (0.99)
GAM2 0.97∼1.00 (0.99) 0.97∼1.00 (0.99)
GUM 0.73∼0.94 (0.89) 0.73∼0.94 (0.89)
LN2

CE
0.92∼1.00 (0.98) 0.92∼1.00 (0.98)

GAM2 0.93∼1.00 (0.99) 0.93∼1.00 (0.99)
GUM 0.54∼0.89 (0.79) 0.54∼0.89 (0.79)
LN2

RMSE
2.92∼16.67 (6.18) 2.92∼16.67 (6.18)

GAM2 2.43∼13.33 (4.95) 2.43∼13.29 (4.96)
GUM 11.32∼44.12 (19.62) 11.32∼44.12 (19.62)
LN2

Computation time (sec)
23.76∼52.25 (33.86) 6.19∼6.32 (6.22)

GAM2 406.49∼1531.10 (793.46) 77.92∼83.70 (80.16)
GUM 21.99∼30.07 (25.28) 5.33∼5.50 (5.40)
∗The values are presented in the range of min. to max.
∗∗() shows mean of values.

rapidly increases as the population size increases.Meanwhile,
the fitness values of the objective function are only slightly
improved. In contrast, the computation time for theHS rarely
increases despite increasing harmony size, and the fitness
values of the objective function remain consistent. Note that
the fitness values of the objective function for HS with a small
harmony size are better than the fitness values of the GA.The
HS approach for estimation of the GEV parameter produces
more reliable results than the GA approach and uses less
computation time.

In addition, three PDMs (i.e., LN2, GAM2, and GUM)
are used in a simulation study. The same procedure as the
simulation study using GEV is employed for the parameter
estimation of each PDM.The target values for the parameters
of the applied PDMs and the estimated parameters by the
GA and HS methods are reported in Table 2. In addition,
the results of the three test criteria and the computation
time for each PDM are summarized in Table 3. The results of
additional simulation studies show that the twometaheuristic
approaches are appropriate methods for the parameter esti-
mation of PDMs. Furthermore, the difference between the

GA and HS methods is that the HS method requires less
computation time than the GA method while still providing
reliable results.

4. Case Study

In the current case study, we carried out precipitation
frequency analysis for design storm with annual maxi-
mum hourly rainfall data recorded at 74 rainfall gauges
in South Korea. The annual maximum hourly rainfall data
were extracted from the Korea Meteorological Administra-
tion website, http://www.kma.go.kr/. The record lengths of
extracted rainfall data range from 20 to 100 years (average
record length is approximately 40 years), and the locations
of the 74 rainfall gauges are presented in Figure 6.

Four PDMs (i.e., LN2, GAM2, GEV, and GUM) were
applied to the annual maximum hourly rainfall data. Param-
eters corresponding to the four PDMs were estimated using
the three parameter estimation approaches: ML, GA, andHS.
To compare the three parameter estimation approaches, the
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Figure 4: Boxplot of computation time for GEV parameter estima-
tion using 100 simulations based on GA and HS techniques.
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Figure 5: Comparison of computation time for GEV parameter
estimation based on GA and HS methods.

quantiles for different return periods (𝑇 = 10, 25, 50, and 100
years) were estimated at the 74 rain gauges in South Korea.
The variability of the quantiles for each PDM is shown in
Figure 7. Note that quantiles imply the statistically estimated
design storm at a given return period.

As shown in Figure 7, the results of frequency analysis for
the employed rainfall data show that the quantiles estimated
by the two metaheuristic approaches present similar distri-
butions, except for the quantiles of 𝑇 = 50, 100 for LN2, as
shown in Figure 7(a).However, the quantiles based on theML
method show a slightly different distributionwhen compared
with the two metaheuristic approaches.

Table 4 summarizes the results of test criteria derived
from the three parameter estimation approaches. The CCs
for ML, GA, and HS represent similar values, and the CE
represents a similar pattern to that of CC. However, RMSE
for GA and HS shows lower values than the results of ML.

Busan

Pyongyang

Fukuoka

Seoul

Daegu

Daejeon

40.0∘N

37.5∘N

35.0∘N

32.5∘N

125.0∘E 127.5∘E 130.0∘E

Figure 6: The locations of the employed 74 rain gauges in Republic
of Korea.

The RMSE indicates that the two metaheuristic approaches
for the parameter estimation of PDMs have a more accurate
performance than ML.

In addition, the results of parameter estimation for Seoul,
Daejeon, Daegu, and Busan, which are four major cities of
South Korea, are summarized in Table 5. Furthermore, values
of the quantiles for the four cities are estimated, and the
results are summarized in Table 6.

5. Summary and Conclusion

The HS was developed by Geem et al. [24] and has been
applied to solve a variety of engineering problems in a num-
ber of previous studies. Because the HS adopts a stochastic
random search to find the optimized best solution, initial
value settings of decision variables and derivative informa-
tion to reach global optimum are not required. Furthermore,
after considering all of the existing vectors based on the
HMCR and PAR, the HS generates a new vector, whereas
the GA only considers two vectors. These features increase
the flexibility of the HS and produce a better solution.
Therefore, we applied the HS method to enhance design
storm estimation in the current study.

The results of the simulation study based on the four
PDMs (i.e., LN2, GAM2, GEV, and GUM) showed that the
HS approach for the parameter estimation of PDMsproduced
reliable results when measuring test criteria (i.e., CC, CE,
and RMSE). Furthermore, the fitness values of the objective
function for HS were better than the fitness values of the
GAwith a small harmony size. Additionally, the computation
time for the HS approach was less than that of the GA
method.

Precipitation frequency analysis for design storm was
conducted to assess the performance of the proposedmethod
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Figure 7: Continued.
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Figure 7: Quantiles using four PDMs at 74 stations in Republic of Korea. (a) LN2, (b) GAM2, (c) GEV, and (d) GUM.

with the four PDMs (i.e., LN2, GAM2, GEV, and GUM)
and the annual maximum hourly rainfall data recorded at 74
rainfall gauges in South Korea. The results of precipitation
frequency analysis were compared with those of the ML
and GA methods. The results in this study suggested that
performances of the GA and HS were similar and presented
more accurate results than the ML in precipitation frequency
analysis for annual maximum hourly rainfall data. Accord-
ingly, we conclude that the proposed parameter estimation
method based on the HS approach is a useful alternative
for the parameter estimation of PDMs, particularly when
conventional methods cannot be applied to estimate the
parameters of PDMs.

Appendices

Probability Distribution Models

A. Two-Parameter Lognormal
(LN2) Distribution

The transformation of random variable 𝑋 is

𝑌 = log
𝑎
(𝑋) , (A.1)

where 𝑎 is the base of the logarithm.
Assuming that the mean and variance of 𝑌 are 𝜇𝑦 and 𝜎

2

𝑦
,

respectively, then

𝑓 (𝑥) =
𝑘

√2𝜋𝜎𝑦

exp[−1
2
(
log
𝑎
(𝑥) − 𝜇𝑦

𝜎𝑦

)

2

] (A.2)

is the probability density function (PDF, i.e., 𝑓𝑋(𝑥) =

𝑑𝐹𝑋(𝑥)/𝑑𝑥) of the LN2.The cumulative distribution function
(CDF, i.e., 𝐹(𝑥) = 𝑃 (𝑋 ≤ 𝑥)) of the LN2 is

𝐹𝑋 (𝑥) = ∫

𝑦

−∞

𝑘

√2𝜋𝜎𝑦

exp[−1
2
(
log
𝑎
(𝑥) − 𝜇𝑦

𝜎𝑦

)

2

]𝑑𝑥.

(A.3)

Note that 𝑘 = 1 if 𝑎 = 𝑒 (base-𝑒 logarithm) and 𝑘 =
log
10
(𝑒) if 𝑎 = 10 (base-10 logarithm). In relation to the

randomvariable𝑋,𝜇𝑦 controls the scale and is called the scale
parameter, while 𝜎𝑦 controls the skewness and is regarded as
a shape parameter. Additionally, note that in relation to the
variable 𝑌, 𝜇𝑦 is the location parameter, and 𝜎𝑦 is the scale
parameter.

The quantile function for LN2 corresponding to the
nonexceedance probability 𝑞 is

𝑥𝑇 = exp
𝑎
(𝜇𝑦 + 𝑧𝜎𝑦) , (A.4)

where 𝑥𝑇 is a quantile of return period 𝑇 for LN2 and 𝑧
is the standard normal variate corresponding to the non-
exceedance probability 𝑞.

B. Two-Parameter Gamma
(GAM2) Distribution

The PDF of the GAM2 is

𝑓 (𝑥) =
1

|𝛼| Γ (𝛽)
(
𝑥

𝛼
)

𝛽−1

exp(−𝑥
𝛼
) ,

Γ (𝛽) = ∫

∞

0

𝑧
𝛽−1
𝑒
−𝑧
𝑑𝑧,

(B.1)
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Table 4: Comparison of test criteria for the annual maximum rainfall data for the 74 rain gauges stations in Republic of Korea.

Criteria Distribution type Mean Std.
ML GA HS ML GA HS

CC

LN2 0.98 0.98 0.98 0.023 0.017 0.018
GAM2 0.97 0.98 0.97 0.027 0.024 0.024
GEV 0.98 0.99 0.99 0.019 0.008 0.008
GUM 0.88 0.88 0.88 0.059 0.059 0.059

CE

LN2 0.95 0.96 0.96 0.054 0.034 0.044
GAM2 0.94 0.95 0.95 0.054 0.046 0.046
GEV 0.96 0.98 0.98 0.054 0.016 0.016
GUM 0.85 0.77 0.77 0.523 0.114 0.114

RMSE

LN2 3.01 2.60 2.65 2.147 1.623 1.815
GAM2 3.12 2.89 2.90 2.133 1.941 1.937
GEV 2.52 1.94 1.94 1.550 0.833 0.838
GUM 10.55 6.48 6.48 6.368 3.302 3.302

Table 5: The results of the parameter estimation for the four major cities in Republic of Korea.

Rain gauge Distribution ML GA HS
Shape Scale Location Shape Scale Location Shape Scale Location

Seoul

LN2 — 0.431 3.684 — 0.445 3.680 — 0.445 3.680
GAM2 5.550 7.871 — 4.638 9.401 — 4.635 9.406 —
GEV 0.056 14.178 34.684 0.089 13.943 34.450 0.088 13.964 34.453
GUM — 25.898 54.769 — 13.574 51.443 — 13.579 51.438

Daejeon

LN2 — 0.290 3.617 — 0.281 3.622 — 0.281 3.622
GAM2 12.348 3.140 — 11.990 3.239 — 12.141 3.205 —
GEV −0.162 9.959 34.307 −0.166 10.309 34.314 −0.170 10.337 34.335
GUM — 11.084 44.388 — 8.362 43.506 — 8.356 43.503

Daegu

LN2 — 0.374 3.419 — 0.402 3.410 — 0.402 3.410
GAM2 7.065 4.647 — 5.751 5.693 — 5.803 5.653 —
GEV 0.117 9.034 26.461 0.086 9.441 26.593 0.083 9.486 26.599
GUM — 17.510 40.272 — 9.075 38.022 — 9.079 38.022

Busan

LN2 — 0.483 3.615 — 0.406 3.641 — 0.404 3.642
GAM2 5.112 8.040 — 5.419 7.605 — 5.416 7.614 —
GEV −0.085 14.902 33.590 −0.090 15.273 33.591 −0.093 15.317 33.608
GUM — 19.020 50.318 — 12.878 48.438 — 12.873 48.436

where 0 ≤ 𝑥 < ∞ for 𝛼 > 0 and −∞ < 𝑥 ≤ 0 for 𝛼 < 0.
The parameters 𝛼 and 𝛽 are the scale and shape parameters.
The shape parameter 𝛽 is restricted to 𝛽 > 0, while 𝛼may be
positive or negative. Γ(𝛽) is the complete gamma function,
which is the integral function. From (B.1), the CDF of GAM2
is derived to be

𝐹 (𝑥) = 𝑃 (𝛽, 𝑧) =
1

𝛼Γ (𝛽)

× ∫

𝑥

0

(
𝑥

𝛼
)

𝛽−1

exp(−𝑥
𝛼
)𝑑𝑧, for 𝛼 > 0,

𝐹 (𝑥) = 𝑃 (𝛽, 𝑧) = 1 −
1

𝛼Γ (𝛽)

× ∫

𝑥

0

(
𝑥

𝛼
)

𝛽−1

exp(−𝑥
𝛼
)𝑑𝑧, for 𝛼 < 0.

(B.2)

The function 𝑃(𝛽, 𝑧) in (B.2) is the incomplete gamma
function. Therefore, the quantile for GAM2 must be esti-
mated numerically. The quantile 𝑥𝑇 of return period 𝑇 for
GAM2 corresponding to the nonexceedance probability 𝑞 is
alternatively estimated using the following:

𝑥𝑇 = 𝜇𝑥 + 𝐾𝑇𝜎𝑥, (B.3)

where 𝜇𝑥 and 𝜎𝑥 are the mean and standard deviation,
respectively. 𝐾𝑇 is the frequency factor, which is a func-
tion of return period 𝑇 and the skewness coefficient
[2].
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Table 6: Quantiles for different return periods (𝑇 = 10, 25, 50, and 100 years) of the four major cities in Republic of Korea.

Rain gauge Distribution 𝑇 = 10 𝑇 = 25 𝑇 = 50 𝑇 = 100

ML GA HS ML GA HS ML GA HS ML GA HS

Seoul

LN2 69.2 70.1 70.1 84.7 86.3 86.4 96.5 98.8 98.8 108.6 111.5 111.6
GAM2 68.5 70.7 70.7 80.9 84.6 84.6 89.6 94.4 94.4 97.9 103.9 103.9
GEV 68.7 69.2 69.2 84.3 86 86 96.5 99.5 99.4 109 113.7 113.6
GUM 76.4 62.8 62.8 85 67.3 67.3 85 67.3 67.3 94.3 72.2 72.2

Daejeon

LN2 53.9 53.6 53.6 61.8 61.1 61.1 67.4 66.6 66.6 73 71.8 71.8
GAM2 53.4 53.7 53.7 60.1 60.5 60.5 64.6 65.2 65.1 68.9 69.6 69.5
GEV 53.1 53.7 53.7 59.2 59.9 59.8 63.1 63.9 63.8 66.6 67.5 67.3
GUM 53.6 50.5 50.5 57.3 53.3 53.3 57.3 53.3 53.3 61.3 56.3 56.3

Daegu

LN2 49.3 50.7 50.7 58.8 61.2 61.2 65.8 69.1 69.2 72.9 77.2 77.2
GAM2 49.3 51.0 51.0 57.3 60.1 60.0 62.9 66.4 66.4 68.1 72.5 72.4
GEV 49.7 50.0 50.1 61.5 61.4 61.3 71.2 70.4 70.3 81.5 79.9 79.7
GUM 54.9 45.6 45.6 60.7 48.6 48.6 64.2 50.4 50.4 67.0 51.9 51.9

Busan

LN2 69.0 64.1 64.1 86.6 77.6 77.4 100.2 87.7 87.5 114.3 98.0 97.7
GAM2 65.4 64.9 64.9 77.7 76.8 76.8 86.4 85.1 85.2 94.7 93.1 93.2
GEV 64.1 64.7 64.7 75.3 76.0 76.0 83.0 83.8 83.7 90.3 91.1 90.9
GUM 66.2 59.2 59.2 72.6 63.5 63.5 72.6 63.5 63.5 79.4 68.1 68.1

C. Generalized Extreme Value (GEV) and
Gumbel (GUM) Distribution

The PDF and CDF of the GEV for a random variable 𝑥 are
expressed as follows:

𝑓 (𝑥) =
1

𝛼
[1 − 𝛽(

𝑥 − 𝑥0

𝛼
)]

(1/𝛽)−1

𝐹 (𝑥)

𝐹 (𝑥) = exp{−[1 − 𝛽(
𝑥 − 𝑥0

𝛼
)]

1/𝛽

} ,

(C.1)

where 𝛼, 𝛽, and 𝑥0 are the scale, shape, and location
parameter, respectively. 𝛽 plays an important role such that if
𝛽 = 0, the distribution tends to resemble a type-1 or Gumbel
distribution; if 𝛽 < 0, the resulting distribution is type-2
or Log-Gumbel distribution; and if 𝛽 > 0, it is a type-3
distribution or Weibull distribution. The quantile functions
for GEV and Gumbel corresponding to the non-exceedance
probability q are given in the following:

𝑥𝑇 = 𝑥0 +
𝛼

𝛽
{1 − [−𝑙𝑛 (1 −

1

𝑇
)]

𝛽

} for GEV,

𝑥𝑇 = 𝑥0 − 𝛼 ln [− ln(1 −
1

𝑇
)] for Gumbel,

(C.2)

where 𝑥𝑇 is a quantile of return period 𝑇 for GEV and
Gumbel.
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