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Wewill develop amathematical model for the integration of lot sizing and flow shop scheduling with lot streaming.Wewill develop
amixed-integer linearmodel formultiple products lot sizing and lot streaming problems.Mixed-integer programming formulation
is presented which will enable the user to find optimal production quantities, optimal inventory levels, optimal sublot sizes, and
optimal sequence simultaneously.Wewill use numerical example to show practicality of the proposedmodel.We test eight different
lot streaming problems: (1) consistent sublots with intermingling, (2) consistent sublots and no intermingling between sublots
of the products (without intermingling), (3) equal sublots with intermingling, (4) equal sublots without intermingling, (5) no-
wait consistent sublots with intermingling, (6) no-wait equal sublots with intermingling, (7) no-wait consistent sublots without
intermingling, and (8) no-wait equal sublots without intermingling. We showed that the best makespan can be achieved through
the consistent sublots with intermingling case.

1. Introduction

In the manufacturing industries, the commonly used plan-
ning and scheduling decision-making strategy generally fol-
lows a hierarchical approach, in which the planning problem
is solved first to define the production targets, and the
scheduling problem is solved next to meet these targets
[1]. However, this traditional strategy presents a great dis-
advantage, since there is no interaction between the two
decision levels; that is, the planning decisions generated
might cause infeasible scheduling subproblems [1]. Since
the production planning model ignores detailed scheduling
constraints, there is no guarantee that a feasible production
schedule exists for the generated production plan. Typically,
when infeasibilities are discovered, ad hoc adjustments are
made within the production plan [2]. Therefore, it is nec-
essary to develop methodologies that can effectively inte-
grate production planning and scheduling. Potts and Van
Wassenhove [3] reviewed studies in which either batching
or lotsizing decisions along with scheduling decisions were
made, and they concluded that not much research has
been conducted in this area. We summarize some works of

research regarding integration of lot sizing and flow shop
scheduling as follows. Riane et al. [4] considered production
planning and scheduling simultaneously in hybrid flow shop
organizations (also called flexible flow shop). The solution
approach adapted in their paper was “divide and conquer,”
consisting of decomposing the problem into a loading prob-
lem, a batching problem, and a scheduling problem. Yan
et al. [5] developed an integrated production planning and
scheduling model for automobile assembly lines. In this case,
hierarchical production planning approaches have been used
to decompose monthly or weekly plans into day or shift
plans. They solved first production planning model and then
solved the scheduling problem by dispatching rules (EDD
and smallest lots); if there are not feasible solutions, the
neighbors plan and neighbor schedule definitions will be
used to find feasible initial solutions [5]. They proposed
three tabu search algorithms that explore solution spaces for
both problems and found a combination of a production
plan and schedule that are feasible and that approximately
optimize the objective function. Palaniappan and Jawahar
[6] developed a model for simultaneous optimization of lot
sizing and scheduling in a flow line assembly. Procurement lot



2 Journal of Applied Mathematics

sizing and production scheduling are considered to be the
two critical factors in controlling the cost of production in
those units. The simultaneous optimization of procurement
lot sizing and the assembly scheduling offer many benefits.
Palaniappan and Jawahar [6] claimed that only a little
consideration is given to set up time-dependent production
systems with order backlog. Therefore, an integrated cost
model including setup time dependency and order back-
log was developed to handle both procurement lot sizing
and production scheduling simultaneously. They proposed a
genetic algorithm (GA) based heuristic to create an optimal
or near-optimal solution for the flow line assembly problem
under the setup-dependent environment [6]. The objective
of their model was the minimization of total cost, which
includes assembly, switchover, procurement, inventory, and
order backlog/shortage costs. Yan and Zhang [7] developed
an integrated model for production planning and scheduling
in a three-stage manufacturing system (full-space method).
They claimed that most of the literature focuses on the
master production schedule (MPS) and capacity require-
ment planning (CRP) in a manufacturing resource planning
(MRPII) environment, while the scheduling problem is
seldom considered [7]. Since these methods keep planning
separate from scheduling, they often generate an infeasible
production plan which has to be modified to obtain feasible
schedule because it did not consider the details of the
scheduling problem [7]. Considering production planning
and scheduling simultaneously is advisable to avoid an infea-
sible solution. Also, Yan and Zhang claimed that none of the
existing literature involves a monolithic optimization model
for production planning and scheduling in a multistage
system.They formulated amonolithic optimizationmodel for
a three-stage manufacturing system that includes a job shop,
a parallel flow shop, and a single machine shop. Ng et al. [8]
and Matsveichuk et al. [9] considered flow shop scheduling
problems with interval processing times. However, none of
the previous scholars considered the lot streaming problem
within their models.

Lundrigan [10] summarized nine rules of optimized
production technology (OPT), amongwhich the seventh rule
states that a transfer batch (i.e., a sublot) may not, and often
should not, be equal to a processing batch (i.e., a lot). Clearly,
lot streaming is a technique for splitting jobs, each consisting
of identical items, into sublots to allow their overlapping on
successive machines in multistage production systems. In
this way, production can be accelerated, and a remarkable
reduction of makespan and improved timeliness are within
reach [11]. Generally, the goal in lot streaming is to determine
the number of sublots for each product, the size of each
sublot, and the sequence for processing the sublots so that
a given objective is optimized [12, 13]. The following terms
summarize different directions of lot streaming research; see
Feldmann and Biskup [12], Kalir and Sarin [14], Sarin and
Jaiprakash [15], and Zhang et al. [13].
Single Product/Multiple Products. Either a single product or
multiple products are considered.
Fixed/Equal/Consistent/Variable Sublots. Fixed sublots mean
that all sublots for all products consist of an identical number

of items on all stages. Equal sublots refer to the case when
all the sublots of a lot are of the same size. When identical
sublot sizes are used to transfer a lot between every pair
of consecutive machines, the sublots are termed consistent.
However, if the sublot sizes used for transferring a lot among
the machines vary, the sublots are called variable [12, 14].

Discrete/Continuous Sublots. The sublots of a lot are, in
general, assumed to take real-valued (continuous) sizes.
However, integer sublot sizes are more relevant for the man-
ufacturing facilities involved in the production of discrete
parts [13, 14]. Examples for both cases include books, cars,
and furniture, which require integer variables, while for
the production (not the sizing) of gas, beverages, concrete,
electricity, and so forth real variables are appropriate [12].

Non-Idling/Intermitted Idling. No idling refers to the situation
where no idle time is permitted between the processing of
the sublots of a lot on a machine. Under intermittent idling,
an idle time may be present between the processing of two
successive sublots of a lot on a machine [15].

No-Wait/Wait Schedules. In a no-wait flow shop, each sublot
of a lot is processed continuously on all the machines. This
could lead to an inserted idle time before the processing of a
sublot of a lot on a machine. In a wait schedule, a sublot may
wait for processing between consecutive stages [15].

Attached Setups/Detached Setups/No Setups. If attached setups
are needed, the setup cannot begin until the sublot is available
at the particular stage. In a detached setup, the setup is
independent from the availability of the sublot. Sometimes,
setup times are neglected or do not occur [14].

Intermingling/Nonintermingling Sublots. If, in a multiproduct
setting, intermingling sublots are allowed, the sequence of
sublots of product 𝑗may be interrupted by sublots of product
𝑘. For nonintermingling sublots, no interruption in the
sequence of sublots of a product is allowed [12].

In the following section, we summarize research on lot
streaming problems and focus on the flow shop environment.

Trietsch and Baker [16] developed a linear formulation
for a single product lot streaming problem with consistent
sublots. Biskup and Feldmann [17] presented the first integer
programming formulation for the single product lot stream-
ing problem with variable sublots. Chang and Chiu [18]
and Chui et al. [19] show the diminishing marginal effect
of lot streaming. They found that, under the same sublot
type, although increasing number of sublots will reduce
makespan, the marginal reduction in makespan will decrease
with the increase of the number of sublots. For the flow shop,
Potts and Baker [20] used a simple two-machine numerical
example to show that, in the intermingled case, an optimal
solution generally cannot be found when the sequencing
approach and the splitting approach are used indepen-
dently. They suggested that the two approaches should be
used simultaneously. Glass and Possani [21] indicated that,
for jobs with identical processing times and number of
sublots, no advantage is obtained by allowing inconsistency
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Figure 1: Optimal solutions of example with intermingling integer consistent sublots.
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Figure 2: Optimal solutions of example without intermingling integer consistent sublots.

in sublot sizing of consecutive jobs. Feldmann andBiskup [12]
developed a mathematical model for multiproduct lot
streaming problem. They revealed that the benefit of lot
streaming in multistage settings increases not only with
the number of sublots but also with a growing number of
stages. Tseng and Liao [22] proposed a swarm optimization
procedure not only for the flow shop environment, but
also for minimizing total weighted tardiness and earliness,
with equally sized sublots. Marimuthu et al. [23] suggested
an evolutionary algorithm approach for the multimachine
lot streaming problem to minimize the total flow time and
makespan with set-up times. However, all lot streaming
research assumes that the number of identical items of the
product on eachmachine is given in advance. In other words,
the lot sizing problem is not integrated into lot streaming
problem. In this research, we will develop a mixed-integer
linear mathematical model for the integration of lot sizing
and scheduling with lot streaming problem. This model can

be used in medium to high volume systems such as autos,
personal computers, radios and televisions, and furniture.
This paper is organized as follows: Section 2 introduces
the problem and develops a mathematical formulation for
this problem. Implementation of this model (through an
example) is given in Section 3. Finally, Section 4 gives some
conclusions and suggestions for further studies.

2. Integrated Model for Lot Sizing and
Scheduling with Lot Streaming

Brucker et al. revealed that there exists a polynomial algo-
rithm for any regular optimization criterion in the case of
two jobs while the problem with three jobs is NP-hard for
any criterion traditionally considered in scheduling theory
[24]. Therefore, the problem under consideration certainly is
NP-hard. With the following model formulation, generally
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Figure 3: Optimal solutions of example with intermingling integer equal sublots.
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Figure 4: Optimal solutions of example without intermingling integer equal sublots.

Table 1: Processing times of jobs on machines.

Product Machine number
1 2 3 4

1 2 1 2 2
2 2 4 1 1
3 4 2 2 3

speaking, the four inherent goals of the problem, namely,
determining the sequence among the sublots, the size of
the each lot, inventory levels, and the size of the individual
sublots, are solved simultaneously. The model assumptions
are as follows.

(1) All lots are available at time zero.

(2) The machine configuration considered constitutes a
flow shop.

(3) Any breakdowns and scheduled maintenance are not
allowed.

(4) Set-up times between operations are negligible or
include processing times.

(5) There are no precedence constraints among the prod-
ucts.

(6) 𝑁 distinct final products are produced by the shop.

(7) The demand is always satisfied (no backlogging).

(8) There is an external demand for finished products
(processed by last machine).

(9) All machines have capacity constraints.

(10) Planning horizon is a single period (i.e., a day).

(11) All programming parameters are deterministic and
there is no randomness.

(12) An idle timemay be present between the processing of
two successive sublots of a lot on amachine (intermit-
tent idling).

(13) Consistent and equal sublots are considered (no vari-
able sublots).

(14) Thenumber of sublots for all lots is known in advance.

This problem with above-mentioned assumptions can be
formulated as follows.

Indices

𝑁: the number of products,

𝑀: the number of nonidentical machines,

𝑆: the number of sublots,

𝑗, V: indices for products 𝑗, V = 1, 2, . . . , 𝑁,

𝑘: denotes 𝑘th machine 𝑘 = 1, 2, . . . ,𝑀,

𝑠, 𝑧: indices for sublots 𝑠, 𝑧 = 1, 2, . . . , 𝑆.
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Table 2: Sublot completion times on different machines in consistent sublots with intermingling setting.

Machine number 𝐶
11

𝐶
21

𝐶
31

𝐶
12

𝐶
22

𝐶
32

𝐶
13

𝐶
23

𝐶
33

1 10 68 110 26 82 140 50 98 130
2 15 82 126 58 110 160 70 118 140
3 25 100 138 66 117 165 82 126 150
4 35 119 150 74 126 170 100 138 165

Table 3: Sublot completion times on machines for different cases.

Case name Machine
number 𝐶

11
𝐶
21
𝐶
31
𝐶
12
𝐶
22
𝐶
32
𝐶
13
𝐶
23
𝐶
33

Equal sublots with intermingling

1 48 76 90 14 62 104 34 127 147
2 62 97 104 42 90 132 55 142 157
3 90 111 125 55 97 139 65 152 167
4 104 125 139 62 111 146 80 167 182

Equal sublots without intermingling

1 116 130 144 14 28 42 62 82 102
2 137 144 151 42 70 98 108 118 128
3 163 177 191 49 101 108 118 133 148
4 177 191 205 101 108 115 133 148 163

No-wait consistent sublots with
intermingling

1 12 24 40 54 96 136 82 124 164
2 18 30 48 82 124 160 96 136 168
3 30 42 64 89 131 166 110 148 172
4 42 54 80 96 138 172 131 166 178

No-wait equal sublots with
intermingling

1 56 70 146 14 104 160 42 90 132
2 63 77 153 42 132 188 56 100 142
3 77 91 167 49 139 195 62 110 152
4 91 105 181 56 146 202 77 125 167

No-wait consistent sublots without
intermingling

1 12 26 40 50 70 90 130 152 171
2 18 33 47 70 90 130 142 162 179
3 30 47 61 75 95 140 154 172 187
4 42 61 75 80 100 150 172 187 199

No-wait equal sublots without
intermingling

1 74 88 102 116 144 172 20 40 60
2 81 95 109 144 172 200 30 50 70
3 95 109 123 151 179 207 40 60 80
4 109 123 137 158 186 214 55 75 95

Decision Variables

𝑥
𝑠𝑗𝑧V: binary variable, which takes the value 1 if sublot
𝑠 of product 𝑗 is sequenced prior to sublot 𝑧 of product
V, 0 otherwise,
𝑐
𝑠𝑗𝑘
: completion time of sublot 𝑠 of product 𝑗 on

machine 𝑘,
𝑝
𝑗𝑘
: quantity of product 𝑗 produced in machine 𝑘,
𝑠
𝑗𝑘
: stock of product 𝑗 after operation in machine 𝑘,
𝑐max: maximum completion time on machine 𝑀
(makespan),
𝑢
𝑠𝑗𝑘
: sublot size of 𝑠th sublot of product 𝑗 on machine
𝑘.

Parameters and Constants

bi
𝑀
: beginning inventory of product on machine𝑀,

cp
𝑗𝑘
: production cost of product 𝑗 in machine 𝑘,

ℎ
𝑗𝑘
: holding cost of product 𝑗,

Ac
𝑘
: available capacity of machine 𝑘 (measured in

time units),

𝑑
𝑗
: external demand for product 𝑗 at the end of period

(a day),

pt
𝑗𝑘
: processing time for one unit of product 𝑗 on

machine 𝑘,

𝐷: is used to convert the makespan into a cost (cost
per unit time),

𝑅: large number.
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Table 4: Sublot sizes for different cases.

Sublot
name

Equal sublots
with

intermingling

Equal sublots
without

intermingling

No-wait consistent
sublots with
intermingling

No-wait equal
sublots with
intermingling

No-wait consistent
sublots without
intermingling

No-wait equal
sublots without
intermingling

𝑢
111

7 7 6 7 6 7
𝑢
112

7 7 6 7 6 7
𝑢
113

7 7 6 7 6 7
𝑢
114

7 7 6 7 6 7
𝑢
211

7 7 6 7 7 7
𝑢
212

7 7 6 7 7 7
𝑢
213

7 7 6 7 7 7
𝑢
214

7 7 6 7 7 7
𝑢
311

7 7 8 7 7 7
𝑢
312

7 7 8 7 7 7
𝑢
313

7 7 8 7 7 7
𝑢
314

7 7 8 7 7 7
𝑢
121

7 7 7 7 5 7
𝑢
122

7 7 7 7 5 7
𝑢
123

7 7 7 7 5 7
𝑢
124

7 7 7 7 5 7
𝑢
221

7 7 7 7 5 7
𝑢
222

7 7 7 7 5 7
𝑢
223

7 7 7 7 5 7
𝑢
224

7 7 7 7 5 7
𝑢
321

7 7 6 7 10 7
𝑢
322

7 7 6 7 10 7
𝑢
323

7 7 6 7 10 7
𝑢
324

7 7 6 7 10 7
𝑢
131

5 5 7 5 6 5
𝑢
132

5 5 7 5 6 5
𝑢
133

5 5 7 5 6 5
𝑢
134

5 5 7 5 6 5
𝑢
231

5 5 6 5 5 5
𝑢
232

5 5 6 5 5 5
𝑢
233

5 5 6 5 5 5
𝑢
234

5 5 6 5 5 5
𝑢
331

5 5 2 5 4 5
𝑢
332

5 5 2 5 4 5
𝑢
333

5 5 2 5 4 5
𝑢
334

5 5 2 5 4 5

Consider,

𝑍 =
𝑁

∑
𝑗=1

𝑀

∑
𝑘=1

cp
𝑗𝑘
𝑝
𝑗𝑘
+
𝑁

∑
𝑗=1

𝑀

∑
𝑘=1

ℎ
𝑗𝑘
𝑠
𝑗𝑘
+ 𝐷 × 𝑐max (1)

𝑑
𝑗
= 𝑝
𝑗𝑀
− 𝑠
𝑗𝑀
+ bi
𝑀
𝑗 = 1, . . . , 𝑁, (2)

𝑁

∑
𝑗=1

pt
𝑗𝑘
𝑝
𝑗𝑘
≤ Ac
𝑘
𝑘 = 1, . . . ,𝑀, (3)

𝑐max ≥ 𝑐𝑠𝑗𝑀 𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑁, (4)

𝑆

∑
𝑠=1

𝑢
𝑠𝑗𝑘
= 𝑝
𝑗𝑘
𝑗 = 1, . . . , 𝑁, 𝑘 = 1, . . . ,𝑀, (5)

𝑢
𝑠𝑗𝑘
= 𝑢
𝑠𝑗(𝑘+1)
𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑁,

𝑘 = 1, . . . ,𝑀 − 1,
(6)

𝑐
𝑠𝑗𝑘
− pt
𝑗𝑘
× 𝑢
𝑠𝑗𝑘
≥ 𝑐
𝑠𝑗(𝑘−1)

𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑁, 𝑘 = 2, . . . ,𝑀,
(7)

𝑐
𝑠𝑗𝑘
− pt
𝑗𝑘
× 𝑢
𝑠𝑗𝑘
≥ 𝑐
(𝑠−1)𝑗𝑘

𝑠 = 2, . . . , 𝑆, 𝑗 = 1, . . . , 𝑁, 𝑘 = 1, . . . ,𝑀,
(8)
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Table 5: Results of these eight different lot streaming problems.

Classification Optimal sequence Makespan Objective
function (z)

Comparison of
total cost (z)

Comparison
of makespan

Consistent sublots with
intermingling

11-12-13-21-22-23-
31-33-32 170 3570 — —

Consistent sublots without
intermingling 2-3-1 189 3665 2/66% 11%

Equal sublots with intermingling 12-13-11-22-21-31-
32-23-33 182 3737 4/67% 7%

Equal sublots without intermingling 2-3-1 205 3852 7/9% 20%
No-wait consistent sublots with
intermingling

11-21-31-12-13-22-
23-32-33 178 3610 1/12% 4/7%

No-wait equal sublots with
intermingling

12-13-11-21-23-22-
33-31-32 202 3837 7/47% 18/8%

No-wait consistent sublots without
intermingling 1-2-3 199 3715 4/06% 17%

No-wait equal sublots without
intermingling 3-1-2 214 3897 9/15% 25/8%

𝑐
𝑧V𝑘 − ptV𝑘 × 𝑢V𝑧𝑘 − 𝑐𝑠𝑗𝑘 + 𝑅 (1 − 𝑥𝑠𝑗𝑧V) ≥ 0

𝑗, V = 1, . . . , 𝑁 𝑠, 𝑧 = 1, . . . , 𝑆

if V = 𝑗, then 𝑧 ̸= 𝑠, 𝑘 = 1, . . . ,𝑀

(9)

𝑐
𝑠𝑗𝑘
− pt
𝑗𝑘
× 𝑢
𝑠𝑗𝑘
− 𝑐
𝑧V𝑘 + 𝑅 × 𝑥𝑠𝑗𝑧V ≥ 0

𝑗, V = 1, . . . , 𝑁 𝑠, 𝑧 = 1, . . . , 𝑆

if V = 𝑗, then 𝑧 ̸= 𝑠, 𝑘 = 1, . . . ,𝑀,

(10)

𝑐
𝑠𝑗1
− pt
𝑗1
× 𝑢
𝑠𝑗1
≥ 0 𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑁, (11)

𝑝
𝑗𝑘
, 𝑠
𝑗𝑘
, 𝑐
𝑠𝑗𝑘
, 𝑢
𝑠𝑗𝑘
≥ 0,

and 𝑢
𝑠𝑗𝑘

are integer,

and 𝑥
𝑠𝑗𝑧V are binary,

𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑁, 𝑘 = 1, . . . ,𝑀.

(12)

The objective function (expression (1)) minimizes the sum
of production costs, holding costs, and makespan costs.
Constraints (2) represent the inventory balances. Constraints
(3) ensure that the production time of each machine does
not exceed its available capacity. In (4), the maximum of
completion time of sublots on the last machine is used to
define the makespan (𝑐max). Restrictions (5) ensure that in
sum 𝑝

𝑗𝑘
items are produced from product 𝑗 on machine

𝑘. Constraints (6) ensure that sublots type is consistent.
Constraints (7) and (8) ensure that the sublots of the same
products do not overlap. Since intermingling is allowed,
constraints (9) and (10) determine the sequence of sublots.
No machine index is needed for binary variable (𝑥) in
permutation flow shop. Restrictions (11) ensure that any
sublot 𝑠 of any job 𝑗 begins processing onmachine 1 after time
zero. By replacing inequality constraint (7) with equality, the
formulation can be adapted to case of no-wait flow shop.The
previous formulation from (1) to (12) is for consistent sublots

type. By adding (13), previous mathematical model can be
adapted to equal sublots type. Consider

𝑢
𝑠𝑗𝑘
= 𝑢
(𝑠+1)𝑗𝑘

𝑠 = 1, . . . , 𝑆 − 1, 𝑗 = 1, . . . , 𝑁, 𝑘 = 1, . . . ,𝑀.
(13)

The number of binary variables required can be calculated by
𝑆2 × (𝑁2 − 1).

2.1. No Intermingling between the Sublots of One (or More) of
the 𝐽 Products with the Other Products. This setting might be
advantageous if the setup costs for one or more products are
high. A quick approach for this setting is to use the model
formulations (1) to (12) and equate the binary variables for
the sublots of the product(s) that is (are) not allowed to
intermingle. If all products are not allowed to intermingle, for
a three-product example, this would be

𝑥
𝑠𝑗11
= 𝑥
𝑠𝑗21
= 𝑥
𝑠𝑗31
, 𝑠 = 1, . . . , 𝑆, 𝑗 = 2, 3

for first product,

𝑥
𝑠𝑗12
= 𝑥
𝑠𝑗22
= 𝑥
𝑠𝑗32
, 𝑠 = 1, . . . , 𝑆, 𝑗 = 1, 3

for second product,

𝑥
𝑠𝑗13
= 𝑥
𝑠𝑗23
= 𝑥
𝑠𝑗33
, 𝑠 = 1, . . . , 𝑆, 𝑗 = 1, 2

for third product.

(14)

3. Numerical Example

In order to measure this model’s performance, we use the
model to test the following randomly generated problem:
we have three types of products being processed on four
machines. The number of sublots per product is three.
Demands are 20, 20, and 15 for products 1 to 3, respectively.
Production costs are 10, 15, and 12 for products 1 to 3,
respectively. Holding costs are 3, 4, and 3 for products 1 to
3. The maximum available capacity of machines is 400 time
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units for machines 1 to 4. The beginning inventory is zero.
Cost per unit time (𝐷) is equal to 5. Table 1 summarizes
the processing times of products on machines. The example
has been solved using LINGO 12.0, a commercially available
optimization software program, on a laptop computer with
Intel core i5 2410m processor 2.3 GHz with 4GB of RAM.

3.1. Results of the Problem. LINGO solver defined the model
of example as a mixed-integer linear problem (MILP) and
used the branch and bound (B-and-B) method to solve it.
The resulting formulation has a total of 169 variables and
691 constraints for consistent sublots with intermingling
case. The solution was achieved after running the solver
for 146 seconds. The results of the consistent sublots with
intermingling case are as follows. Total costs are 3570, and
makespan is equal to 170. Sublot sizes are as follows: 𝑢

111
=

𝑢
112
= 𝑢
113
= 𝑢
114
= 5, 𝑢

211
= 𝑢
212
= 𝑢
213
= 𝑢
214
= 9,

𝑢
311
= 𝑢
312
= 𝑢
313
= 𝑢
314
= 6, 𝑢

121
= 𝑢
122
= 𝑢
123
= 𝑢
124
= 8,

𝑢
221
= 𝑢
222
= 𝑢
223
= 𝑢
224
= 7, 𝑢

321
= 𝑢
322
= 𝑢
323
= 𝑢
324
= 5,

𝑢
131
= 𝑢
132
= 𝑢
133
= 𝑢
134
= 6, 𝑢

231
= 𝑢
232
= 𝑢
233
=

𝑢
234
= 4, and 𝑢

331
= 𝑢
332
= 𝑢
333
= 𝑢
334
= 5. Product

quantities are 𝑝
11
= 𝑝
12
= 𝑝
13
= 𝑝
14
= 𝑝
21
= 𝑝
22
=

𝑝
23
= 𝑝
24
= 20 and 𝑝

31
= 𝑝
32
= 𝑝
33
= 𝑝
34
= 15,

with all inventory level or 𝑆
𝑗𝑘
= 0. Table 2 summarizes the

completion times of each sublot. Figure 1 demonstrated the
Gantt chart of this problem. The makespan is equal to total
idle time on the lastmachine plus total processing time on the
last machine [16]. For this example, in consistent sublots with
intermingling setting, as demonstrated in Figure 1, makespan
is equal to total idle time on machine number four which is
65 minutes plus total processing time on machine number
four or 105 minutes, which will be equal to 170 minutes.
Now, we solve this example for 8 different kinds of problems
as follows: (1) consistent sublots with intermingling, (2)
consistent sublots and no intermingling between sublots
of the products (without intermingling), (3) equal sublots
with intermingling, (4) equal sublots without intermingling,
(5) no-wait consistent sublots with intermingling, (6) no-
wait equal sublots with intermingling, (7) no-wait consistent
sublots without intermingling, and (8) no-wait equal sublots
without intermingling. Tables 3, 4 and 5 summarized the
results of these eight different lot streaming problems.

Columns 5 and 6 of Table 5 are achieved with the
following formulations.𝑍best and the best makespan are 3570
and 170which belong to consistent sublotswith intermingling
case. Comparison of total costs can be computed through
𝑍 = (𝑧 − 𝑧best)/𝑧best × 100 and comparison of make spans
can be computed through 𝑐max = 𝑐max − 𝑐maxbest/𝑐maxbest × 100.

For instance, the makespan of consistent sublots with
intermingling case is 11% better than makespan of consistent
sublots without intermingling case. In equal sublots with and
without intermingling cases, the production quantity and
inventory will be 𝑝

1
= 21, 𝑝

2
= 21, and 𝑝

3
= 15 and 𝑠

14
= 1,

𝑠
24
= 1, and 𝑠

34
= 0, which causes additional costs.Therefore,

in equal sublots cases, the increase in objective function (total
cost) is not only due to the increase in makespan but also due
to the increase in production quantity and inventory.

Figures 2, 3, and 4 are Gantt charts of these problems.
Optimal sequence for schedule without lot streaming is 1-2-3
and the makespan is 2-4-5 (achieved through Johnson rules
(SPT) [25]).The percentage of makespan reduction due to lot
streaming in permutation flow shop is 30% (compared to the
best makespan).

4. Conclusion

In this research, we developed the first mathematical model
for integration of lot sizing and flow shop scheduling with
lot streaming. We developed a mixed-integer linear model
for multiple products lot sizing and lot streaming problems.
Mixed-integer programming formulation was presented
which enabled the user to find optimal production quantities,
optimal inventory levels, and optimal sublot sizes, as well
as optimal sequence simultaneously. We used a numerical
example to show the practicality of the proposed model. We
tested eight different lot streaming problems: (1) consistent
sublots with intermingling, (2) consistent sublots and no
intermingling between sublots of the products (without inter-
mingling), (3) equal sublots with intermingling, (4) equal
sublots without intermingling, (5) no-wait consistent sublots
with intermingling, (6) no-wait equal sublots with intermin-
gling, (7) no-wait consistent sublots without intermingling,
and (8) no-wait equal sublots without intermingling. We
showed that the best makespan can be achieved through
the case of consistent sublots with intermingling. Since the
increase in the number of binary variables and integrality
restrictions, typically, make a lot streaming problem difficult
to solve, the use of metaheuristic methods to deal with large-
scale problems deserves further study. The proposed model
is adapted to consistent and equal sublot types. Extension of
this model for variable sublot type could be another topic for
further studies.
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