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In a white-box context, an adversary has total visibility of the implementation of the cryptosystem and full control over its execution
platform. As a countermeasure against the threat of key compromise in this context, a new secure implementation of the symmetric
encryption algorithm SHARK is proposed. The general approach is to merge several steps of the round function of SHARK into
table lookups, blended by randomly generated mixing bijections. We prove the soundness of the implementation of the algorithm
and analyze its security and efficiency.The implementation can be used in web hosts, digital right management devices, andmobile
devices such as tablets and smart phones. We explain how the design approach can be adapted to other symmetric encryption
algorithms with a slight modification.

1. Introduction

There are three main models of the capability of an adversary
to attack a cryptosystem [1]. First is the black-box model. It is
a traditional attack model where an adversary only has access
to the input and corresponding output of a cryptosystem.The
limited information available means that an attack is usually
difficult and time consuming. The second model is the grey-
box model, where a leakage function is present. In such an
attack model, the adversary can deploy side-channel crypt-
analysis techniques. Several grey-box models can be defined
because of the large variety of leakage functions. Third is the
white-box model where the adversary has total visibility of
the cryptographic software implementation and full control
over its execution. One could refer to the white-box model as
theworst-casemodel.Thewhite-boxmodel is used to analyze
algorithms that are running in an untrustworthy environ-
ment, that is, an environment in which applications are sub-
ject to attacks from the execution platform.

Typical white-box attack contexts include

(1) a server or PC that an attacker has got the “root” or
“admin” privilege of it,

(2) a mobile agent that is running on a malicious host,

(3) an attacker has control of an outdoor wireless sensor
network node,

(4) digital right management (DRM) components in
cable television applications.

Secure computing in a white-box attack context (WABC)
is a challenge because, as discussed in [2, 3], (1) fully-priv-
ileged attack software shares a host with cryptographic soft-
ware and has complete access to the implementation of algo-
rithms, (2) dynamic execution (with instantiated crypto-
graphic keys) can be observed, and (3) internal details of
cryptographic algorithms are both completely visible and
alterable.

Standard design and implementation of symmetric en-
cryption algorithms were not intended to operate in a white-
box attack context where their execution could be observed.
In fact, cryptographic models usually assume that endpoints,
hosts, and hardware protection tokens are to be trusted. This
is not the case in a white-box attack. By actively monitoring
standard cryptographic functions or memory dumps, an
attacker can even extract the cryptographic keys. This is ex-
tremely dangerous when using a symmetric encryption
scheme because the decryption algorithm uses the same key
as the encryption algorithm.
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In response to this security challenge, we propose a new,
secure, and white-box implementation of a symmetric en-
cryption algorithm that reduces the risk of keys being com-
promised. Note that the terms “white-box encryption algo-
rithm” and “white-box implementation of an encryption
algorithm” are used interchangeably throughout the paper.

The remainder of this article is organized as follows.
Section 2 describes recent advances in white-box cryptog-
raphy. A new white-box symmetric encryption algorithm
is proposed in Section 3, followed by a security analysis
in Section 4. Section 5 analyzes the complexity and per-
formance of the new algorithm and includes a suggested
implementation approach and some experimental results. In
Section 6 we conclude with a discussion of our findings and
ideas for future research.

2. Recent Advances in
White-Box Cryptography

White-box cryptography provides protection to software im-
plementations of encryption algorithms thatmay be executed
on an untrustworthy host or other white-box attack contexts.
The main constraint is that the result must be directly execu-
table. Chow et al. introduced this idea and proposed a white-
box implementation of DES by interleaving affine transfor-
mations and using delinearization techniques [2]. Chow et al.
also introduced a white-box implementation of AES, repre-
senting it with a set of key-dependent look-up tables [3].Their
original proposal is that these two algorithms could be used
in digital rights management (DRM) applications to satisfy
the need to protect digital information content from unau-
thorized access, use, and dissemination.

In [4], Jacob et al. proposed that a fault injection attack,
where an attacker injects errors into the program environ-
ment during execution, could defeat some obfuscationmeth-
ods. They presented a cryptanalysis of a variant of the algo-
rithm in [2] that does not have external encodings. Link and
Neumann implemented white-box DES and triple-DES algo-
rithms along the lines of Chow et al., with alterations that
improved the security of the key [5]. Their system is secure
against the previously published attacks on the implementa-
tion of Chow et al. and their own adaptation of a statistical
bucketing attack. In 2007, Wyseur et al. [6] and Goubin et al.
[7] independently cryptanalyzed all existing obfuscation
methods of DES. Both attacks were based on a truncated dif-
ferential cryptanalysis. Goubin et al. presented an attack that
analyzed the first rounds of the white-box DES implementa-
tions, while Wyseur et al. presented an attack that works on
the internal information.

In [8], Billet et al. presented an efficient and practical
attack against the obfuscated AES implementation proposed
by Chow et al. in [3]. It used negligible memory and had the
worst time complexity of 230. In 2009, Michiels et al. im-
proved the attack so that it could be deployed on a generic
class of white-box implementations [9]. In 2011, Karroumi
proposed a new white-box implementation that uses dual
representations of AES [10]. Karroumi claimed that the time
complexity of Billet et al.’s attack against his white-box AES

is 291. Furthermore, even with the more powerful attack
tool [11] proposed by Tolhuizen last year, the expected time
complexity of Billet et al.’s attack remains 281.

In [12], Xiao and Lai proposed a secure implementation of
white-boxAES after a detailed analysis of the attack technique
in [8] on the AES implementation proposed in [3]. In their
scheme, the obfuscation works on at least two cells of an
AES state, which the attacker cannot divide them into small
ones and remove them using the attack technique proposed
in [8]. The time complexity of Xiao and Lai’s white-box AES
implementation is 224. It is slower than Chow et al.’s imple-
mentation, which has a time complexity of 220 [3]. Fur-
thermore, the size of Xiao and Lai’s white-box AES imple-
mentation is 20502KB. In 2012, Mulder et al. [13] presented
a cryptanalysis of a white-box AES implementation, based
on Xiao and Lai’s idea. They applied the linear equivalence
algorithm presented by Biryukov et al. in [14] as a building
block. The cryptanalysis efficiently extracts the AES key with
a work factor of approximately 2

32. Furthermore, the size
of Xiao and Lai’s implementation still has potential to be
improved.

3. A Novel White-Box Symmetric
Encryption Algorithm

In this section, we propose a new white-box symmetric
encryption algorithm based on SHARK [15]. Our general
approach is to merge several steps of each round function of
SHARK into table lookups, blending by randomly generated
mixing bijections. We use techniques from [10, 12] to obtain
the obfuscated implementation.

3.1.The Symmetric Encryption Algorithm, SHARK. SHARK is
a six round substitution permutation-network that alternates
a key mixing stage with linear and nonlinear transformation
layers. We can split each round of the SHARK algorithm into
three distinct layers: a nonlinear layer of substitution boxes,
a diffusion layer, and a key addition layer. An interpolation
attack can break the five rounds of a modified version of
SHARK [16], but the security of the six round SHARK cipher
is acceptable for many applications.

Let 𝑆 : 𝐺𝐹(2
8) → 𝐺𝐹(28), 𝑥 → 𝑆[𝑥] denote the map-

ping of S-boxes. Then the nonlinear layer can be defined as
𝛾 : 𝐺𝐹(28)

8
→ 𝐺𝐹(28)

8, 𝛾(𝑎) = 𝑏 ⇔ 𝑏
𝑖
= 𝑆[𝑎
𝑖
], 0 ≤ 𝑖 ≤ 7.

Let 𝜆 : 𝐺𝐹(28)
8
→ 𝐺𝐹(28)

8 be the linear transformation
corresponding to the diffusion layer. Then there exists a ma-
trix𝐻 such that 𝜆(𝑎) = 𝑏 ⇔ 𝑏 = 𝑎 ⋅ 𝐻.

Furthermore, let𝐾𝑟 be the round key of the 𝑟th round and
let𝜎[𝐾𝑟] : 𝐺𝐹(28)8 → 𝐺𝐹(28)

8 be the key additionmapping.
Now, the symmetric encryption algorithm SHARK with

encryption key𝐾 is defined as follows:

SHARK [𝐾] = 𝜆
−1

∘ (
6

∘
𝑟=1

𝜎 [𝐾
𝑟
] ∘ 𝜆 ∘ 𝛾) ∘ 𝜎 [𝐾

0
] . (1)

3.2. Components of the White-Box Encryption Algorithm. To
hide the encryption key, we must merge several steps of each
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Figure 1: Flow of the SHARK algorithm.

round function of SHARK into table lookups blended by ran-
domly generated mixing bijections. In this section, we inves-
tigate how to design such tables and how randomly generated
mixing bijections can be counteracted.

Because SHARK[𝐾] = 𝜆
−1 ∘(

6

∘ 𝜎[𝐾
𝑟

] ∘ 𝜆∘ 𝛾

𝑟=1

)∘𝜎[𝐾0]𝜆−1 ∘

𝜎[𝐾6] ∘ (
5

∘ 𝜆 ∘ 𝛾∘ 𝜎[𝐾
𝑟

]

𝑟=0

), we can also define the algorithm as

SHARK [𝐾] = 𝜆
−1

∘ 𝜎 [𝐾
6
] ∘ (
5

∘
𝑟=0

𝜌 [𝐾
𝑟
]) , (2)

where 𝜌[𝐾
𝑟] is the round function of the 𝑟th round with

round key 𝐾𝑟 defined as

𝜌 [𝐾
𝑟
] ≡ 𝜆 ∘ 𝛾 ∘ 𝜎 [𝐾

𝑟
] . (3)

The flow of SHARK depicted in (2) and (3) is shown in
Figure 1.

Let 𝑀
𝑟 be a 64 × 64 nonsingular matrix over 𝐺𝐹(2),

defined for 𝑟 = 1, . . . , 6 as

𝑀
𝑟
= (𝑁
𝑟−1

)
−1

[
[
[
[
[
[

[

(𝑄
𝑟,0)
−1

(𝑄𝑟,1)
−1

(𝑄𝑟,2)
−1

(𝑄𝑟,3)
−1

]
]
]
]
]
]

]

,

(4)

where 𝑁𝑟, 𝑟 = 0, . . . , 6 are randomly generated 64 × 64 non-
singular matrices over 𝐺𝐹(2).

The external input encoding, 𝑈, is a 64 × 64 nonsingular
matrix over 𝐺𝐹(2) defined as

𝑈 =

[
[
[
[
[
[

[

(𝑄
0,0)
−1

(𝑄0,1)
−1

(𝑄0,2)
−1

(𝑄0,3)
−1

]
]
]
]
]
]

]

, (5)

where 𝑄𝑟,𝑖, 𝑟 = 1, . . . , 6, 𝑖 = 0, . . . , 3 are randomly generated
16×16 nonsingular matrices over𝐺𝐹(2).The external output

encoding𝑉 = (𝑁
6)
−1 is also a 64 ×64nonsingularmatrix over

𝐺𝐹(2).
In a white-box encryption algorithm, round functions

should be obfuscated to protect the round keys against attacks
from an adversary. Using the definitions above, we can define
the obfuscated round functions, which we will implement
using a set of tables (𝑇-Boxes). For each round, 𝑟, let the
obfuscated subround function be 𝜌

𝑊
[𝑟, 𝑖, 𝑘] : 𝐺𝐹(28)

2

→

𝐺𝐹(28)
8, 𝑖 = 0, 1, 2, 3.

The number of possible different representations of
𝐺𝐹(2
16) is 8160. The isomorphic transformation Δ that takes

the description of the cipher under the standard irreducible
polynomial to another descriptionwith a different irreducible
polynomial is linear. For each round 𝑟,Δ

𝑟
is chosen randomly

from these isomorphic transformations.
Let

𝐿
0

𝑖
= Δ
0
∘ (⋅𝑄
0,𝑖
) ; 𝑖 = 0, 1, 2, 3,

𝐿
𝑟

𝑖
= Δ
𝑟
∘ Δ
−1

𝑟−1
∘ (⋅𝑄
𝑟,𝑖
) , 𝑟 = 1, . . . , 6; 𝑖 = 0, . . . , 3

(6)

be preround mixing bijections.
Let

𝑃
𝑟
= (Δ
𝑟
(𝐻)) ⋅ 𝑁

𝑟 def
=

[
[
[
[
[
[
[
[

[

𝑃
𝑟

0

𝑃𝑟
1

𝑃𝑟
2

𝑃𝑟
3

]
]
]
]
]
]
]
]

]

, 𝑟 = 0, . . . , 5,

𝑃
6
= (Δ
6
(𝐻
−1
)) ⋅ 𝑁

6 def
=

[
[
[
[
[
[
[
[

[

𝑃
6

0

𝑃6
1

𝑃6
2

𝑃6
3

]
]
]
]
]
]
]
]

]

(7)

be postround diffusion-mixing bijections.
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Figure 2: Data flow of the standard and the obfuscated implementation of the round functions for rounds 0 to 5.

Then, we can write the obfuscated subround functions as

𝜌
𝑊 [𝑟, 𝑖, 𝐾] (𝑥) = ((𝑆 ‖𝑆 )Δ𝑟 (

(𝐿
𝑟

𝑖
(𝑥))

⊕ (Δ
𝑟
(𝑘𝑟
2𝑖

𝑘
𝑟

2𝑖+1
))
))𝑃
𝑟

𝑖

𝑟 = 0, . . . , 5; 𝑖 = 0, . . . , 3,

𝜌
𝑊 [6, 𝑖, 𝐾] (𝑥) = ((𝐿

6

𝑖
(𝑥)) ⊕ (Δ

6
(𝑘
6

2𝑖


𝑘
6

2𝑖+1
))) 𝑃
6

𝑖
,

𝑖 = 0, . . . , 3,

(8)

where 𝑆‖𝑆 refers to two 𝑆-boxes operating in parallel and
(𝑆‖𝑆)
Δ𝑟

: 𝐺𝐹(28)
2

→ 𝐺𝐹(28)
2

, 𝑥 → Δ
𝑟
((𝑆‖𝑆)(Δ−1

𝑟
(𝑥))).

To invert the effect of the postround mixing matrices
𝑃𝑟−1,𝑖, 𝑟 = 1, . . . , 6, 𝑖 = 0, . . . , 3 and the preround mixing ma-
trices𝑄𝑟,𝑖, 𝑟 = 0, . . . , 5, 𝑖 = 0, . . . , 3, a left multiplication of the
matrix𝑀𝑟+1 is added at the end of each of rounds 0 to 5.

The data flows of our obfuscated implementation of
round functions are shown in Figures 2 and 3.

As shown in Figure 3, the 𝑇-Boxes of the last round are
lookup tables corresponding to the subround functions
𝜌
𝑊
[6, 𝑖, 𝐾](𝑥) = ((𝐿6

𝑖
(𝑥)) ⊕ (Δ

6
(𝑘6
2𝑖
‖𝑘6
2𝑖+1

)))𝑃6
𝑖
, 𝑖 = 0, . . . , 3.

Thenonlinear 𝑆-Boxes of other rounds have been removed. In
fact, the 𝑇-Boxes of the last round are affine transformations
𝜌
𝑊
[6, 𝑖, 𝐾](𝑥) = (𝐿6

𝑖
(𝑥)𝑃6
𝑖
) ⊕ ((Δ

6
(𝑘6
2𝑖
‖𝑘6
2𝑖+1

))𝑃6
𝑖
), 𝑖 = 0, . . . , 3.

Clearly, this is dangerous, and so we modify the last round
of SHARK as illustrated in Figure 4. Consequently, the 𝑇-
Boxes of the last round should be 𝜌

𝑊
[6, 𝑖, 𝐾](𝑥) =

((𝑆‖𝑆)
Δ
6

((𝐿6
𝑖
(𝑥)) ⊕ (Δ

6
(𝑘6
2𝑖
‖𝑘6
2𝑖+1

))))𝑃6
𝑖
, 𝑖 = 0, . . . , 3. We call

this modified version SHARK[𝐾]. Now, SHARK[𝐾] =

(⋅𝐻−1) ∘ (𝑆−1
8
) ∘ (⋅𝐻) ∘ SHARK[𝐾] where

𝑆
8
=
7

||
𝑘=0

𝑆
Δ
6

. (9)

XO
R

XO
R

XO
RInverse

diffusion
layer

Key
addition

Last round function Obfuscated last round
function

Eight bytes of dataA byte of data

T-box

T-box

T-box

T-box

Figure 3: Data flow of the standard and the obfuscated implemen-
tation of round 6.

3.3. The Complete White-Box Encryption Algorithm. Using
the components described in the previous section, the en-
cryption process is shown in Algorithm 1.

We will now prove the soundness of our algorithm.

Proposition 1. The encryption algorithm SHARK
𝑊
[𝐾] is

such that

𝐺 ∘ SHARK
𝑊 [𝐾] ∘ 𝐹 = SHARK [𝐾] , (10)

where

SHARK [𝐾] = 𝜆
−1

∘ 𝜎 [𝐾
6
] ∘ (
5

∘
𝑟=0

𝜌 [𝐾
𝑟
]) ,

𝐹 = (⋅𝑈) ∘ (Δ
−1

0


Δ
−1

0


Δ
−1

0


Δ
−1

0
) ,

𝐺 = (⋅𝐻
−1
) ∘ (𝑆
8
)
−1

∘ (⋅𝐻) ∘ (Δ
−1

6


Δ
−1

6


Δ
−1

6


Δ
−1

6
) ∘ (⋅𝑉) .

(11)
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(1) 𝑖 ← 0

(2) (𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) ← 𝑥

(3) 𝑗 ← 0

(4) 𝑦
𝑗
← 𝑇𝐵𝑜𝑥

𝑖,𝑗
(𝑥
𝑗
) //𝐿𝑜𝑜𝑘𝑢𝑝 𝑖𝑛 𝑎 𝑇𝐵𝑜𝑥

(5) 𝑗 ← 𝑗 + 1

(6) if (𝑗 < 4) goto (4); else goto (7)
(7) 𝑥 ← 𝑦

0
⊕ 𝑦
1
⊕ 𝑦
2
⊕ 𝑦
3

(8) if (𝑖 < 7) goto (9); else goto (11)
(9) 𝑥 ← 𝑥 ⋅ 𝑀

𝑖

(10) 𝑖 ← 𝑖 + 1; goto (2)
(11) output 𝑥

Algorithm 1: Algorithm SHARK
𝑊
[𝐾] (on input 𝑥).

Proof. Let 𝑥 = (𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
), 𝑥
𝑖
∈ 𝐺𝐹(2)

16
, 𝑖 = 0, 1, 2, 3 be

the input to the first round of 𝐺 ∘ SHARK
𝑊
[𝐾] ∘ 𝐹. Then

(

3

∑
𝑖=0

𝜌
𝑊 [0, 𝑖, 𝐾] ((Δ

−1

0
(𝑥
𝑖
)) ⋅ (𝑄

0,𝑖
)
−1

)) ⋅ 𝑀
1

= (

3

∑
𝑖=0

((𝑆 ‖𝑆)Δ 0 (
(𝐿0
𝑖
((Δ−1
0
(𝑥
𝑖
)) ⋅ (𝑄0,𝑖)

−1

))

⊕ (Δ
0
(𝑘0
2𝑖


𝑘0
2𝑖+1

))
))𝑃

0

𝑖
)

⋅ 𝑀
1
= (

3

∑
𝑖=0

((𝑆 ‖𝑆)Δ
0

× (
(Δ
0
((Δ−1
0
(𝑥
𝑖
)) ⋅ (𝑄0,𝑖)

−1

⋅ 𝑄0,𝑖))

⊕ (Δ
0
(𝑘0
2𝑖


𝑘0
2𝑖+1

))
))

× 𝑃
0

𝑖
) ⋅ 𝑀

1

= (

3

∑
𝑖=0

Δ
0
((𝑆 ‖𝑆 ) (𝑥𝑖 ⊕ (𝑘

0

2𝑖


𝑘
0

2𝑖+1
))))

⋅ (Δ
0
(𝐻)) ⋅ 𝑁

0
⋅ 𝑀
1

= ((Δ
0

 Δ
0

 Δ
0

 Δ 0) (𝜌 [𝐾
0
] (𝑥)))

⋅ 𝑁
0
⋅ (𝑁
0
)
−1

⋅

[
[
[
[
[
[

[

(𝑄
𝑟,0)
−1

(𝑄𝑟,1)
−1

(𝑄𝑟,2)
−1

(𝑄𝑟,3)
−1

]
]
]
]
]
]

]

= ((Δ
0

 Δ
0

 Δ
0

 Δ 0) (𝜌 [𝐾
0
] (𝑥)))

⋅

[
[
[
[
[
[

[

(𝑄
𝑟,0)
−1

(𝑄𝑟,1)
−1

(𝑄𝑟,2)
−1

(𝑄𝑟,3)
−1

]
]
]
]
]
]

]

,

(12)

where the round transformation 𝜌 is defined in (3). We arrive
at the last round by similar deductions on the previous
rounds.

Let 𝑦 = (
5

∘ 𝜌[𝐾
𝑟

]

𝑟=0

) (𝑥) = (𝑦
0
, 𝑦
1
, 𝑦
2
, 𝑦
3
), 𝑦
𝑖
∈ 𝐺𝐹(2)

16,
𝑖 = 0, 1, 2, 3 and define 𝑧 to be the output of the fifth round of
𝐺 ∘ SHARK

𝑊
[𝐾] ∘ 𝐹; that is,

𝑧 = (((Δ
5

 Δ
5

 Δ
5

 Δ 5) ∘

5

∘

𝑟 = 0

𝜌 [𝐾
𝑟
]) (𝑥))

⋅

[
[
[
[
[
[

[

(𝑄
5,0)
−1

(𝑄5,1)
−1

(𝑄5,2)
−1

(𝑄5,3)
−1

]
]
]
]
]
]

]
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= ((Δ
5

 Δ
5

 Δ
5

 Δ 5) (𝑦))

⋅

[
[
[
[
[
[

[

(𝑄
5,0)
−1

(𝑄5,1)
−1

(𝑄5,2)
−1

(𝑄5,3)
−1

]
]
]
]
]
]

]

= ((Δ
5
(𝑦
0
)) ⋅ (𝑄

5,0
)
−1

, (Δ
5
(𝑦
1
)) ⋅ (𝑄

5,1
)
−1

,

(Δ
5
(𝑦
2
)) ⋅ (𝑄

5,2
)
−1

, (Δ
5
(𝑦
3
)) ⋅ (𝑄

5,3
)
−1

)

= (𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
) , 𝑧

𝑖
∈ 𝐺𝐹(2)

16
, 𝑖 = 0, 1, 2, 3.

(13)

Let 𝜌[𝐾
6] = 𝜆−1 ∘ 𝛾 ∘ 𝜎[𝐾6]. The last round of 𝐺 ∘

SHARK
𝑊
[𝐾] ∘ 𝐹 works on the output of previous round as

follows:

𝐺(

3

∑
𝑖=0

𝜌
𝑊 [6, 𝑖, 𝐾] (𝑧𝑖))

= 𝐺(

3

∑
𝑖=0

((𝑆 ‖𝑆)Δ
6

(
(𝐿6
𝑖
((Δ
5
(𝑦
𝑖
)) ⋅ (𝑄5,𝑖)

−1

))

⊕ (Δ
0
(𝑘6
2𝑖


𝑘6
2𝑖+1

))
))𝑃

6

𝑖
)

= 𝐺(

3

∑
𝑖=0

((𝑆 ‖𝑆 )Δ
6

((Δ
6
(𝑦
𝑖
)) ⊕ (Δ

6
(𝑘
6

2𝑖


𝑘
6

2𝑖+1
)))) 𝑃

6

𝑖
)

= 𝐺((

3

∑
𝑖=0

Δ
6
((𝑆 ‖𝑆 ) (𝑦𝑖 ⊕ (𝑘

0

2𝑖


𝑘
0

2𝑖+1
))))

⋅ (Δ
6
(𝐻
−1
)) ⋅ 𝑁

6
)

= 𝐺(((Δ
6

 Δ
6

 Δ
6

 Δ 6) (𝜌 [𝐾
6
] (𝑦))) ⋅ 𝑁

6
)

= ((⋅𝐻
−1
) ∘ (𝑆
8
)
−1

∘ (⋅𝐻) ∘ (Δ
−1

6


Δ
−1

6


Δ
−1

6


Δ
−1

6
) ∘ (⋅𝑉))

× (((Δ
6

 Δ
6

 Δ
6

 Δ 6) (𝜌 [𝐾
6
] (𝑦))) ⋅ 𝑁

6
)

= ((⋅𝐻
−1
) ∘ (𝑆
8
)
−1

∘ (⋅𝐻) ∘ (Δ
−1

6


Δ
−1

6


Δ
−1

6


Δ
−1

6
))

× ((Δ
6

 Δ
6

 Δ
6

 Δ 6) (𝜌 [𝐾
6
] (𝑦)))

= ((⋅𝐻
−1
) ∘ (𝑆
8
)
−1

∘ (⋅𝐻)) (𝜌 [𝐾
6
] (𝑦))

= (𝜆
−1

∘ 𝜎 [𝐾
6
]) (𝑦)

= (𝜆
−1

∘ 𝜎 [𝐾
6
] ∘ (
5

∘
𝑟=0

𝜌 [𝐾
𝑟
])) (𝑥) = SHARK [𝐾] (𝑥) .

(14)

This ends the proof.

The following corollary shows how to decrypt the output
of SHARK

𝑊
[𝐾] by modifying, the decryption process of

SHARK, that is, SHAR𝐾−1[𝐾].

Corollary 2. The previously described encryption algorithm,
SHARK

𝑊
[𝐾], can be decrypted using

SHARK
𝑊[𝐾]
−1

= 𝐹 ∘ SHARK −1 [𝐾] ∘ 𝐺. (15)

Proof. By Proposition 1, 𝐺 ∘ SHARK
𝑊
[𝐾] ∘ 𝐹 = SHARK[𝐾].

Hence,

SHARK
𝑊 [𝐾] = 𝐺

−1
∘ SHARK [𝐾] ∘ 𝐹

−1
,

SHARK
𝑊[𝐾]
−1

= (𝐺
−1

∘ SHARK [𝐾] ∘ 𝐹
−1
)
−1

= 𝐹 ∘ SHARK[𝐾]
−1

∘ 𝐺

= 𝐹 ∘ SHARK−1 [𝐾] ∘ 𝐺.

(16)

This ends the proof.

4. Security Measurements and Analysis

4.1. Security Measurements. In [2, 3], Chow et al. used white-
box diversity and white-box ambiguity to measure the secu-
rity of a white-box encryption algorithm. The white-box di-
versity of a given table type counts the number of distinct con-
structions that exist in a table of the same type. It measures
variability among implementations and is useful in foiling
prepackaged attacks.White-box ambiguity of a table is amore
important metric because it counts the number of distinct
constructions that produce exactly the same type of table. It
measures the number of alternative interpretations or mean-
ings of a specific table, which an attacker must investigate in
order to determine one of the obfuscated cipher’s instances.

Thenumber of nonsingularmatrices of order 𝑛 is (2𝑛−1)×
∏
𝑛−1

𝑗=1
(2𝑛 − 1 − ∑

𝑗

𝑘=1
(
𝑗

𝑘
)). The number of possible Δ is

8160 ≈ 213. For each table (𝑇-Box), the white-box diversity
is approximately 2255 × 213 × 216 × 213 × 2255 = 2552, and the
white-box ambiguity is approximately 2255 × 216 = 2271.

4.2. Against Billet et al.’s andMichiels et al.’s Attack. Billet et al.
[8] described a very efficient attack against thewhite-boxAES
implementation proposed in [3]. Recovering information
about the key by a local inspection of the lookup tables seems
difficult, as the tables are designed to satisfy diversity and
ambiguity criteria. In the Billet et al. attack, the authors take
advantage of the fact that it is easier to recover information
by analyzing compositions of lookup tables corresponding to
one encoded AES round.

In this paper, the proposed implementation means that
some attack techniques aimed at the simplicity of AES 𝑆-
boxes are not valid. Furthermore, we have also used isomor-
phic transformations to increase the white-box diversity. For
these reasons, the Billet et al. attack will not work.

The ideas presented in [3] can be used to derive a white-
box implementation for any substitution linear-transforma-
tion network cipher [17]. Michiels et al. [9] presented an algo-
rithm for extracting the round keys of such a cipher when all
block rows of the diffusion matrices have disjoint spanning
block sets. This condition on the diffusion matrices is, for
example, satisfied by all maximum distance separable matri-
ces [18, 19]. In our algorithm, we have implemented reverse
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operations of linear mixing bijections in a different way. This
ensures that our technique is immune from the attack of
Michiels et al.

4.3. AgainstMulder et al.’s Attack. Mulder et al. [13] presented
a cryptanalysis of Xiao-Lai white-box AES implementation
by using Biryukov et al.’s highly efficient linear equivalence
algorithm [14]. The linear equivalence algorithm checks lin-
ear equivalence between two permutations (𝑆-boxes), 𝑆

1
and

𝑆
2
, and finds two invertible linear mappings, 𝐿

1
and 𝐿

2
, such

that 𝐿
2
∘𝑆
1
∘𝐿
1
= 𝑆
2
.This is an important problem in symmet-

ric cryptography.
Biryukov et al.’s linear equivalence algorithm exploits the

following two ideas. The first is that we can guess portions of
𝐿
1
, which will provide us with knowledge of the values of 𝐿

2
.

These new values from 𝐿
2
allow the algorithm to extract new

information about 𝐿
1
. The linear (affine) structure of the

mappings causes another process, which they refer to as the
exponential amplification of guesses.Their second idea is that
if we know 𝑘 vectors from the mapping 𝐿

1
, we also know 2𝑘

linear combinations of these vectors.
Mulder et al. proposed a modified version of the linear

equivalence algorithm in [13].The time complexity of solving
the linear equivalence problem of a building block decreases
from 244 to 229. It follows that the attack efficiently extracts
the AES key from Xiao-Lai white-box AES implementation
with a time complexity of approximately 232. In the case of our
white-box SHARK implementation, we have not found any
technique that can reduce the time complexity in the same
manner because of the following reasons.

(1) As shown in (17) and (18), the diffusion matrices of
SHARK and AES are different.

(a) The diffusion matrix of SHARK is

[
[
[
[
[
[
[
[
[
[

[

CE 95 57 82 8A 19 B0 01

E7 FE 05 D2 52 C1 88 F1
B9 DA 4D D1 9E 17 83 86

D0 9D 26 2C 5D 9F 6D 75

52 A9 07 6C B9 8F 70 17

87 28 3A 5A F4 33 0B 6C
74 51 15 CF 09 A4 62 09

0B 31 7F 86 BE 05 83 34

]
]
]
]
]
]
]
]
]
]

]

. (17)

(b) The diffusion matrix of AES is

[
[
[

[

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

]
]
]

]

. (18)

(2) We use a different approach to compute𝑀𝑟.
Furthermore, the Δ transformation that we use in this

paper can provide a higher work factor.The overall work fac-
tor of Mulder, Roelse, and Preneel’s attack against our white-
box SHARK implementation is the product of following three
factors:

(1) 244 (= 𝑛322𝑛, 𝑛 = 16) to solve the linear equivalence
problem of a building block,

Table 1: Number of operations in the algorithm SHARK
𝑊
[𝐾].

Operation Number of operations Formula
Bit multiplication 3 × 213 = 6 × 64 × 64

Bit addition 3 × 213 ≈ 6 × 64 × 64

T-Box table lookup 28 = 7 × 4

Table 2: Number of operations in the fast software implementation
of SHARK

𝑊
[𝐾].

Operation Number of operations Formula
Multiplication table lookup 3 × 210 = 6 × 8 × 64

Bit addition 3 × 210 ≈ 6 × 8 × 64

T-Box table lookup 28 = 7 × 4

(2) 213 (≈ 8160) to guess all the dual components,
(3) 22 because there are four building blocks in each

round.

Thus, our white-box SHARK implementation remains
with a security level higher than 244+13+2 = 259 againstMulder
et al’s attack.

5. Size and Performance

In this section, we first analyze the size of static data that the
algorithm requires. We then make some suggestions regard-
ing the implementation and provide some experimental
results. Finally, we discuss a highly efficient work mode for
encrypting data.

Each round of our algorithm requires four 𝑇-Box tables.
As the size of each table is 216 × 64 bits = 219 bytes, the size of
the 28 tables is 14MB. The size of each matrix is 64 × 64 bits
= 2
9 bytes.Thus, the size of thesematrices is 3 KB. Combining

these values, we determine that the size of all lookup tables
and matrices is 14339KB.

Three operations are needed to run the SHARK
𝑊
[𝐾]

algorithm: bit multiplication, bit addition, and 𝑇-Box table
lookup. We list the number of required operations in Table 1.

Of course, this is a “näıve” implementation as we can
speed up the algorithm by using the memory-speed trade-
off technique. Amultiplication table can map two input bytes
(𝑎
0
, . . . , 𝑎

7
and 𝑏
0
, . . . , 𝑏

7
) into a single bit (𝑎

0
×𝑏
0
)⊕ (𝑎
1
×𝑏
1
)⊕

⋅ ⋅ ⋅⊕(𝑎
7
×𝑏
7
).With the help of suchmultiplication table, we can

optimize the complexity of matrix multiplications and obtain
a fast software implementation. The extra cost of memory
is only 8KB. This implementation requires three operations:
multiplication table lookup, bit addition, and 𝑇-Box table
lookup. Table 2 lists the required number of each operation.

We have investigated the time taken to encrypt 1MB of
data in the electronic codebook (ECB) mode on a ThinkPad
notebook. The average time of the naı̈ve implementation is
23.3 seconds and the average time of the fast implementation
is only 1.2 seconds. Table 3 shows the details of the testing
environment.

Clearly, the proposed algorithm is much slower than
the standard algorithm because of the additional time taken
when multiplying by𝑀

𝑟, 𝑟 = 1, . . . , 6. This is true even when



8 Journal of Applied Mathematics

Standard White- box Standard 

IV

Standard 
SHARK [K1] SHARK [K1] SHARK [K1]SHARK [K2]

Ciphertext 0 Ciphertext 1 Ciphertext 2 Ciphertext 3

Plaintext 0 Plaintext 1 Plaintext 2 Plaintext 3

Figure 5: Flow of the white-box SHARK algorithm in composite PCBC mode.

Table 3: Details of testing environment.

Machine LenovoThinkPad Carbon X1
CPU Intel core i5-3317U 1.7GHz/2.6GHz
RAM 4GB
OS Window7 64 bit
JDK Version 7

using the fast implementation. But the proposed algorithm
running in the composite propagating cipher-block chaining
(PCBC) mode, as suggested by [20], is much faster than ECB
mode. In the composite PCBCmode, the speed of encryption
is almost the same as the standard implementation. Figure 5
shows the flow chart of the white-box SHARK algorithm
running in the composite PCBC mode.

6. Conclusions and Discussion

In this paper, we propose a new white-box encryption algo-
rithm that obfuscates the cipher SHARK. Our general ap-
proach is to merge several steps of the round function of
SHARK into table lookups blended by randomly generated
mixing bijections. Techniques used in [10, 12] are used in this
paper to obtain the obfuscated cipher. Hence, this algorithm
is secure against the attacks of Billet et al. [8], Michiels et al.
[9], and Mulder et al. [13]. Thus, the algorithm is a counter-
measure against the threat of key compromise in white-box
attack context.

This design of white-box SHARK can also be used to
obtain a white-box AES with a slight modification. The out-
come of adapting our design to use AES will be a white-box
AES implementation with the size of lookup tables and
matrices being 20502MB and with a security level of 292. We
have chosen SHARK because it results in smaller tables and
matrices and has a simpler description.

Future work should be focused on the size of the imple-
mentation. If we can significantly decrease the size, white-box
encryption algorithms may be applied to lightweight appli-
cations such as the Internet of Things or wireless sensor
networks.
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