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We establish a generalized nonlinear discrete inequality of product form, which includes both nonconstant terms outside the
sums and composite functions of nonlinear function and unknown function without assumption of monotonicity. Upper bound
estimations of unknown functions are given by technique of change of variable, amplification method, difference and summation,
inverse function, and the dialectical relationship between constants and variables. Using our result we can solve both the discrete
inequality in Pachpatte (1995). Our result can be used as tools in the study of difference equations of product form.

1. Introduction

Being an important tool in the study of existence, uniqueness,
boundedness, stability, and other qualitative properties of
solutions of differential equations and integral equations,
various generalizations of Gronwall inequalities [1, 2] and
their applications have attracted great interests ofmanymath-
ematicians (such as [3–6]). Some recent works can be found,
for example, in [7–10] and some references therein. Along
with the development of the theory of integral inequalities
and the theory of difference equations, more attention is
paid to some discrete versions of Gronwall-Bellman type
inequalities (such as [3, 4, 11–13]). Some recent works can be
found, for example, in [14–24] and some references therein.

Pachpatte [4] obtained the explicit bound to the unknown
function of the following sum-difference inequality:
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Pachpatte [3] obtained the estimation of the unknown func-
tion of the following inequality:
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Then, the estimation can be used to study the boundedness,
asymptotic behavior, and slow growth of the solutions of the
sum-difference equation:
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However, the bound given on such inequalities in [3, 4] is
not directly applicable in the study of certain sum-difference
equations. It is desirable to establish new inequalities of the
above type, which can be usedmore effectively in the study of
certain classes of sum-difference equations of product form.

In this paper, we establish a new integral inequality of
product form
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where 𝑝
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(𝑖 = 1, 2) may not be monotone. For 𝜑
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two functions; the second possesses stronger monotonicity
than the first. We can demonstrate that inequalities (1) and
(2), considered in [3, 4], respectively, can also be solved with
our result. Finally, we expound that we can give estimation
of solutions of a class of sum-difference equations of product
form.

2. Main Result and Proof

In this section, we proceed to solve the discrete inequality
(4) and present explicit bounds on the embedded unknown
function. Let N

0
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where 𝑞
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where 𝑊−1
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denote the inverse function of 𝑊
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,

respectively.

Theorem 1. Let 𝑓, 𝑔 be nonnegative and given functions on
N
0
. Suppose that 𝑢 is a nonnegative and unknown function.

Then, the discrete inequality (4) gives

𝑢 (𝑛) ≤ 𝑊
−1

1
(𝑊
−1

2
(𝑊
−1

3
(𝐴 (𝑛) + 𝐵 (𝑛)))) , ∀𝑛 ∈ N

𝑏

0
,

(12)

where𝑊
1
,𝑊
2
,𝑊
3
are defined by (9), (10), and (11), respectively,

𝑊
−1

1
, 𝑊−1
2
, 𝑊−1
3

denote the inverse functions of 𝑊
1
, 𝑊
2
, 𝑊
3
,

respectively,

𝐴 (𝑛) = 𝑊
3
(𝑊
2
(𝑊
1
(𝑞
1
(𝑛) 𝑞
2
(𝑛)) +

𝑛−1

∑

𝑡=0

𝑞
2
(𝑛) 𝑔
1
(𝑛, 𝑡))

+

𝑛−1

∑

𝑠=0

𝑞
1
(𝑛) 𝑔
2
(𝑛, 𝑡)) ,

𝐵 (𝑛) =

𝑛−1

∑

𝑡=0

(𝑔
2
(𝑛, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑛, 𝑠) + 𝑔

1
(𝑛, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑛, 𝑠)) ,

(13)

and 𝑏 is the largest natural number such that
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Proof. Using (5), (6), (7), and (8), we observe that
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Using the difference formula
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for all 𝑛 ∈ N𝑇
0
. By setting 𝑛 = 𝑡 in (22) and substituting 𝑡 =
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0
, and (23) is equivalent to

V (𝑛) ≤ 𝑊−1
1
(𝑥 (𝑛)) , ∀𝑛 ∈ N

𝑇

0
. (25)

From (24), we obtain

Δ𝑥 (𝑛) = 𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑛)

𝑤
2
(V (𝑛))

𝑤
1
(V (𝑛))

+ (𝑔
2
(𝑇, 𝑛)

𝑛

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑛)

𝑛−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))𝑤

2
(V (𝑛))

≤ 𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑛)

𝑤
2
(𝑊
−1

1
(𝑥 (𝑛)))

𝑤
1
(𝑊
−1

1
(𝑥 (𝑛)))

+ (𝑔
2
(𝑇, 𝑛)

𝑛

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑛)

𝑛−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))𝑤

2
(𝑊
−1

1
(𝑥 (𝑛))) ,

∀𝑛 ∈ N
𝑇

0
.

(26)

From (26), we have

𝑤
1
(𝑊
−1

1
(𝑥 (𝑛))) Δ𝑥 (𝑛)

𝑤
2
(𝑊
−1

1
(𝑥 (𝑛)))

≤ 𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑛)

+ (𝑔
2
(𝑇, 𝑛)

𝑛

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑛)

𝑛−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))𝑤

1
(𝑊
−1

1
(𝑥 (𝑛))) ,

∀𝑛 ∈ N
𝑇

0
.

(27)

Once again, performing the same procedure as in (21), (22),
and (23), (27) gives

𝑊
2
(𝑥 (𝑛)) ≤ 𝑊

2
(𝑥 (0)) +

𝑛−1

∑

𝑠=0

𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑡)

+

𝑛−1

∑

𝑠=0

(𝑔
2
(𝑇, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))

× 𝑤
1
(𝑊
−1

1
(𝑥 (𝑡)))
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≤ 𝑊
2
(𝑥 (0)) +

𝑇−1

∑

𝑠=0

𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑡)

+

𝑛−1

∑

𝑠=0

(𝑔
2
(𝑇, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))

× 𝑤
1
(𝑊
−1

1
(𝑥 (𝑡))) , ∀𝑛 ∈ N

𝑇

0
,

(28)

where𝑊
2
is defined by (10). Let 𝑧(𝑛) denote the function on

the right-hand side of (28); namely,

𝑧 (𝑛) = 𝑊
2
(𝑥 (0)) +

𝑇−1

∑

𝑠=0

𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑡)

+

𝑛−1

∑

𝑠=0

(𝑔
2
(𝑇, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))𝑤

1
(𝑊
−1

1
(𝑥 (𝑡))) ,

∀𝑛 ∈ N
𝑇

0
.

(29)

Then 𝑧(0) = 𝑊
2
(𝑥(0))+∑

𝑇−1

𝑠=0
𝑞
1
(𝑇)𝑔
2
(𝑇, 𝑡), 𝑧 is a nonnegative

and nondecreasing function on N𝑇
0
, and (28) is equivalent to

𝑥 (𝑛) ≤ 𝑊
−1

2
(𝑧 (𝑛)) , ∀𝑛 ∈ N

𝑇

0
. (30)

From (29) and (30), we obtain

Δ𝑧 (𝑛) = (𝑔
2
(𝑇, 𝑛)

𝑛

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑛)

𝑛−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))𝑤

1
(𝑊
−1

1
(𝑥 (𝑛)))

≤ (𝑔
2
(𝑇, 𝑛)

𝑛

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑛)

𝑛−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))𝑤

1
(𝑊
−1

1
(𝑊
−1

2
(𝑧 (𝑛)))) ,

(31)

for all 𝑛 ∈ N𝑇
0
. From (31), we have

Δ𝑧 (𝑛)

𝑤
1
(𝑊
−1

1
(𝑊
−1

2
(𝑧 (𝑛))))

≤ 𝑔
2
(𝑇, 𝑛)

𝑛

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+ 𝑔
1
(𝑇, 𝑛)

𝑛−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠) ,

∀𝑛 ∈ N
𝑇

0
.

(32)

Once again, performing the same procedure as in (21), (22),
and (23), (32) gives

𝑊
3
(𝑧 (𝑛)) ≤ 𝑊

3
(𝑧 (0))

+

𝑛−1

∑

𝑡=0

(𝑔
2
(𝑇, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠)) , ∀𝑛 ∈ N

𝑇

0
.

(33)

Using (17), (25), and (30), from (33) we have

𝑢 (𝑛)

≤ V (𝑛) ≤ 𝑊−1
1
(𝑥 (𝑛)) ≤ 𝑊

−1

1
(𝑊
−1

2
(𝑧 (𝑛)))

≤ 𝑊
−1

1
(𝑊
−1

2
(𝑊
−1

3
(𝑊
3
(𝑧 (0))

+

𝑛−1

∑

𝑡=0

(𝑔
2
(𝑇, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠)))))

≤ 𝑊
−1

1
(𝑊
−1

2
(𝑊
−1

3
(𝑊
3
(𝑊
2
(𝑥 (0))

+

𝑇−1

∑

𝑠=0

𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑡))

+

𝑛−1

∑

𝑡=0

(𝑔
2
(𝑇, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠)))))

≤ 𝑊
−1

1
(𝑊
−1

2
(𝑊
−1

3
(𝑊
3
(𝑊
2
(𝑊
1
(𝑞
1
(𝑇) 𝑞
2
(𝑇))

+

𝑇−1

∑

𝑡=0

𝑞
2
(𝑇) 𝑔
1
(𝑇, 𝑡))

+

𝑇−1

∑

𝑠=0

𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑡))

+

𝑛−1

∑

𝑡=0

(𝑔
2
(𝑇, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))))) ,

∀𝑛 ∈ N
𝑇

0
.

(34)
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As 𝑛 = 𝑇, (34) yields

𝑢 (𝑇)

≤ 𝑊
−1

1
(𝑊
−1

2
(𝑊
−1

3
(𝑊
3
(𝑊
2
(𝑊
1
(𝑞
1
(𝑇) 𝑞
2
(𝑇))

+

𝑇−1

∑

𝑡=0

𝑞
2
(𝑇) 𝑔
1
(𝑇, 𝑡))

+

𝑇−1

∑

𝑠=0

𝑞
1
(𝑇) 𝑔
2
(𝑇, 𝑡))

+

𝑇−1

∑

𝑡=0

(𝑔
2
(𝑇, 𝑡)

𝑡

∑

𝑠=0

𝑔
1
(𝑇, 𝑠)

+𝑔
1
(𝑇, 𝑡)

𝑡−1

∑

𝑠=0

𝑔
2
(𝑇, 𝑠))))) .

(35)

Since 𝑇 ∈ N, and 𝑇 ≤ 𝑏 is chosen arbitrarily in (35),
the estimation (12) is derived. This completes the proof of
Theorem 1.

3. Application

We consider a sum-difference equation of product form

𝑥 (𝑛) = (𝑎 (𝑛) +

𝑛−1

∑

𝑠=0

𝑓 (𝑛, 𝑠) 𝜑
1
(𝑥 (𝑠)))

× (𝑏 (𝑛) +

𝑛−1

∑

𝑠=0

𝑔 (𝑛, 𝑠) 𝜑
2
(𝑥 (𝑠))) ,

∀𝑛 ∈ N
0
.

(36)

From (36), we have

|𝑥 (𝑛)| ≤ (𝑎 (𝑛) +

𝑛−1

∑

𝑠=0

𝑓 (𝑛, 𝑠) 𝜑
1
(|𝑥 (𝑠)|))

× (𝑏 (𝑛) +

𝑛−1

∑

𝑠=0

𝑔 (𝑛, 𝑠) 𝜑
2
(|𝑥 (𝑠)|)) ,

∀𝑛 ∈ N
0
.

(37)

Let 𝑢(𝑛) = |𝑥(𝑛)|, 𝑝
1
(𝑛) = |𝑎(𝑛)|, 𝑝

2
(𝑛) = |𝑏(𝑛)|, 𝑓

1
(𝑛, 𝑠) =

|𝑓(𝑛, 𝑠)|, and 𝑓
2
(𝑛, 𝑠) = |𝑔(𝑛, 𝑠)| in (37); then (37) is the

inequality of the form (4). Applying our result we get the
estimation of solution of the sum-difference equations of
product form (36).
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