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An iterative algorithm is proposed for solving the least-squares problem of a general matrix equation ∑𝑡
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𝑖
= 𝐹, where 𝑍

𝑖

(𝑖 = 1, 2, . . . , 𝑡) are to be determined centro-symmetric matrices with given central principal submatrices. For any initial iterative
matrices, we show that the least-squares solution can be derived by this method within finite iteration steps in the absence of
roundoff errors. Meanwhile, the unique optimal approximation solution pair for given matrices 𝑍

𝑖
can also be obtained by the

least-norm least-squares solution of matrix equation ∑𝑡
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𝑖
𝑁

𝑖
. The given

numerical examples illustrate the efficiency of this algorithm.

1. Introduction

Throughout this paper, we denote the set of all 𝑚 × 𝑛 real
matrices by 𝑅𝑚×𝑛. The symbol 𝐴𝑇 represents the transpose
of matrix 𝐴. 𝐽

𝑛
and 𝐼

𝑛
stand for the reverse unit matrix,

and identity matrix, respectively. For 𝐴, 𝐵 ∈ 𝑅𝑚×𝑛, the
inner product of matrices 𝐴 and 𝐵 is defined by ⟨𝐴, 𝐵⟩ =
trace (𝐵𝑇𝐴), which leads to the Frobenius norm, that is, ‖𝐴‖ =
√⟨𝐴,𝐴⟩.

A matrix 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅𝑛×𝑛, is called centro-symmetric

(centro-skew symmetric) if and only if

𝑎
𝑖𝑗
= 𝑎

𝑛−𝑖+1,𝑛−𝑗+1
(𝑎

𝑖𝑗
= −𝑎

𝑛−𝑖+1,𝑛−𝑗+1
) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

(1)

which can also be characterized equivalently by 𝐽
𝑛
𝐴𝐽

𝑛
=

𝐴 (𝐽
𝑛
𝐴𝐽

𝑛
= −𝐴). The set of all centro-symmetric (centro-

skew symmetric) matrices is denoted by CS𝑅𝑛×𝑛 (CAS𝑅𝑛×𝑛).
This kind of matrices plays an important role in many
applications (see, e.g., [1–4]), and has been frequently and
widely investigated (see, e.g., [5–7]) by using generalized
inverse, generalized singular value decomposition (GSVD)
[8], and so forth. For more, we refer the readers to [9–16] and
therein.

We firstly introduce the concept of the central principal
submatrix which is originally put forward by Yin [17].

Definition 1. Let 𝐴 ∈ 𝑅𝑛×𝑛, if 𝑛 − 𝑝 is even, a 𝑝 × 𝑝 central
principal submatrix of 𝐴, denoted by 𝐴[𝑝], is obtained by
deleting the first and last (𝑛 − 𝑝)/2 rows and columns of 𝐴,
namely, 𝐴[𝑝] = (𝑎

𝑖𝑗
)
(𝑛−𝑝)/2≤𝑖,𝑗≤𝑛−(𝑛−𝑝)/2

.

Evidently, a matrix with odd (even) order only has central
principal submatrices of odd (even) order.

Now, the first problem to be studied here can be stated as
follows.

Problem 2. Given𝑀
𝑖
∈ 𝑅𝑚×𝑝𝑖 ,𝑁

𝑖
∈ 𝑅𝑝𝑖×𝑛 andX

𝑖
∈ CS𝑅𝑞𝑖×𝑞𝑖

(𝑖 = 1, 2, . . . , 𝑡), 𝐹 ∈ 𝑅𝑚×𝑛. Find the least-squares solution
𝑍

𝑖
∈ Π

𝑖
of matrix equation

𝑀
1
𝑍

1
𝑁

1
+𝑀

2
𝑍

2
𝑁

2
+ ⋅ ⋅ ⋅ + 𝑀

𝑡
𝑍

𝑡
𝑁

𝑡
= 𝐹, (2)

in which Π
𝑖
= {𝑍

𝑖
| 𝑍

𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖 with 𝑍

𝑖
[𝑞

𝑖
] = X

𝑖
}, 𝑝

𝑖
> 𝑞

𝑖
,

𝑖 ∈ Γ ≜ {1, 2, . . . , 𝑡}, and 𝑍
𝑖
[𝑞

𝑖
] represents the 𝑞

𝑖
× 𝑞

𝑖
central

principal submatrix of 𝑍
𝑖
.

Problem2 is the submatrix constrained problemofmatrix
equation (2), which originally arises from a practical sub-
system expansion problem, and has been deeply investigated
(see, e.g., [7, 18–22]). In these literatures, the generalized
inverses or some complicated matrix decompositions such as
canonical correlation decomposition (CCD) [23] and GSVD
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are employed. However, it is almost impossible to solve (2)
by the above methods. The iterative method is an efficient
approach. Recently, kinds of iteration methods have been
constructed: Zhou and Duan [24] studied the generalized
Sylvester matrix equation

𝜙

∑
𝑖=0

𝐴
𝑖
𝑋𝐹𝑖 +

𝜓

∑
𝑘=0

𝐵
𝑘
𝑌𝐹𝑘 = 𝑅 (3)

by so-called generalized Sylvester mapping that has pretty
properties. Wu et al. [25] presented an finite iterative method
for a class of complex matrix equations including conjugate
and transpose of unknown solution. Motivated by the well-
known Jacobi andGauss-Seidel iterationsmethods, Ding and
Chen, in [26], proposed a general family of iterative methods
to solve linear matrix equations; meanwhile, these methods
were also extended to solve the following coupled Sylvester
matrix equations

𝑝

∑
𝑗=1

𝐴
𝑖𝑗
𝑋

𝑗
𝐵
𝑖𝑗
= 𝐶

𝑖𝑗
, 𝑖 = 1, 2, . . . . (4)

Although these iterative algorithms are efficient, there still
exist some handicaps when meeting the constrained matrix
equation problem (i.e., to find the solution ofmatrix equation
in some matrices sets with specifical structure, for instance,
symmetric matrices, centro-symmetric matrices, and bi-
symmetric matrices sets) and the submatrix constrained
problem, since these methods cannot keep the special prop-
erties of the unknown matrix in the iterative process. Based
on the classical conjugate gradient (CG) method, Peng et al.
[27] gave an iterativemethod to find the bisymmetric solution
of matrix equation (2). Similar method was constructed to
solve matrix equations (4) with generalized bisymmetric 𝑋

𝑗

in [28]. In particular, Li et al. [29] proposed an elegant
algorithm for solving the generalized Sylvester (Lyapunov)
matrix equation 𝐴𝑋𝐵 + 𝐶𝑌𝐷 = 𝐸 with bisymmetric
𝑋 and symmetric 𝑌, the two unknown matrices include
the given central principal submatrix and leading principal
submatrix, respectively. This method shunned the difficulties
in numerical instability and computational complexity, and
solved the problem, completely. By borrowing the thinking of
this iterative algorithm, we will solve Problem 2 by iteration
method.

The second problem to be considered is the optimal
approximation problem.

Problem 3. Let 𝑆
𝐸
be the solutions set of Problem 2. For given

matrices 𝑍
𝑖
∈ 𝑅𝑝𝑖×𝑝𝑖 , find 𝑍

𝑖
such that

𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑍𝑖
− 𝑍

𝑖

󵄩󵄩󵄩󵄩󵄩
2

= min
(𝑍1 ,𝑍2 ,...,𝑍𝑡)∈𝑆𝐸

𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑍𝑖
− 𝑍

𝑖

󵄩󵄩󵄩󵄩󵄩
2

. (5)

This problem occurs frequently in experimental design
(see for instance [30]). Here, the preliminary estimation𝑍

𝑖
of

the unknown matrix 𝑍
𝑖
can be obtained from experiments,

but it may not satisfy the structural requirement and/or
spectral requirement. The best estimation of 𝑍

𝑖
, is the matrix

𝑍
𝑖
that satisfies both requirements, which is the optimal

approximation of 𝑍
𝑖
(see, e.g., [31, 32]). About this problem,

we also refer the authors to [9–11, 13, 15, 16, 20–23, 27–29, 33–
36] and therein.

The rest of this paper is outlined as follows. In Section 2,
an iterative algorithm will be proposed to solve Problem 2,
and the properties of which will be investigated. In Section 3,
we will consider the optimal approximation Problem 3 by
using the iterative algorithm. In Section 4, some numerical
examples will be given to verify the efficiency of this algo-
rithm.

2. The Algorithm for Problem 2 and Its
Properties

According to the definition of centro-symmetric matrix,
when 𝑛 − 𝑞 is even, a centro-symmetric matrix 𝑍 ∈ CS𝑅𝑛×𝑛

can be divided into smaller submatrices, namely,

𝑍 =(

𝑍
11

𝑍
12

𝑍
13

𝑍
21

𝑍
22

𝐽
𝑞
𝑍

21
𝐽
(𝑛−𝑞)/2

𝐽
(𝑛−𝑞)/2

𝑍
13
𝐽
(𝑛−𝑞)/2

𝐽
(𝑛−𝑞)/2

𝑍
12
𝐽
𝑞
𝐽
(𝑛−𝑞)/2

𝑍
11
𝐽
(𝑛−𝑞)/2

), (6)

where 𝑍
11
∈ 𝑅(𝑛−𝑞)/2×(𝑛−𝑞)/2, 𝑍

12
∈ 𝑅(𝑛−𝑞)/2×𝑞, 𝑍

13
∈

𝑅(𝑛−𝑞)/2×(𝑛−𝑞)/2, 𝑍
21
∈ 𝑅𝑞×(𝑛−𝑞)/2, and 𝑍

22
∈ CS𝑅𝑞×𝑞.

Now, for some fixed positive integer 𝑖 ∈ Γ, we define two
matrix sets.

CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
= {𝑍

𝑖
| 𝑍

𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖 with 𝑍

𝑖
[𝑞

𝑖
] = 0} ,

CS𝑅𝑝𝑖×𝑝𝑖

⬦,𝑞𝑖
=
{
{
{

𝑍
𝑖
| 𝑍

𝑖
= (
0 0 0
0 𝑋

𝑖
0

0 0 0
) ∈ CS𝑅𝑝𝑖×𝑝𝑖 ,

𝑋
𝑖
= 𝑍

𝑖
[𝑞

𝑖
] ∈ CS𝑅𝑞𝑖×𝑞𝑖

}
}
}

.

(7)

It is clear that both CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
and CS𝑅𝑝𝑖×𝑝𝑖

⬦,𝑞𝑖
are linear

subspaces of 𝑅𝑝𝑖×𝑝𝑖 .
In addition, for any matrix 𝑋 ∈ 𝑅𝑝𝑖×𝑝𝑖 , it has uniquely

decomposition in direct sum, that is,𝑋 = 𝑋
1
⊕𝑋

2
, here𝑋

1
=

(𝑋 + 𝐽
𝑝𝑖
𝑋𝐽

𝑝𝑖
)/2, 𝑋

2
= (𝑋 − 𝐽

𝑝𝑖
𝑋𝐽

𝑝𝑖
)/2. Furthermore, 𝑋

1
=

𝑋
11
+𝑋

12
is also the direct sum decomposition of𝑋

1
if𝑋

11
∈

CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
, 𝑍

12
∈ CS𝑅𝑝𝑖×𝑝𝑖

⬦,𝑞𝑖
, since ⟨𝑋

11
, 𝑋

12
⟩ = 0. Hence, we

obtain the following.

Lemma4. Consider𝑅𝑝𝑖×𝑝𝑖 = CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
⊕CS𝑅𝑝𝑖×𝑝𝑖

⬦,𝑞𝑖
⊕CAS𝑅𝑝𝑖×𝑝𝑖 .

Lemma 4 reveals that any matrix 𝑊 ∈ 𝑅𝑝𝑖×𝑝𝑖 can be
uniquely written as𝑊 = 𝑊

1
+𝑊

2
+𝑊

3
, where𝑊

1
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
,

𝑊
2
∈ CS𝑅𝑝𝑖×𝑝𝑖

⬦,𝑞𝑖
, 𝑊

3
∈ CAS𝑅𝑝𝑖×𝑝𝑖 . Then, we can define the

following linear projection operators:

L
𝑖
: 𝑅𝑝𝑖×𝑝𝑖 󳨀→ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖

𝑊 󳨀→ 𝑊
1

(8)

for 𝑖 ∈ Γ.
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According to the definition ofL
𝑖
, if𝑊 ∈ 𝑅𝑝𝑖×𝑝𝑖 and 𝑌 ∈

CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
, we have

⟨𝑊,𝑌⟩ = ⟨𝑊
1
, 𝑌⟩ = ⟨L

𝑖
(𝑊) , 𝑌⟩ . (9)

This property will be employed frequently in the residual
context.

The following theorem is essential for solving Problem
2, which transforms equivalently Problem 2 into solving the
least-square problem of another matrix equation.

Theorem 5. Any solution group of Problem 2 can be obtained
by

(𝑍
1
, 𝑍

2
, . . . , 𝑍

𝑡
) = (𝑌

1
+ 𝑍⬦

1
, 𝑌

2
+ 𝑍⬦

2
, . . . , 𝑌

𝑡
+ 𝑍⬦

𝑡
) , (10)

where 𝑌
𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
is the least-squares solution of matrix

equation

𝑀
1
𝑌
1
𝑁

1
+𝑀

2
𝑌
2
𝑁

2
+ ⋅ ⋅ ⋅ + 𝑀

𝑡
𝑌
𝑡
𝑁

𝑡
= 𝐺,

𝐺 = 𝐹 − (𝑀
1
𝑍⬦

1
𝑁

1
+𝑀

2
𝑍⬦

2
𝑁

2
+ ⋅ ⋅ ⋅ + 𝑀

𝑡
𝑍⬦

𝑡
𝑁

𝑡
) ,

𝑍⬦

𝑖
= (
0 0 0
0 X

𝑖
0

0 0 0
) ∈ CS𝑅𝑝𝑖×𝑝𝑖

⬦,𝑞𝑖
,

(11)

X
𝑖
∈ CS𝑅𝑞𝑖×𝑞𝑖 is the given central principal submatrix of 𝑍

𝑖
in

Problem 2.

Proof. Noting that the definition of CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
, we have

min
𝑍𝑖∈Π𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡

∑
𝑖=1

𝑀
𝑖
𝑍

𝑖
𝑁

𝑖
− 𝐹

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⇐⇒ min
𝑌𝑖∈CS𝑅

𝑝𝑖×𝑝𝑖
⋆,𝑞𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡

∑
𝑖=1

𝑀
𝑖
(𝑌

𝑖
+ 𝑍

𝑖
)𝑁

𝑖
− 𝐹

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⇐⇒ min
𝑌𝑖∈CS𝑅

𝑝𝑖×𝑝𝑖
⋆,𝑞𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡

∑
𝑖=1

𝑀
𝑖
𝑌
𝑖
𝑁

𝑖
− 𝐺

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

(12)

The proof is completed.

Remark 6. It follows, from Theorem 5, that Problem 2 can
be solved completely by finding the least-squares solution of
matrix equations (11) in subspaces CS𝑅𝑝𝑖×𝑝𝑖

⬦,𝑞𝑖
.

In the next part of this section, we will establish an
iterative algorithm for (11) and analysis its properties. For the
convenience of expression, we define a matrix function
F (𝑍

1
, 𝑍

2
, . . . , 𝑍

𝑡
) = 𝑀

1
𝑍

1
𝑁

1
+𝑀

2
𝑍

2
𝑁

2
+ ⋅ ⋅ ⋅ + 𝑀

𝑡
𝑍

𝑡
𝑁

𝑡
,

(13)

then matrix equation (11) can be simplified as
F (𝑍

1
, 𝑍

2
, . . . , 𝑍

𝑡
) = 𝐺. (14)

Moreover, we can easily verify that

⟨𝑋,F (𝑍
1
, 𝑍

2
, . . . , 𝑍

𝑡
)⟩ =

𝑡

∑
𝑖=1

⟨𝑀𝑇

𝑖
𝑋𝑁𝑇

𝑖
, 𝑍

𝑖
⟩ (15)

holds for arbitrary𝑋 ∈ 𝑅𝑚×𝑛.

The iterative algorithm for the least squares problem of
matrix equations (11) can be expressed as follows.

Algorithm 7. Consider the following.
Step 1. Let 𝑀

𝑖
∈ 𝑅𝑚×𝑝𝑖 , 𝑁

𝑖
∈ 𝑅𝑝𝑖×𝑛, 𝐹 ∈ 𝑅𝑚×𝑛 and X

𝑖
∈

CS𝑅𝑞𝑖×𝑞𝑖 for 𝑖 ∈ Γ.
Input arbitrary matrices 𝑌(0)

𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
.

Step 2. Calculate

𝑅
0
= 𝐺 −F (𝑌(0)

1
, 𝑌(0)

2
, . . . , 𝑌(0)

𝑡
) ,

𝑃(0)
𝑖
=L

𝑖
(𝑀𝑇

𝑖
𝑅

0
𝑁𝑇

𝑖
) , 𝑄(0)

𝑖
= 𝑃(0)

𝑖
,

𝑘 = 0.

(16)

Step 3. Calculate

𝑌(𝑘+1)

𝑖
= 𝑌(𝑘)

𝑖
+ 𝛼

𝑘
𝑄(𝑘)

𝑖
,

𝛼
𝑘
=

∑
𝑡

𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑘)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩󵄩F (𝑄
(𝑘)

1
, 𝑄(𝑘)

2
, . . . , 𝑄(𝑘)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2
.

(17)

Step 4. Calculate

𝑅
𝑘+1
= 𝐺 −F (𝑌(𝑘+1)

1
, 𝑌(𝑘+1)

2
, . . . , 𝑌(𝑘+1)

𝑡
)

= 𝑅
𝑘
− 𝛼

𝑘
F (𝑄(𝑘)

1
, 𝑄(𝑘)

2
, . . . , 𝑄(𝑘)

𝑡
) ,

𝑃(𝑘+1)
𝑖

=L
𝑖
(𝑀𝑇

𝑖
𝑅

𝑘+1
𝑁𝑇

𝑖
)

= 𝑃(𝑘)
𝑖
− 𝛼

𝑘
L

𝑖
(𝑀𝑇

𝑖
F (𝑄(𝑘)

1
, 𝑄(𝑘)

2
, . . . , 𝑄(𝑘)

𝑡
)𝑁𝑇

𝑖
) ,

𝑄(𝑘+1)

𝑖
= 𝑃(𝑘+1)

𝑖
+ 𝛽

𝑘
𝑄(𝑘)

𝑖
,

𝛽
𝑘
=
∑

𝑡

𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑘+1)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

∑
𝑡

𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑘)

𝑖

󵄩󵄩󵄩󵄩󵄩
2
.

(18)

Step 5. If ∑𝑡

𝑖=1
‖𝑃(𝑘)

𝑖
‖
2

= 0, stop. Otherwise, 𝑘 := 𝑘 + 1, go to
Step 3.

From Algorithm 7, we can see that 𝑌(𝑘)

𝑖
, 𝑃(𝑘)

𝑖
, 𝑄(𝑘)

𝑖
, ∈

CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
. In particular, (𝑌(𝑘)

1
, 𝑌(𝑘)

2
, . . . , 𝑌(𝑘)

𝑡
) is a least-squares

solution group belonging to matrix equation (11) if 𝑃(𝑘)
𝑖
= 0

for all 𝑖 ∈ Γ. The following lemma gives voice to the reason.

Lemma 8. If L
𝑖
(𝑀𝑇

𝑖
𝑅

𝑘
𝑁𝑇

𝑖
) = 0 (𝑖 = 1, 2, . . . , 𝑡) hold

simultaneously for some positive 𝑘, then (𝑌(𝑘)

1
, 𝑌(𝑘)

2
, . . . , 𝑌(𝑘)

𝑡
)

generated byAlgorithm 7 is a solution group ofmatrix equation
(11).

Proof. Let L = {𝐿 | 𝐿 = F(𝑌
𝑖
), 𝑌

𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
} and 𝐺 =

F(𝑌(𝑘)

𝑖
). Obviously,𝐺 ∈L.Then, from the ProjectTheorem,

(𝑌(𝑘)

1
, 𝑌(𝑘)

2
, . . . , 𝑌(𝑘)

𝑡
) is a least-square solution group of matrix

equation (11) if and only if 𝐺 − 𝐺 ⊥ L. That is to say, for
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any matrices 𝑌
𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
, noting that Lemma 4, we have

⟨𝐺 − 𝐺,F(𝑌
1
, 𝑌

2
, . . . , 𝑌

𝑡
)⟩ = 0, that is,

⟨𝐺 − 𝐺,F (𝑌
1
, 𝑌

2
, . . . , 𝑌

𝑡
)⟩ = ⟨𝑅

𝑘+1
,F (𝑌

1
, 𝑌

2
, . . . , 𝑌

𝑡
)⟩

=
𝑡

∑
𝑖=1

⟨𝑀𝑇

𝑖
𝑅

𝑘+1
𝑁𝑇

𝑖
, 𝑌

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨L
𝑖
(𝑀𝑇

𝑖
𝑅

𝑘+1
𝑁𝑇

i ) , 𝑌𝑖⟩= 0,

(19)

which completes the proof.

In addition, the sequences {𝑌(𝑙)

𝑖
}, {𝑃(𝑙)

𝑖
}, {𝑄(𝑙)

𝑖
} generated

by Algorithm 7 are self-orthogonal, that is, as follows.

Lemma 9. Suppose that the sequences {𝑌(𝑙)

𝑖
}, {𝑃(𝑙)

𝑖
}, {𝑄(𝑙)

𝑖
}

generated by Algorithm 7 not equal null for 𝑙 ≤ 𝑘, then

(1)
𝑡

∑
𝑖=1

⟨𝑃
(𝑗)

𝑖
, 𝑃(𝑙)

𝑖
⟩ = 0, (20)

(2)
𝑡

∑
𝑖=1

⟨𝑄
(𝑗)

𝑖
, 𝑃(𝑙)

𝑖
⟩ = 0, (21)

(3) ⟨F (𝑄
(𝑗)

1
, 𝑄

(𝑗)

2
, . . . , 𝑄

(𝑗)

𝑡
) ,F (𝑄(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
)⟩ = 0,

(22)

where 𝑗, 𝑙 = 1, 2, . . . , 𝑘, 𝑗 ̸= 𝑙 ≤ 𝑘.

Proof. In view of the symmetry of the inner product, we only
prove (20)–(22) when 𝑗 < 𝑙. According to Algorithm 7, when
𝑘 = 1, we have

𝑡

∑
𝑖=1

⟨𝑃(0)
𝑖
, 𝑃(1)

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨𝑃(0)
𝑖
, 𝑃(0)

𝑖
−𝛼

0
L

𝑖
𝑀𝑇

𝑖
(F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)𝑁𝑇

𝑖
)⟩

=
𝑡

∑
𝑖=1

[⟨𝑃(0)
𝑖
, 𝑃(0)

𝑖
⟩

−𝛼
0
⟨𝑃(0)

𝑖
,L

𝑖
𝑀𝑇

𝑖
(F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)𝑁𝑇

𝑖
)⟩]

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(0)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

− 𝛼
0

×
𝑡

∑
𝑖=1

⟨𝑃(0)
𝑖
,𝑀𝑇

𝑖
F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)𝑁𝑇

𝑖
⟩

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(0)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

− 𝛼
0

𝑡

∑
𝑖=1

⟨𝑀
𝑖
𝑃(0)
𝑖
𝑁

𝑖
,F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)⟩

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(0)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

− 𝛼
0

󵄩󵄩󵄩󵄩󵄩F (𝑄
(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

= 0,

(23)

which also deduces that

𝑡

∑
𝑖=1

⟨𝑄(0)

𝑖
, 𝑃(1)

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨𝑄(0)

𝑖
, 𝑃(0)

𝑖
− 𝛼

0
L

𝑖
(𝑀𝑇

𝑖
F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)𝑁𝑇

𝑖
)⟩

=
𝑡

∑
𝑖=1

⟨𝑄(0)

𝑖
, 𝑃(0)

𝑖
⟩ − 𝛼

0

×
𝑡

∑
𝑖=1

⟨𝑄(0)

𝑖
,𝑀𝑇

𝑖
F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)𝑁𝑇

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨𝑃(0)
𝑖
, 𝑃(0)

𝑖
⟩ − 𝛼

0

×
𝑡

∑
𝑖=1

⟨𝑀
𝑖
𝑄(0)

𝑖
𝑁

𝑖
,F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)⟩

= 0,

⟨F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
) ,F (𝑄(1)

1
, 𝑄(1)

2
, . . . , 𝑄(1)

𝑡
)⟩

= ⟨F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
) ,

𝑡

∑
𝑖=1

[𝑀
𝑖
(𝑃(1)

𝑖
+ 𝛽

0
𝑄(0)

𝑖
)𝑁

𝑖
]⟩

= ⟨F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
) ,F (𝑃(1)

1
, 𝑃(1)

2
, . . . , 𝑃(1)

𝑡
)⟩

+ 𝛽
0

󵄩󵄩󵄩󵄩󵄩F (𝑄
(0)

1
, . . . , 𝑄(0)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

=
1

𝛼
0

⟨𝑅
0
− 𝑅

1
,F (𝑃(1)

1
, 𝑃(1)

2
, . . . , 𝑃(1)

𝑡
)⟩

+ 𝛽
0

󵄩󵄩󵄩󵄩󵄩F (𝑄
(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

=
1

𝛼
0

[
𝑡

∑
𝑖=1

⟨𝑀𝑇

𝑖
𝑅

0
𝑁𝑇

𝑖
, 𝑃(1)

𝑖
⟩ −

𝑡

∑
𝑖=1

⟨𝑀𝑇

𝑖
𝑅

1
𝑁𝑇

𝑖
, 𝑃(1)

𝑖
⟩]

+ 𝛽
0

󵄩󵄩󵄩󵄩󵄩F (𝑄
(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

= −
1

𝛼
0

𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(1)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
0

󵄩󵄩󵄩󵄩󵄩F (𝑄
(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

= 0.

(24)



Journal of Applied Mathematics 5

Assume that (20), (21), and (22) hold for positive integer
𝑠 (< 𝑘), that is, for 𝑗 = 1, 2, . . . , 𝑠 − 1,

𝑡

∑
𝑖=1

⟨𝑃
(𝑗)

𝑖
, 𝑃(𝑠)

𝑖
⟩ = 0,

𝑡

∑
𝑖=1

⟨𝑄
(𝑗)

𝑖
, 𝑃(𝑠)

𝑖
⟩ = 0,

⟨F (𝑄
(𝑗)

1
, 𝑄

(𝑗)

2
, . . . , 𝑄

(𝑗)

𝑡
) ,F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)⟩ = 0.

(25)

Then, similar to the above proof, noting that the assumptions,
we have

𝑡

∑
𝑖=1

⟨𝑃
(𝑗)

𝑖
, 𝑃(𝑠+1)

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨𝑃
(𝑗)

𝑖
, 𝑃(𝑠)

𝑖
− 𝛼

𝑠
L

𝑖
(𝑀𝑇

𝑖
F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)𝑁𝑇

𝑖
)⟩

=
𝑡

∑
𝑖=1

⟨𝑃
(𝑗)

𝑖
, 𝑃(𝑠)

𝑖
⟩ − 𝛼

𝑠

×
𝑡

∑
𝑖=1

⟨𝑃
(𝑗)

𝑖
,L

𝑖
(𝑀𝑇

𝑖
F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)𝑁𝑇

𝑖
)⟩

= −𝛼
𝑠

𝑡

∑
𝑖=1

⟨𝑀
𝑖
𝑃

(𝑗)

𝑖
𝑁

𝑖
,F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)⟩

= −𝛼
𝑠

𝑡

∑
𝑖=1

⟨𝑀
𝑖
(𝑄

(𝑗)

𝑖
− 𝛽

𝑗−1
𝑄

𝑗−1,𝑖
)𝑁

𝑖
,

F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)⟩

= −𝛼
𝑠
⟨F (𝑄

(𝑗)

1
, 𝑄

(𝑗)

2
, . . . , 𝑄

(𝑗)

𝑡
) ,F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

t )⟩

+ 𝛼
𝑠
𝛽
𝑗−1
⟨F (𝑄

(𝑗−1)

1
, 𝑄

(𝑗−1)

2
, . . . , 𝑄

(𝑗−1)

𝑡
) ,

F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)⟩

= 0.

(26)

Furthermore,

𝑡

∑
𝑖=1

⟨𝑄
(𝑗)

𝑖
, 𝑃(𝑠+1)

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨𝑄
(𝑗)

𝑖
, 𝑃(𝑠)

𝑖
− 𝛼

𝑠
L

𝑖
(𝑀𝑇

𝑖
F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)𝑁𝑇

𝑖
)⟩

=
𝑡

∑
𝑖=1

⟨𝑃
(𝑗)

𝑖
, 𝑃(𝑠)

𝑖
⟩ − 𝛼

𝑠

×
𝑡

∑
𝑖=1

⟨𝑀
𝑖
𝑄

(𝑗)

𝑖
𝑁

𝑖
,F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)⟩

= 0,

⟨F (𝑄
(𝑗)

1
, 𝑄

(𝑗)

2
, . . . , 𝑄

(𝑗)

𝑡
) ,F (𝑄(𝑠+1)

1
, 𝑄(𝑠+1)

2
, . . . , 𝑄(𝑠+1)

𝑡
)⟩

= ⟨F (𝑄
(𝑗)

1
, 𝑄

(𝑗)

2
, . . . , 𝑄

(𝑗)

𝑡
) ,F (𝑃(𝑠+1)

1
, 𝑃(𝑠+1)

2
, . . . , 𝑃(𝑠+1)

𝑡
)⟩

+ 𝛽
𝑠
⟨F (𝑄

(𝑗)

1
, 𝑄

(𝑗)

2
, . . . , 𝑄

(𝑗)

𝑡
) ,F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)⟩

=
1

𝛼
𝑗

⟨𝑅
𝑗
− 𝑅

𝑗+1
,F (𝑃(𝑠+1)

1
, 𝑃(𝑠+1)

2
, . . . , 𝑃(𝑠+1)

𝑡
)⟩

=
1

𝛼
𝑗

[
𝑡

∑
𝑖=1

⟨𝑀𝑇

𝑖
𝑅

𝑗
𝑁𝑇

𝑖
, 𝑃(𝑠+1)

𝑖
⟩ −

𝑡

∑
𝑖=1

⟨𝑀𝑇

𝑖
𝑅

𝑗+1
𝑁𝑇

𝑖
, 𝑃(𝑠+1)

𝑖
⟩]

=
1

𝛼
𝑗

[
𝑡

∑
𝑖=1

⟨𝑃
(𝑗)

𝑖
, 𝑃(𝑠+1)

𝑖
⟩ −

𝑡

∑
𝑖=1

⟨𝑃
𝑗+1,𝑖
, 𝑃(𝑠+1)

𝑖
⟩]

= 0.

(27)

The last equal sign “=” holds due to∑𝑡

𝑖=1
⟨𝑃(𝑠)

𝑖
, 𝑃(𝑠+1)

𝑖
⟩ = 0.

In fact, from the hypothesis, we deduce

𝑡

∑
𝑖=1

⟨𝑃(𝑠)
𝑖
, 𝑃(𝑠+1)

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨𝑃(𝑠)
𝑖
, 𝑃(𝑠)

𝑖
− 𝛼

𝑠
L

𝑖
(𝑀𝑇

𝑖
F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)𝑁𝑇

𝑖
)⟩

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑠)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

−𝛼
𝑠

𝑡

∑
𝑖=1

⟨𝑀
𝑖
(𝑄(𝑠)

𝑖
−𝛽

𝑠−1
𝑄

(𝑗−1)

𝑖
)𝑁

𝑖
,F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)⟩

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑠)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

− 𝛼
𝑠

󵄩󵄩󵄩󵄩󵄩F (𝑄
(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

+ 𝛼
𝑠
𝛽
𝑠−1
⟨F (𝑄(𝑠−1)

1
, 𝑄(𝑠−1)

2
, . . . , 𝑄(𝑠−1)

𝑡
) ,

F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)⟩

= 0.

(28)

Moreover,

𝑡

∑
𝑖=1

⟨𝑄(𝑠)

𝑖
, 𝑃(𝑠)

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨𝑃(𝑠)
𝑖
+ 𝛽

𝑠−1
𝑄(𝑠−1)

𝑖
, 𝑃(𝑠)

𝑖
⟩
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=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑠)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑠−1

𝑡

∑
𝑖=1

⟨𝑄(𝑠−1)

𝑖
, 𝑃(𝑠)

𝑖
⟩

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑠)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

.

(29)

It follows from (29) that

𝑡

∑
𝑖=1

⟨𝑄(𝑠)

𝑖
, 𝑃(𝑠+1)

𝑖
⟩

=
𝑡

∑
𝑖=1

⟨𝑄(𝑠)

𝑖
, 𝑃(𝑠)

𝑖
− 𝛼

𝑠
L

𝑖
(𝑀𝑇

𝑖
F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
) 𝑁𝑇

𝑖
⟩

=
𝑡

∑
𝑖=1

[⟨𝑄(𝑠)

𝑖
, 𝑃(𝑠)

𝑖
⟩

− 𝛼
𝑠
⟨𝑄(𝑠)

𝑖
,𝑀𝑇

𝑖
F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
)𝑁𝑇

𝑖
⟩]

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑠)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

− 𝛼
𝑠

󵄩󵄩󵄩󵄩󵄩F (𝑄
(𝑠+1)

1
, 𝑄(𝑠+1)

2
, . . . , 𝑄(𝑠+1)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

= 0,

⟨F (𝑄(𝑠)

1
, 𝑄(𝑠)

2
, . . . , 𝑄(𝑠)

𝑡
) ,F (𝑄(𝑠+1)

1
, 𝑄(𝑠+1)

2
, . . . , 𝑄(𝑠+1)

𝑡
)⟩

= ⟨F (𝑄(𝑠)

1
, . . . , 𝑄(𝑠)

𝑡
) ,F (𝑃(𝑠+1)

1
, 𝑃(𝑠+1)

2
, . . . , 𝑃(𝑠+1)

𝑡
)⟩

+ 𝛽
𝑠

󵄩󵄩󵄩󵄩󵄩F (𝑄
(𝑠)

1
, . . . , 𝑄(𝑠)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

=
1

𝛼
𝑠

⟨𝑅
𝑠
− 𝑅

𝑠+1
,F (𝑃(𝑠+1)

1
, 𝑃(𝑠+1)

2
, . . . , 𝑃(𝑠+1)

𝑡
)⟩

+ 𝛽
𝑠

𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑀𝑖
𝑄(𝑠)

𝑖
𝑁

𝑖

󵄩󵄩󵄩󵄩󵄩
2

= −
1

𝛼
𝑠

𝑡

∑
𝑖=1

⟨𝑀𝑇

𝑖
𝑅

𝑠+1
𝑁𝑇

𝑖
, 𝑃(𝑠+1)

𝑖
⟩

+ 𝛽
𝑠

𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑀𝑖
𝑄(𝑠)

𝑖
𝑁

𝑖

󵄩󵄩󵄩󵄩󵄩
2

= 0.

(30)

Therefore, for arbitrary integers number 𝑙, the conclusions
hold. The proof is completed.

Remark 10. We know from Lemma 4 that the matrices
sequences

(
𝑃
0,1

d
𝑃
0,𝑡

) ,(
𝑃
1,1

d
𝑃
1,𝑡

) , . . . ,

(
𝑃
𝑘,1

⋅ ⋅ ⋅
𝑃
𝑘,𝑡

) , . . .

(31)

are orthogonal to each other. Hence, it can be regarded as
an orthogonal basis of matrix space 𝑅∑

𝑡

𝑖=1
𝑝𝑖×∑
𝑡

𝑖=1
𝑝𝑖 . Hence, the

iteration will be terminated at most ∑𝑡

𝑖=1
(𝑝

𝑖
+ 𝑞

𝑖
)(𝑝

𝑖
− 𝑞

𝑖
)/2

steps in the absence of roundoff errors.Therefore, there exists
a positive integer 𝑘 ≤ ∑𝑡

𝑖=1
(𝑝

𝑖
+ 𝑞

𝑖
)(𝑝

𝑖
− 𝑞

𝑖
)/2 such that

∑
𝑡

𝑖=1
‖𝑃(𝑘)

𝑖
‖
2

= 0, in this case, (𝑌(𝑘)

1
, 𝑌(𝑘)

2
, . . . , 𝑌(𝑘)

𝑡
) can be

regarded as a least-squares solution group of matrix equation
(11).

In addition, we should point out that if 𝛼
𝑘
= 0 or ∞,

the conclusions may not be true, and the iteration will break
down before 𝑃(𝑘)

𝑖
= 0 for 𝑘 < ∑𝑡

𝑖=1
(𝑝

𝑖
+ 𝑞

𝑖
)(𝑝

𝑖
− 𝑞

𝑖
)/2.

Actually, 𝛼
𝑘
= 0 implies that ∑𝑡

𝑖=1
‖𝑃(𝑘)

𝑖
‖
2

= 0, so 𝑃(𝑘)
𝑖
= 0

for 𝑖 ∈ Γ. While 𝛼
𝑘
= ∞ leads toF(𝑄(𝑘)

1
, 𝑄(𝑘)

2
, . . . , 𝑄(𝑘)

𝑡
) = 0,

making inner product with 𝑅
𝑖
by both sides, it follows from

Algorithm 7 that

⟨𝑅
𝑖
,F (𝑄(𝑘)

1
, 𝑄(𝑘)

2
, . . . , 𝑄(𝑘)

𝑡
)⟩

=
𝑡

∑
𝑖=1

⟨𝑃(𝑘)
𝑖
, 𝑃(𝑘)

𝑖
+ 𝛽

𝑘−1
𝑄(𝑘−1)

𝑖
⟩

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑘)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑘−1

𝑡

∑
𝑖=1

⟨𝑃(𝑘)
𝑖
, 𝑄(𝑘−1)

𝑖
⟩

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑃
(𝑘)

𝑖

󵄩󵄩󵄩󵄩󵄩
2

= 0,

(32)

which also implies the same situation as 𝛼
𝑘
= 0. Hence,

if there exists a positive integer 𝑠 such that the coefficient
𝛼
𝑠
= 0 or 𝛼

𝑠
= ∞, then the corresponding matrix group

𝑌(𝑠)

1
, 𝑌(𝑠)

2
, . . . , 𝑌(𝑠)

𝑡
is just the solution of matrix equation (11).

Together with the above analysis and Lemma 9, we can
conclude the following theorem.

Theorem 11. For any initial iteration matrices 𝑌(0)

𝑖
∈ CS𝑅𝑛×𝑛

⋆,𝑞𝑖
,

𝑖 = 1, 2, . . . , 𝑡, the least-squares solution of matrix equation (11)
can be obtained within finite iteration steps. Moreover, Suppose
that (𝑌̆

1
, 𝑌̆

2
, . . . , 𝑌̆

𝑡
) is a least-squares solution group of (11),

then the general solution to Problem 2 can be expressed as
𝑍

𝑖
= 𝑌̆

𝑖
+ 𝑋

𝑖
+ 𝑍⬦

𝑖
(𝑖 = 1, 2, . . . , 𝑡), where 𝑋

𝑖
∈ CS𝑅𝑛×𝑛

⋆,𝑞𝑖
satisfy

homogeneous equation

F (𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑡
) = 0, (33)

𝑍⬦

𝑖
as in Theorem 5.
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In order to show the validity ofTheorem 11, it is adequate
to prove the following conclusion.

Proposition 12. The least-squares solution group
(𝑌̆

1
, 𝑌̆

2
, . . . , 𝑌̆

𝑡
) of matrix equation (11) can be expressed

as 𝑌̆
𝑖
+ 𝑋

𝑖
, where𝑋

𝑖
satisfy equality (33).

Proof. According to the assumptions, we obtain

min
𝑌i∈CS𝑅𝑛×𝑛⋆,𝑞𝑖

󵄩󵄩󵄩󵄩F (𝑌1, 𝑌2, . . . , 𝑌𝑡) − 𝐺
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩F (𝑌̆1, 𝑌̆2, . . . , 𝑌̆𝑡) − 𝐺

󵄩󵄩󵄩󵄩󵄩 .

(34)

On the other hand, noting thatF(𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑡
) = 0, then

󵄩󵄩󵄩󵄩󵄩F (𝑌̆1 + 𝑋1
, 𝑌̆

2
+ 𝑋

2
, . . . , 𝑌̆

𝑡
+ 𝑋

𝑡
) − 𝐺

󵄩󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩󵄩F (𝑌̆1, 𝑌̆2, . . . , 𝑌̆𝑡) − 𝐺 +F (𝑋1

, 𝑋
2
, . . . , 𝑋

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩󵄩F (𝑌̆1, 𝑌̆2, . . . , 𝑌̆𝑡) − 𝐺

󵄩󵄩󵄩󵄩󵄩
2

.

(35)

The proof is completed.

Next, we will show that the unique least norm solution of
matrix equation (11) can be derived by choosing a special kind
of initial iteration matrices.

Theorem 13. Let the initial iteration matrices 𝑌(0)

i =

L
𝑖
(𝑀𝑇

𝑖
𝐻𝑁𝑇

𝑖
) with arbitrary 𝐻 ∈ 𝑅𝑚×𝑛, 𝑖 = 1, 2, . . . , 𝑡, and

then (𝑌∗

1
, 𝑌∗

2
, . . . , 𝑌∗

𝑡
) generated by Algorithm 7 is the least-

norm least-squares solution group of matrix equation (11).
Furthermore, the least-norm solution group to Problem 2 can
be expressed by

(𝑍∗

1
, 𝑍∗

2
, . . . , 𝑍∗

𝑡
) = (𝑌∗

1
+ 𝑍⬦

𝑖
, 𝑌∗

2
+ 𝑍⬦

2
, . . . , 𝑌∗

𝑡
+ 𝑍⬦

𝑡
) .

(36)

Proof. FromAlgorithm 7 andTheorem 11, for initial iteration
matrices 𝑌(0)

𝑖
= L

𝑖
(𝑀𝑇

𝑖
𝐻𝑁𝑇

𝑖
), we can obtain a least-squares

solution 𝑌∗

𝑖
of matrix equation (11) and there exists a matrix

𝐻∗ such that 𝑌∗

𝑖
= L

𝑖
(𝑀𝑇

𝑖
𝐻∗𝑁𝑇

𝑖
). Hence, it is enough to

prove that the 𝑌∗

𝑖
is the least-norm solution. In fact, noting

that (33) and Proposition 12, we have
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑌
∗

𝑖
+ 𝑋

𝑖

󵄩󵄩󵄩󵄩
2

=
𝑡

∑
𝑖=1

(
󵄩󵄩󵄩󵄩𝑌

∗

𝑖

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑋𝑖

󵄩󵄩󵄩󵄩
2

+ 2 ⟨𝑌∗

𝑖
, 𝑋

𝑖
⟩)

=
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑌
∗

𝑖

󵄩󵄩󵄩󵄩
2

+
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑋𝑖

󵄩󵄩󵄩󵄩
2

+ 2
𝑡

∑
𝑖=1

⟨L
𝑖
(𝑀𝑇

𝑖
𝐻∗𝑁𝑇

𝑖
) , 𝑋

𝑖
⟩

≥
𝑡

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑌
∗

𝑖

󵄩󵄩󵄩󵄩
2

,

(37)

as required.

Theorems 11 and 13 display the efficiency of Algorithm 7.
Actually, the iteration sequence {𝑌(𝑘)

𝑖
} converges smoothly

to the solution 𝑌
𝑖
, that is the minimization property of

Algorithm 7.

Theorem 14. For any initial iteration matrices 𝑌(0)

𝑖
, the 𝑌(𝑘)

𝑖

generated by Algorithm 7 satisfy the minimization problem

󵄩󵄩󵄩󵄩󵄩F (𝑌
(𝑘)

1
, 𝑌(𝑘)

2
, . . . , 𝑌(𝑘)

𝑡
) − 𝐺

󵄩󵄩󵄩󵄩󵄩

= min
𝑌𝑖∈L𝑖

󵄩󵄩󵄩󵄩F (𝑌1, 𝑌2, . . . , 𝑌𝑡) − 𝐺
󵄩󵄩󵄩󵄩 ,

(38)

where L
𝑖
= 𝑌(0)

𝑖
+ span{𝑄(0)

𝑖
, 𝑄(1)

𝑖
, . . . , 𝑄(𝑘−1)

𝑖
}, 𝑖 = 1, 2, . . . , 𝑡.

Proof. From the definition of L
𝑖
, there exist a series of real

numbers 𝑎
0
, 𝑎

1
, . . . , 𝑎

𝑘−1
such that 𝑌

𝑖
= 𝑌(0)

𝑖
+ ∑

𝑘−1

𝑙=0
𝑎
𝑙
𝑄(𝑙)

𝑖
.

Define a function of 𝑘 variables 𝑓(𝑎
0
, 𝑎

1
, . . . , 𝑎

𝑘−1
), that is,

𝑓 (𝑎
0
, 𝑎

1
, . . . , 𝑎

𝑘−1
)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡

∑
i=1
[𝑀

𝑖
(𝑌(0)

𝑖
+

𝑘−1

∑
𝑙=0

𝑎
𝑙
𝑄(𝑙)

𝑖
)𝑁

𝑖
− 𝐺]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.
(39)

In addition, from Algorithm 7, we know that

𝑅
0
= 𝑅

𝑙
+ 𝛼

𝑙−1
F (𝑄(𝑙−1)

1
, 𝑄(𝑙−1)

2
, . . . , 𝑄(𝑙−1)

𝑡
)

+ ⋅ ⋅ ⋅ + 𝛼
0
F (𝑄(0)

1
, 𝑄(0)

2
, . . . , 𝑄(0)

𝑡
) .

(40)

Noting that (22) and making the inner product with
F(𝑄(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
) on both sides of (40) yield

⟨F (𝑄(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
) , 𝑅

0
⟩=⟨F (𝑄(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
) , 𝑅

𝑙
⟩ .

(41)

Hence, by simple calculation, (40) and (41), the function can
be rewritten as

𝑓 (𝑎
0
, 𝑎

1
, . . . , 𝑎

𝑘−1
)

=
󵄩󵄩󵄩󵄩𝑅0
󵄩󵄩󵄩󵄩
2

+
𝑘−1

∑
𝑙=0

𝑎2
𝑙

󵄩󵄩󵄩󵄩󵄩F (𝑄
(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

− 2
𝑘−1

∑
𝑙=0

𝑎
𝑙
⟨F (𝑄(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
) , 𝑅

𝑙
⟩ .

(42)

Then,

min
𝑎𝑙

𝑓 (𝑎
0
, 𝑎

1
, . . . , 𝑎

𝑘−1
)

⇐⇒ min
𝑌𝑖∈L𝑖

󵄩󵄩󵄩󵄩F (𝑌1, 𝑌2, . . . , 𝑌𝑡) − 𝐺
󵄩󵄩󵄩󵄩 .

(43)
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Since 𝑓(𝑎
0
, 𝑎

1
, . . . , 𝑎

𝑘−1
) = min only if 𝜕𝑓/𝜕𝑎

𝑙
= 0, it

follows from (29) that

𝑎
𝑙
=
⟨F (𝑄(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
) , 𝑅

𝑙
⟩

󵄩󵄩󵄩󵄩󵄩F (𝑄
(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

=
∑

𝑡

𝑖=1
⟨𝑄(𝑙)

𝑖
, 𝑃

𝑙,𝑖
⟩

󵄩󵄩󵄩󵄩󵄩F (𝑄
(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2

=
∑

𝑡

𝑖=1

󵄩󵄩󵄩󵄩𝑃𝑙,𝑖
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩󵄩F (𝑄
(𝑙)

1
, 𝑄(𝑙)

2
, . . . , 𝑄(𝑙)

𝑡
)
󵄩󵄩󵄩󵄩󵄩
2
= 𝛼

𝑙
.

(44)

Combined with (43), we complete the proof.

Theorem 14 reveals that the sequence

{
󵄩󵄩󵄩󵄩󵄩F (𝑌

(𝑘)

1
, 𝑌(𝑘)

2
, . . . , 𝑌(𝑘)

𝑡
) − 𝐺

󵄩󵄩󵄩󵄩󵄩} (45)

monotonically decreases with respect to increasing integer 𝑘.
The descent property of the residual norm of matrix equation
(11) leads to the smoothly convergence of Algorithm 7.

3. The Solution of Problem 3

In this section, we discuss the optimal approximation Prob-
lem 3. Since the least squares problem is always consistent,
it is easy to verify that the solution set 𝑆

𝐸
of Problem 2

is a nonempty convex cone, so the optimal approximation
solution is unique.

Without loss of generality, we can assume that the given
matrices𝑍

𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
. In fact, fromLemma 4, arbitrary𝑍

𝑖
∈

𝑅𝑝𝑖×𝑝𝑖 can be divided into

𝑍
𝑖
= 𝑍

𝑖1
+ 𝑍

𝑖2
+ 𝑋

𝑖3
, with 𝑍

𝑖1
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
,

𝑍
𝑖2
∈ CS𝑅𝑝𝑖×𝑝𝑖

⬦,𝑞𝑖
, 𝑍

𝑖3
∈ CAS𝑅𝑝𝑖×𝑝𝑖 .

(46)

Furthermore, if 𝑍
𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
, then

󵄩󵄩󵄩󵄩󵄩𝑍𝑖
− 𝑍

𝑖

󵄩󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩󵄩𝑍𝑖
− 𝑍

𝑖1

󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑍𝑖2

󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑍𝑖3

󵄩󵄩󵄩󵄩󵄩
2

, (47)

which meets the claim.
Denote 𝑍

𝑖
= 𝑍

𝑖
− 𝑍

𝑖
, 𝐹 = 𝐹 −F(𝑍

1
, 𝑍

2
, . . . , 𝑍

𝑡
), then to

solve Problem 3 is equivalent to find the least-norm solution
of the new matrix equation

F (𝑍
1
, 𝑍

2
, . . . , 𝑍

𝑡
) = 𝐹. (48)

Furthermore, similar to the construction of (11), Problem 2
is transformed equivalently into finding the least-norm least-
squares solution of matrix equation

F (𝑌
1
, 𝑌

2
, . . . , 𝑌

𝑡
) = 𝐺, with 𝑌

𝑖
∈ CS𝑅𝑝𝑖×𝑝𝑖

⋆,𝑞𝑖
, (49)

in which 𝐺 = 𝐹 −F(𝑍⬦

1
, 𝑍⬦

2
, . . . , 𝑍⬦

𝑡
).

Therefore, we can apply Algorithm 7 to derive the
required solution of matrix equation (49). Virtually, it follows

fromTheorem 13 that if let the initial iterationmatrices𝑌(0)

𝑖
=

L
𝑖
(𝑀𝑇

𝑖
𝐻̃𝑁𝑇

𝑖
) with arbitrary 𝐻̃ ∈ 𝑅𝑚×𝑛, or especially 𝑌(0)

𝑖
=

0 ∈ 𝑅𝑝𝑖×𝑝𝑖 , then the iteration solutions 𝑌∗

𝑖
consist of the least-

norm least-squares solution of which. In this case, the unique
optimal approximation solution to Problem 3 can be obtained
by

(𝑍
1
, 𝑍

2
, . . . , 𝑍

𝑡
)

= (𝑌
∗

1
+ 𝑍

1
+ 𝑍⬦

1
, 𝑌

∗

2
+ 𝑍

2
+ 𝑍⬦

2
, . . . , 𝑌

∗

𝑡
+ 𝑍

𝑡
+ 𝑍⬦

𝑡
) .

(50)

4. Numerical Example

In this section, we illustrate the efficiency and reliability of
Algorithm 7 by some numerical experiments.

All the numerical experiments are performed by using
Matlab 6.5. In addition, because of the influence of the round-
off errors,𝑃(𝑘)

𝑖
may not equal zero within finite iteration steps,

so the iteration will be terminated if ∑𝑡

𝑖=1
‖𝑃(𝑘)

𝑖
‖
2

< 𝜖, for
example, let 𝜖 = 1.0𝑒 − 008. At this time, (𝑌(𝑘)

1
, 𝑌(𝑘)

1
, . . . , 𝑌(𝑘)

𝑡
)

can be regarded as a solution of matrix equation (11), and
𝑌(𝑘)

𝑖
+ 𝑍⬦

𝑖
(𝑖 = 1, 2, . . . , 𝑡) consist of the solution group

to Problem 2. In particular, let the initial iteration matrices
𝑌(0)

𝑖
= 0, then we will obtain the least-norm solution by (36).

Example 1. Input matrices𝑀
1
,𝑀

2
,𝑀

3
,𝑁

1
,𝑁

2
,𝑁

3
, and 𝐹 as

follows:

𝑀
1
=
[
[
[

[

hilb( 𝑟
2
) ones( 𝑟

2
)

hankel(1 : 𝑟
2
) zeros( 𝑟

2
)

]
]
]

]

,

𝑀
2
=
[
[
[

[

toeplitz(1 : 𝑟
2
) hilb( 𝑟

2
)

ones( 𝑟
2
) hankel(1 : 𝑟

2
)

]
]
]

]

,

𝑀
3
=
[
[
[

[

zeros( 𝑟
2
) hankel(1 : 𝑟

2
)

hilb( 𝑟
2
) ones( 𝑟

2
)

]
]
]

]

,

𝑁
1
= eye (𝑟) , 𝑁

2
= ones (𝑟) ,

𝑁
3
= tridiag ([7, 1, −1] , 𝑟) ,

𝐹 =

[
[
[
[
[

[

3 −2 −1
−2 3 −2 d
−1 −2 d −2 −1

d −2 3 −2
−1 −2 3

]
]
]
]
]

]

,

(51)

where toeplitz(𝑘), hilb(𝑘), hankel(𝑘), zeros(𝑘), and eye(𝑘)
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Figure 1: The bars graphs of 𝑍
𝑖
when 𝑟 = 20.
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Figure 2: The convergence curve of the Frobenius norm of the
residual.

denote the Toeplitz matrix, Hilbert matrix, Hankel matrix,
null matrix, identity matrix with orders 𝑘, and the elements
of matrix ones(⋅) are one, tridiag([7, 1, −1], 𝑟) represents 𝑟 × 𝑟
tri-diagonal matrix produced by vector [7, 1, −1].

Let the given central principal matrices

X
1
= zeros( 𝑟

2
) ,

X
2
= ones( 𝑟

2
) ∗ 10, X

3
= toeplitz(1 : 𝑟

2
) .

(52)

By using the Algorithm 7, we obtain the solution to Problem
2. To save space, we shall not report the explicit datum of
the solution, but the bars graphs of the components for the
solutionmatrices will be given. Let 𝑟 = 20, Figure 1 shows the
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Figure 3: The convergence curve of the Frobenius norm of the
terminated condition.

bars graphs of 𝑍
1
, 𝑍

2
, 𝑍

3
when we choose the initial iterative

matrices

𝑌
𝑖
=

(
(
(

(

ones(
𝑟 − 𝑞

2
) ones(

𝑟 − 𝑞

2
, 𝑞) ones(

𝑟 − 𝑞

2
)

ones(𝑞,
𝑟 − 𝑞

2
) zeros( 𝑟

2
) ones(𝑞,

𝑟 − 𝑞

2
)

ones(
𝑟 − 𝑞

2
) ones(

𝑟 − 𝑞

2
, 𝑞) ones(

𝑟 − 𝑞

2
)

)
)
)

)

,

𝑖 = 1, 2, 3,

(53)

and the terminal condition ‖𝑃(𝑘)
1
‖ + ‖𝑃(𝑘)

2
‖ + ‖𝑃(𝑘)

3
‖ < 𝜖 =

1.0𝑒 − 012.
Moreover, when 𝑟 = 20 and 𝑟 = 40, the convergence

curves for the Frobenius norm of the residual denoted by
RES = ‖𝑅

𝑘
‖ and the termination condition denoted by

TC = ‖𝑃(𝑘)
1
‖ + ‖𝑃(𝑘)

2
‖ + ‖𝑃(𝑘)

3
‖ are plotted in Figures 2 and

3, respectively.
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From Figure 2, we can see that the residual norm of
Algorithm 7 is monotonically decreasing, which is in accor-
dance with the theory established inTheorem 14, namely, this
algorithm is numerical stable. While Figure 3 shows that the
terminated condition ‖𝑃(𝑘)

1
‖+‖𝑃(𝑘)

2
‖+‖𝑃(𝑘)

3
‖ is oscillating back

and forth and approaches to zero as iterative process. Hence,
the iterative Algorithm 7 is efficient, but it lacks of smooth
convergence. Of course, for a problem with large and sparse
matrices, Algorithm 7maynot terminate in a finite number of
steps because of roundoff errors. How to establish an efficient
and smooth algorithm is an important problem which we
should study in a future work.
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