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This paper is concerned with the reachability and controllability of fractional singular dynamical systems with control delay. The
factors of such systems including the Caputo’s fractional derivative, control delay, and singular coefficient matrix are taken into
account synchronously.The state structure of fractional singular dynamical systems with control delay is characterized by analysing
the state response and reachable set. A set of sufficient and necessary conditions of controllability for such systems are established
based on the algebraic approach. Moreover, an example is provided to illustrate the effectiveness and applicability of the proposed
criteria.

1. Introduction

Singular systems play important roles in mathematical mod-
eling of real-life problems arising in a wide range of applica-
tions. Depending on the area of application, these models are
also called descriptor systems, semistate systems, differential-
algebraic systems, or generalized state-space systems. In the
past few decades, singular systems with integer-order deriva-
tive have been extensively studied due to the fact that singular
systems describe practical systems better than normal ones
(see [1–8] and references therein).

Fractional calculus and its applications to the sciences and
engineering is a recent focus of interest to many researchers.
Fractional differential equations have been proved to be an
excellent tool in the modelling of many phenomena in var-
ious fields of engineering, physics, and economics. Actually,
fractional differential equations are considered as alternative
model to integer differential equations. Many practical sys-
tems can be represented more accurately through fractional
derivative formulation. For more details on fractional calcu-
lus theory, one can see the monographs of Miller and Ross
[9], Podlubny [10], Diethelm [11], and Kilbas et al. [12]. Frac-
tional differential equations involving the Riemann-Liouville

fractional derivative or the Caputo fractional derivative have
been paid more and more attention in [13–18] and references
therein.

On the other hand, it is well-known that the issue of con-
trollability plays an important role in engineering and control
theory, which has close connections to pole assignment,
structural decomposition, quadratic optimal control, and
controller design, and so on. The problem of controllability
for various kinds of dynamical systemswith integer derivative
has been extensively studied [1, 3–5, 19–22]. In particular,
Dai [1] has established the theory of integer-order linear
singular control systems. Yip and Sincovec [3] and Tang and
Li [4] have investigated the controllability and observability
of integer-order singular dynamical systems. It is worth
mentioning that notable contributions have been made to
fractional control systems [23–35]. The different techniques
have been applied to investigate the controllability of various
fractional dynamical systems, such as algebraic method [23,
24], geometrical analysis [25], fixed point theorems [26–30],
and semigroup theory [31]. Recently, Sakthivel et al. [32–
35] have investigated the approximate controllability problem
for various kinds of fractional dynamical systems by using
fixed point techniques, which have further enriched and
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developed the control theory of fractional dynamical systems.
The earlier studies concerning the controllability of fractional
dynamical systems with control delay can be found in [25, 27,
29], which especially focused on fractional normal systems.
However, it should be emphasized that the control theory of
fractional singular systems is not yet sufficiently elaborated,
compared to that of fractional normal systems. In this regard,
it is necessary and important to study the controllability
problems for fractional singular dynamical systems. To the
best of our knowledge, there are no relevant reports on reach-
ability and controllability of fractional singular dynamical
systems as treated in the current literature. Motivated by this
consideration, in this paper, we investigate the reachability
and controllability of fractional singular dynamical systems
with control delay.

In this paper, we consider the reachability and controlla-
bility of the following fractional singular dynamical systems
with control delay:

𝐸
𝑐

𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐶𝑢 (𝑡 − 𝜏) , 𝑡 ≥ 0,

𝑢 (𝑡) = 𝜓 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

𝑥 (0) = 𝑥
0
,

(1)

where 𝑐𝐷𝛼𝑥(𝑡) denotes an 𝛼 order Caputo fractional deriva-
tive of 𝑥(𝑡), and 0 < 𝛼 ≤ 1; 𝐸, 𝐴, 𝐵, and 𝐶 are the known
constant matrices, 𝐸,𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑛×𝑚, and
rank(𝐸) < 𝑛;𝑥 ∈ R𝑛 is the state variable;𝑢 ∈ R𝑚 is the control
input; 𝜏 > 0 is the time control delay; and 𝜓(𝑡) is the initial
control function.

Themain purpose of this paper is to establish reachability
and controllability criteria for system (1) based on the alge-
braic approach. The factors of fractional singular dynamical
systems including the Caputo’s fractional derivative, control
delay, and singular coefficientmatrices are taken into account
synchronously. As discussed by Dai [1], we transform system
(1) into two subsystems by the first equivalent form (FE1),
which is more convenient to characterize the state reachable
set. The state response, reachable set, and sufficient and
necessary conditions for the controllability are obtained,
respectively. The proposed criteria are applicable to a larger
class of fractional dynamical systems. Therefore, we extend
the known results [1, 23, 25] to a more general case.

This paper is organized as follows. In the next section,
we recall some definitions and preliminary facts used in
the paper. In Section 3, the state structure of system (1) is
characterized by analysing the state response and reachable
set. In Section 4, the necessary and sufficient conditions of
controllability for two subsystems and system (1) are derived,
respectively. In Section 5, an example is provided to illustrate
the effectiveness and applicability of the proposed criteria.
Finally, some concluding remarks are drawn in Section 6.

2. Preliminaries

In this section, we first recall some definitions of fractional
calculus and preliminary facts. For more details, one can see
[9–12]. Next, the first equivalent form (FE1) of system (1) is
given.

(a) The Riemann-Liouville’s fractional integral of order
𝛼 > 0 with the lower limit zero for a function 𝑓 : 𝑅

+

→ 𝑅
𝑛

is defined as

𝐷
−𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, (2)

provided that the right side is pointwise defined on [0, +∞),
where Γ(⋅) is the Gamma function.

(b) The Caputo’s fractional derivative of order 𝛼 for a
function 𝑓 : 𝑅

+

→ 𝑅
𝑛 is defined as

𝑐

𝐷
𝛼

𝑓 (𝑡) =
1

Γ (𝑚 − 𝛼 + 1)
∫

𝑡

0

(𝑡 − 𝑠)
𝑚−𝛼

𝑓
(𝑚+1)

(𝑠) 𝑑𝑠,

0 ≤ 𝑚 ≤ 𝛼 < 𝑚 + 1.

(3)

For 0 < 𝛼 ≤ 1,

𝐷
−𝛼

{
𝑐

𝐷
𝛼

𝑓 (𝑡)} = 𝑓 (𝑡) − 𝑓 (0) . (4)

(c) The Mittag-Leffler function in two parameters is
defined as

𝐸
𝛼,𝛽

(𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 𝛽)
, (5)

where 𝛼 > 0, 𝛽 > 0, and 𝑧 ∈ C, C denotes the complex plane.
In particular, for 𝛽 = 1,

𝐸
𝛼,1

(𝑧) = 𝐸
𝛼
(𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 1)
(6)

has the interesting property

𝑐

𝐷
𝛼

𝐸
𝛼
(𝜆𝑧
𝛼

) = 𝜆𝐸
𝛼
(𝜆𝑧
𝛼

) , 𝜆, 𝑧 ∈ C. (7)

(d)The Laplace transform of a function 𝑓(𝑡) is defined as

𝐹 (𝑠) = £ [𝑓 (𝑡)] = ∫

+∞

0

𝑒
−𝑠𝑡

𝑓 (𝑡) 𝑑𝑡, 𝑠 ∈ C, (8)

where 𝑓(𝑡) is 𝑛-dimensional vector-valued function. For 𝛼 ∈

(0, 1], it follows from [10] that

£ [(𝑐𝐷𝛼𝑓) (𝑡)] = 𝑠
𝛼£ [𝑓 (𝑡)] − 𝑠

𝛼−1

𝑓 (0) . (9)

(e) For 𝑛 ∈ N, the sequential fractional derivative for
suitable function 𝑦(𝑥) is defined by

𝑦
(𝑘)

:= (D𝑘𝛼𝑦) (𝑥) = (D𝛼D(𝑘−1)𝛼𝑦) (𝑥) , (10)

where 𝑘 = 1, . . . , 𝑛, andD𝛼 is any fractional differential oper-
ator; here we still mention it as 𝑐𝐷𝛼.

Now, we introduce the first equivalent form (FE1) of
system (1) by the nonsingular transform, which is also called
the standard decomposition of a singular system.
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Assume that (𝐸, 𝐴) is regular throughout this paper. From
[1, 3], there exist two nonsingular matrices 𝑃,𝑄 ∈ R𝑛×𝑛, such
that system (1) is equivalent to canonical system as follows:

𝑐

𝐷
𝛼

𝑥
1
(𝑡) = 𝐴

1
𝑥
1
(𝑡) + 𝐵

1
𝑢 (𝑡) + 𝐶

1
𝑢 (𝑡 − 𝜏) , 𝑡 ≥ 0,

𝑁
𝑐

𝐷
𝛼

𝑥
2
(𝑡) = 𝑥

2
(𝑡) + 𝐵

2
𝑢 (𝑡) + 𝐶

2
𝑢 (𝑡 − 𝜏) , 𝑡 ≥ 0,

𝑢 (𝑡) = 𝜓 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

𝑥
1
(0) = 𝑥

10
, 𝑥

2
(0) = 𝑥

20
,

(11)

where 𝑥
1
∈ R𝑛1 , 𝑥

2
∈ R𝑛2 , 𝑛

1
+ 𝑛
2
= 𝑛, and 𝑁 is nilpotent

whose nilpotent index is denoted by ]; that is, 𝑁]
= 0,

𝑁
]−1

̸= 0, and

𝑃𝐸𝑄 = [
𝐼
𝑛
1

0

0 𝑁
] , 𝑃𝐴𝑄 = [

𝐴
1

0

0 𝐼
𝑛
2

] ,

𝑃𝐵 = [
𝐵
1

𝐵
2

] , 𝑃𝐶 = [
𝐶
1

𝐶
2

] , 𝑄
−1

𝑥 (𝑡) = [
𝑥
1
(𝑡)

𝑥
2
(𝑡)

] .

(12)

Let ℎ = [𝛼]] + 1, where [𝛼]] denotes the integral part
of 𝛼]. Let Cℎ

𝑝
([0, +∞),R𝑚) be the set of ℎ times piecewise

continuously differentiable functions mapping the interval
[0, +∞) into R𝑚. Moreover, Cℎ([−𝜏, 0],R𝑚) denotes the set
of ℎ times continuously differentiable functions mapping the
interval [−𝜏, 0] into R𝑚.

Applying the method in [3], we can obtain the precise
form of the admissible initial state set 𝑆(𝜓) for system (11).
For 𝜓 ∈ Cℎ([−𝜏, 0],R𝑚), we have

𝑆 (𝜓)

:= {𝑥 ∈ R
𝑛

| 𝑥 = [
𝑥
1

𝑥
2

] , 𝑥
1
∈ R
𝑛
1 ,

𝑥
2
= −

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝜓 (0) + 𝑁
𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝜓 (−𝜏)]} .

(13)

Thus, the set of admissible initial data is

A := {(𝑥
0
, 𝜓) | 𝜓 ∈ Cℎ ([−𝜏, 0] ,R𝑚) , 𝑥

0
∈ 𝑆 (𝜓)} . (14)

3. State Response and State Reachability

In this section, we characterize the state structure of system
(11) by analysing the state response and reachable set.

Theorem 1. For any admissible initial data (𝑥
0
, 𝜓) ∈ A and

the control function 𝑢(𝑡) ∈ Cℎ
𝑝
([0, +∞),R𝑚), the state response

for system (11) can be represented in the following form:
𝑥
1
(𝑡) = 𝐸

𝛼,1
(𝐴
1
𝑡
𝛼

) 𝑥
1
(0)

+ ∫

𝑡

𝑡−𝜏

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏

0

{(𝑡− 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡− 𝑠)

𝛼

] 𝐵
1
+ (𝑡− 𝜏 − 𝑠)

𝛼−1

× 𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
} 𝑢 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

(𝑡 − 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
𝜓 (𝑠) 𝑑𝑠,

𝑡 ≥ 0,

(15)

𝑥
2
(𝑡) = −

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡) + 𝑁
𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡 − 𝜏)] , 𝑡 ≥ 0,

(16)

where𝐸
𝛼,𝛽

(⋅) is theMittag-Leffler function and 𝑐𝐷𝑘𝛼𝑢(⋅) is the
sequential fractional derivative.

Proof. From [10], the Laplace transformof the𝛼orderCaputo
fractional derivative of function 𝑥(𝑡) is

£ [𝐷𝛼𝑥 (𝑡)] = 𝑠
𝛼£ [𝑥 (𝑡)] − 𝑠

𝛼−1

𝑥 (0) . (17)
Taking the Laplace transform with respect to 𝑡 in both sides
of the first equation of system (11), we obtain

𝑠
𝛼£ [𝑥
1
(𝑡)] − 𝑠

𝛼−1

𝑥
1
(0)

= 𝐴
1
£ [𝑥
1
(𝑡)] + 𝐵

1
£ [𝑢 (𝑡)] + 𝐶

1
£ [𝑢 (𝑡 − 𝜏)] .

(18)

Hence,

£ [𝑥
1
(𝑡)] = (𝑠

𝛼

𝐼 − 𝐴
1
)
−1

𝑠
𝛼−1

𝑥
1
(0)

+ (𝑠
𝛼

𝐼 − 𝐴
1
)
−1£ [𝐵

1
𝑢 (𝑡) + 𝐶

1
𝑢 (𝑡 − 𝜏)] .

(19)

From [10], we have
£ [𝑡𝛽−1𝐸

𝛼,𝛽
(𝐴
1
𝑡
𝛼

)] = 𝑠
𝛼−𝛽

(𝑠
𝛼

𝐼 − 𝐴
1
)
−1

. (20)

Then (19) is equivalent to
£ [𝑥
1
(𝑡)] = £ [𝐸

𝛼,1
(𝐴
1
𝑡
𝛼

)] 𝑥
1
(0)

+ £ [𝑡𝛼−1𝐸
𝛼,𝛼

(𝐴
1
𝑡
𝛼

)] £ [𝐵
1
𝑢 (𝑡) + 𝐶

1
𝑢 (𝑡 − 𝜏)] .

(21)
The convolution theorem of the Laplace transform applied to
(21) yields the form

£ [𝑥
1
(𝑡)] = £ [𝐸

𝛼,1
(𝐴
1
𝑡
𝛼

)] 𝑥
1
(0)

+ £{∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

]

× [𝐵
1
𝑢 (𝑠) + 𝐶

1
𝑢 (𝑠 − 𝜏)] 𝑑𝑠} .

(22)
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Applying the inverse Laplace transform, we obtain

𝑥
1
(𝑡) = 𝐸

𝛼,1
(𝐴
1
𝑡
𝛼

) 𝑥
1
(0)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

]

× [𝐵
1
𝑢 (𝑠) + 𝐶

1
𝑢 (𝑠 − 𝜏)] 𝑑𝑠

= 𝐸
𝛼,1

(𝐴
1
𝑡
𝛼

) 𝑥
1
(0)

+ ∫

𝑡

𝑡−𝜏

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏

0

{(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
+(𝑡 − 𝜏 − 𝑠)

𝛼−1

× 𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
} 𝑢 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

(𝑡 − 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
𝜓 (𝑠) 𝑑𝑠.

(23)

On the other hand, inserting (16) into both sides of the second
equation in system (11) yields

𝑁
𝑐

𝐷
𝛼

𝑥
2
(𝑡) − 𝑥

2
(𝑡) − 𝐵

2
𝑢 (𝑡) − 𝐶

2
𝑢 (𝑡 − 𝜏)

= −

]−1

∑

𝑘=0

[𝑁
𝑘+1

𝐵
2

𝑐

𝐷
(𝑘+1)𝛼

𝑢 (𝑡) + 𝑁
𝑘+1

𝐶
2

𝑐

𝐷
(𝑘+1)𝛼

𝑢 (𝑡 − 𝜏)]

− 𝐵
2
𝑢 (𝑡) − 𝐶

2
𝑢 (𝑡 − 𝜏)

+

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡) + 𝑁
𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡 − 𝜏)]

= 0.

(24)

Then (16) is a solution of the second equation in system (11).
Next, we will show that any solution of the second

equation in system (11) has the form of (16). Define linear
operator 𝑇 : C1([0, +∞),R𝑛2) → C([0, +∞),R𝑛2) by
𝑇𝑥
2
(𝑡) =

𝑐

𝐷
𝛼

𝑥
2
(𝑡). Then the second equation in system (11)

becomes

(𝐼 − 𝑁𝑇) 𝑥
2
(𝑡) = −𝐵

2
𝑢 (𝑡) − 𝐶

2
𝑢 (𝑡 − 𝜏) . (25)

Since 𝑁 is nilpotent, 𝑁 and 𝑇 can exchange, and (𝐼 −

𝑁𝑇)(∑
]−1
𝑘=0

𝑁
𝑘

𝑇
𝑘

) = 𝐼, then we have

𝑥
2
(𝑡) = −(𝐼 − 𝑁𝑇)

−1

[𝐵
2
𝑢 (𝑡) + 𝐶

2
𝑢 (𝑡 − 𝜏)]

= −(

+∞

∑

𝑘=0

𝑁
𝑘

𝑇
𝑘

) [𝐵
2
𝑢 (𝑡) + 𝐶

2
𝑢 (𝑡 − 𝜏)]

= −(

]−1

∑

𝑘=0

𝑁
𝑘

𝑇
𝑘

) [𝐵
2
𝑢 (𝑡) + 𝐶

2
𝑢 (𝑡 − 𝜏)]

= −

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡) + 𝑁
𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡 − 𝜏)] .

(26)

Thus, (16) is indeed a solution of the second equation in
system (11).

Therefore, the proof of Theorem 1 is completed.

For convenience sake, some notations are introduced as
follows.

Given matrices 𝐴 ∈ R𝑛×𝑛 and 𝐵, 𝐶 ∈ R𝑛×𝑚, denote Im(𝐵)

as the range of 𝐵; that is,

Im (𝐵) = {𝑦 | 𝑦 = 𝐵𝑥, ∀𝑥 ∈ R
𝑚

} . (27)

Let

⟨𝐴 | 𝐵, 𝐶⟩ = Im (𝐵) + Im (𝐴𝐵) + ⋅ ⋅ ⋅ + Im (𝐴
𝑛−1

𝐵)

+ Im (𝐶) + Im (𝐴𝐶) + ⋅ ⋅ ⋅ + Im (𝐴
𝑛−1

𝐶) .

(28)

Then the space ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ is spanned by the columns of

[𝐵
1
, 𝐴
1
𝐵
1
, . . . , 𝐴

𝑛
1
−1

1
𝐵
1
, 𝐶
1
, 𝐴
1
𝐶
1
, . . . , 𝐴

𝑛
1
−1

1
𝐶
1
] , (29)

and the space ⟨𝑁|𝐵
2
, 𝐶
2
⟩ is spanned by the columns of

[𝐵
2
, 𝑁𝐵
2
, . . . , 𝑁

𝑛
2
−1

𝐵
2
, 𝐶
2
, 𝑁𝐶
2
, . . . , 𝑁

𝑛
2
−1

𝐶
2
] . (30)

For any nonzero polynomial 𝑓(𝑠), we define𝑊(𝑓, 𝑡) : R𝑛1 →

R𝑛1 by

𝑊(𝑓, 𝑡) 𝑧

= ∫

𝑡

𝑡−𝜏

𝑓 (𝑠) (𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

]

× 𝐵
1
𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡 − 𝑠)

𝛼

] 𝑓 (𝑠) 𝑧 𝑑𝑠

+ ∫

𝑡−𝜏

0

𝑓 (𝑠) {(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1

+(𝑡 − 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
}

× {𝐶
∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼

]

+𝐵
∗

1
(𝑡 −𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡− 𝑠)

𝛼

] 𝑓 (𝑠)} 𝑧 𝑑𝑠,

(31)

where ∗ denotes the matrix transpose.
The following lemma is required for the main result,

which is a natural extension of Lemma 2-1.1 in [1].

Lemma 2. Given matrices 𝐴
1
∈ R𝑛1×𝑛1 and 𝐵

1
, 𝐶
1
∈ R𝑛1×𝑚1 ,

then

Im𝑊(𝑓, 𝑡) = ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ . (32)

Proof. The formula (32) holds if and only if

Ker𝑊(𝑓, 𝑡) =

𝑛
1
−1

⋂

𝑖=0

Ker𝐵∗
1
(𝐴
∗

1
)
𝑖

𝑛
1
−1

⋂

𝑖=0

Ker𝐶∗
1
(𝐴
∗

1
)
𝑖

. (33)
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If 𝑧
0
∈ Ker𝑊(𝑓, 𝑡) and 𝑧

0
̸= 0, 𝑧∗
0
𝐺(𝑡)𝑧
0
= 0, that is,

∫

𝑡

𝑡−𝜏


𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[(𝐴
∗

1
(𝑡 − 𝑠)] 𝑓 (𝑠) 𝑧

0



2

𝑑𝑠

+ ∫

𝑡−𝜏

0


[𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝑠)) + 𝐶

∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼−1

×𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝜏 − 𝑠)) ] 𝑓 (𝑠) 𝑧

0



2

𝑑𝑠 = 0;

(34)

then we have

𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡 − 𝑠)] 𝑓 (𝑠) 𝑧

0
= 0, 𝑠 ∈ [𝑡 − 𝜏, 𝑡] ,

(35)

[𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝑠)) + 𝐶

∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼−1

× 𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝜏 − 𝑠))] 𝑓 (𝑠) 𝑧

0
= 0, 𝑠 ∈ [0, 𝑡 − 𝜏] .

(36)

Since polynomial 𝑓(𝑠) only has a finite number of zero on
𝑡 − 𝜏 ≤ 𝑠 ≤ 𝑡 and 0 ≤ 𝑠 ≤ 𝑡 − 𝜏, we immediately have

𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡 − 𝑠)] 𝑧

0
= 0, 𝑠 ∈ [𝑡 − 𝜏, 𝑡] , (37)

[𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝑠)) + 𝐶

∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼−1

× 𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝜏 − 𝑠))] 𝑧

0
= 0, 𝑠 ∈ [0, 𝑡 − 𝜏] .

(38)

Repeatedly taking the Caputo’s derivative on both sides of
(37), we have

𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡 − 𝑠)] (𝐴

∗

1
)
𝑖

𝑧
0
= 0,

𝑖 = 1, 2, . . . , 𝑛
1
− 1, 𝑠 ∈ [𝑡 − 𝜏, 𝑡] .

(39)

Substituting 𝑠 = 𝑡 in (39) yields

𝐵
∗

(𝐴
∗

)
𝑖

𝑧
0
= 0, 𝑖 = 1, 2, . . . , 𝑛

1
− 1, (40)

which implies that 𝑧
0
∈ Ker𝐵∗

1
(𝐴
∗

1
)
𝑖, 𝑖 = 1, 2, . . . , 𝑛

1
− 1.

According to Cayley-Hamilton theorem [4], (𝑡 −

𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] can be represented as

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] =

+∞

∑

𝑘=0

(𝑡 − 𝑠)
𝑘𝛼+𝛼−1

Γ (𝑘𝛼 + 𝛼)
𝐴
𝑘

1

=

𝑛
1
−1

∑

𝑘=0

𝛾
𝑘
(𝑡 − 𝑠) 𝐴

𝑘

1
.

(41)

For 𝑠 ∈ [0, 𝑡 − 𝜏], it follows from (39) and (41) that

𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝑠)) 𝑧

0

=

𝑛
1
−1

∑

𝑘=0

𝛾
𝑘
(𝑡 − 𝑠) 𝐵

∗

1
𝐴
∗

1

𝑘

𝑧
0
= 0.

(42)

Inserting (42) into (38) yields

𝐶
∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝜏 − 𝑠)) 𝑧

0
= 0. (43)

Repeatedly taking the Caputo’s fractional derivative on both
sides of (43) and letting 𝑠 = 𝑡 − 𝜏, we have

𝐶
∗

1
𝐴
∗

1

𝑘

𝑧
0
= 0, 𝑘 = 1, 2, . . . , 𝑛

1
− 1, (44)

which implies that 𝑧
0
∈ Ker𝐶∗

1
(𝐴
∗

1
)
𝑖, 𝑖 = 1, 2, . . . , 𝑛

1
− 1.

Therefore, we have

Ker𝑊(𝑓, 𝑡) ⊆

𝑛
1
−1

⋂

𝑖=0

Ker𝐵∗
1
(𝐴
∗

1
)
𝑖

𝑛
1
−1

⋂

𝑖=0

Ker𝐶∗
1
(𝐴
∗

1
)
𝑖

. (45)

Conversely, if 𝑧
0
∈ ⋂
𝑛
1
−1

𝑖=0
Ker𝐵∗
1
(𝐴
∗

1
)
𝑖

⋂
𝑛
1
−1

𝑖=0
Ker𝐶∗

1
(𝐴
∗

1
)
𝑖

and 𝑧
0

̸= 0, then 𝑧
0
∈ Ker𝐵∗

1
(𝐴
∗

1
)
𝑖, 𝑧
0
∈ Ker𝐶∗

1
(𝐴
∗

1
)
𝑖, 𝑖 =

1, 2, . . . , 𝑛
1
− 1, and

𝐵
∗

1
(𝐴
∗

1
)
𝑖

𝑧
0
= 𝐶
∗

1
(𝐴
∗

1
)
𝑖

𝑧
0
= 0, 𝑖 = 1, 2, . . . , 𝑛

1
− 1. (46)

For 𝑠 ∈ [𝑡 − 𝜏, 𝑡], it follows from (41) that

𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝑠)) 𝑧

0

=

𝑛
1
−1

∑

𝑘=0

𝛾
𝑘
(𝑡 − 𝑠) 𝐵

∗

1
𝐴
∗

1

𝑘

𝑧
0
= 0.

(47)

For 𝑠 ∈ [0, 𝑡 − 𝜏], the same argument yields

[𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝑠)) + 𝐶

∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼−1

×𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝜏 − 𝑠)) ] 𝑧

0

=

𝑛
1
−1

∑

𝑘=0

𝛾
𝑘
(𝑡 − 𝑠) 𝐵

∗

1
𝐴
∗

1

𝑘

𝑧
0

+

𝑛
1
−1

∑

𝑘=0

𝜆
𝑘
(𝑡 − 𝜏 − 𝑠) 𝐶

∗

1
𝐴
∗

1

𝑘

𝑧
0
= 0.

(48)

Hence, 𝑧
0
∈ Ker𝑊(𝑓, 𝑡), which implies

Ker𝑊(𝑓, 𝑡) ⊇

𝑛
1
−1

⋂

𝑖=0

Ker𝐵∗
1
(𝐴
∗

1
)
𝑖

𝑛
1
−1

⋂

𝑖=0

Ker𝐶∗
1
(𝐴
∗

1
)
𝑖

. (49)

From (45) and (49), we know that (32) is true. The proof is
therefore completed.

The reachable set for system (1) (or (11)) may be defined
as follows.

Definition 3. Any vector 𝜔 ∈ R𝑛 in 𝑛-dimensional vector
space is said to reachable if there exists an admissible
initial data (𝑥

0
, 𝜓) ∈ A, admissible control input 𝑢(𝑡) ∈

Cℎ
𝑝
([0, +∞),R𝑚), and 𝑡

𝑓
> 0 such that the solution of system

(1) (or (11)) satisfies 𝑥(𝑡
𝑓
, 𝑥
0
, 𝜓) = 𝜔.

Let R(𝑥
0
, 𝜓) be the reachable set from any admissible

initial data (𝑥
0
, 𝜓) ∈ A. Then

R (𝑥
0
, 𝜓)

= {𝜔 ∈ R
𝑛

| (𝑥
0
, 𝜓) ∈ A, 𝑢 (𝑡) ∈ Cℎ

𝑝
([0, +∞) ,R

𝑚

) ,

𝑡
𝑓
> 0, 𝑥 (𝑡

𝑓
, 𝑥
0
, 𝜓) = 𝜔} .

(50)
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Considering the reachable set from the initial conditions
𝑥
0
= 0 and 𝜓 ≡ 0, we have the following theorem.

Theorem 4. For system (11), the reachable set R(0, 0) can be
represented as

R (0, 0) = ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ , (51)

where “⊕” is the direct sum in vector space.

Proof. Let 𝜔 ∈ R(0, 0), from (15), (16), and (50); then there
exists 𝑡

𝑓
> 0 and 𝑢(𝑡) ∈ Cℎ

𝑝
([0, +∞),R𝑚) such that

𝜔
1
= ∫

𝑡
𝑓

0

(𝑡
𝑓
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡
𝑓
− 𝑠)
𝛼

] 𝐵
1
𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡
𝑓
−𝜏

0

(𝑡
𝑓
− 𝜏 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡
𝑓
− 𝜏 − 𝑠)

𝛼

]

× 𝐶
1
𝑢 (𝑠) 𝑑𝑠.

(52)

Combining (41) and (52) yields

𝜔
1
=

𝑛
1
−1

∑

𝑘=0

∫

𝑡
𝑓

0

𝜑
𝑘
(𝑡
𝑓
− 𝑠)𝐴

𝑘

1
𝐵
1
𝑢 (𝑠) 𝑑𝑠

+

𝑛
1
−1

∑

𝑘=0

∫

𝑡
𝑓
−𝜏

0

𝜙
𝑘
(𝑡
𝑓
− 𝜏 − 𝑠)𝐴

𝑘

1
𝐶
1
𝑢 (𝑠) 𝑑𝑠.

(53)

Therefore, 𝜔
1
∈ ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩. Moreover, we also have

𝜔
2
= −

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡
𝑓
) + 𝑁

𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡
𝑓
− 𝜏)] ,

(54)

which implies that 𝜔
2
∈ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩. Thus,

R (0, 0) ⊆ ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ . (55)

On the other hand, we need to prove

R (0, 0) ⊇ ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ . (56)

Suppose that

𝜔 = [
𝜔
1

𝜔
2

] ∈ ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ , (57)

where 𝜔
1
∈ ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩, 𝜔
2
∈ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩, and 𝜔

1
̸= 0,

𝜔
2

̸= 0. For the initial conditions 𝑥
0
= 0 and 𝜓(𝑡) ≡ 0, 𝑡 ∈

[−𝜏, 0], let 𝑢(𝑠) = 𝑢
1
(𝑠) + 𝑢

2
(𝑠); then we have

𝑥
1
(𝑡) = ∫

𝑡

𝑡−𝜏

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
[𝑢
1
(𝑠) + 𝑢

2
(𝑠)] 𝑑𝑠

+ ∫

𝑡−𝜏

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

]

× 𝐵
1
[𝑢
1
(𝑠) + 𝑢

2
(𝑠)] 𝑑𝑠

+ ∫

𝑡−𝜏

0

(𝑡 − 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

]

× 𝐶
1
[𝑢
1
(𝑠) + 𝑢

2
(𝑠)] 𝑑𝑠,

(58)

𝑥
2
(𝑡) = −

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝑢
1
(𝑡) + 𝑁

𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝑢
1
(𝑡 − 𝜏)]

−

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝑢
2
(𝑡) + 𝑁

𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝑢
2
(𝑡 − 𝜏)] .

(59)

As discussed by Yip and Sincovec [3], we choose 𝑢
1
(𝑠) =

𝑓(𝑠)𝑦(𝑠) to satisfy

∫

𝑡−𝜏

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
𝑓 (𝑠) 𝑔 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝜏

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐶
1
𝑓 (𝑠 − 𝜏) 𝑔 (𝑠 − 𝜏) 𝑑𝑠

= 𝜔
1
− ∫

𝑡−𝜏

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
𝑢
2
(𝑠) 𝑑𝑠

− ∫

𝑡−𝜏

0

(𝑡 − 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

]

× 𝐶
1
𝑢
2
(𝑠) 𝑑𝑠 ≡ �̂�

1
,

𝑐

𝐷
𝑘𝛼

𝑢
1
(𝑡) =

𝑐

𝐷
𝑘𝛼

𝑢
1
(𝑡 − 𝜏) = 0, 𝑘 = 0, 1, 2, . . . , 𝜐 − 1.

(60)

Then 𝑢
1
(𝑠) contributes nothing to 𝑥

2
(𝑡) at 𝑠 = 𝑡 and 𝑠 = 𝑡 − 𝜏.

Now, we prove that (60) is true.
In fact, for �̂�

1
∈ ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩, fromLemma 2, there exists

𝑧 ∈ R𝑛 such that𝑊(𝑓, 𝑡)𝑧 = �̂�
1
.

Let

𝑦 (𝑠) =

{{{{{{{{{

{{{{{{{{{

{

𝑓 (𝑠) [𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝑠))

+𝐶
∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝜏 − 𝑠))] 𝑧,

0 ≤ 𝑠 ≤ 𝑡 − 𝜏,

𝑓 (𝑠) 𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

(𝐴
∗

1
(𝑡 − 𝑠)) 𝑧,

𝑡 − 𝜏 ≤ 𝑠 ≤ 𝑡, −𝜏 ≤ 𝑠 ≤ 0.

(61)
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Then

∫

𝑡−𝜏

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
𝑢
1
(𝑠) 𝑑𝑠

+ ∫

𝑡

𝜏

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐶
1
𝑢
1
(𝑠 − 𝜏) 𝑑𝑠

= ∫

𝑡

𝑡−𝜏

𝑓 (𝑠) (𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

]

× 𝐵
1
𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡 − 𝑠)

𝛼

] 𝑓 (𝑠) 𝑧 𝑑𝑠

+ ∫

𝑡−𝜏

0

𝑓 (𝑠) {(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1

+(𝑡 − 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
}

× {𝐶
∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡 − 𝜏 − 𝑠)

𝛼

]

+𝐵
∗

1
(𝑡 − 𝑠)

𝛼−1

𝐸
𝛼,𝛼

[𝐴
∗

1
(𝑡 − 𝑠)

𝛼

] 𝑓 (𝑠)} 𝑧 𝑑𝑠

= 𝑊(𝑓, 𝑡) 𝑧 = �̂�
1
.

(62)

Therefore, (60) is true.
For 𝜔
2
∈ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩, there exist 𝑦

𝑘
, 𝑧
𝑘
such that

𝜔
2
= −

]−1

∑

𝑘=0

𝑁
𝑘

𝐵
2
𝑦
𝑘
−

]−1

∑

𝑘=0

𝑁
𝑘

𝐶
2
𝑧
𝑘
. (63)

There exists a function 𝑝(𝑠) such that 𝑐𝐷𝑘𝛼𝑝(0) = 0,
𝑐

𝐷
𝑘𝛼

𝑝(𝑡) = 𝑦
𝑘
, and 𝑐𝐷𝑘𝛼𝑝(𝑡 − 𝜏) = 𝑧

𝑘
. Let

𝑢
2
(𝑠) = {

𝑝 (𝑠) , 0 ≤ 𝑠 ≤ 𝑡,

0, −𝜏 ≤ 𝑠 ≤ 0;
(64)

then we have

𝑥
2
(𝑡) = −

]−1

∑

𝑘=0

𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝑢
2
(𝑡)

−

]−1

∑

𝑘=0

𝑁
𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝑢
2
(𝑡 − 𝜏) = 𝜔

2
,

(65)

and 𝑥
2
(0) = 0. It follows from (60) and (65) that 𝜔 ∈ R(0, 0).

Thus, (56) holds. Combining (55) and (56), we know that (51)
is true. Then the proof of Theorem 4 is completed.

4. Controllability Criteria

In this section, we proceed to investigate the controllability
criteria of system (1) and system (11) based on the reachable
set. A set of sufficient conditions and necessary conditions
for the controllability are derived based on the algebraic
approach.

Definition 5. System (1) (or (11)) is said to be controllable at
𝑡
𝑓
> 0 if one can reach any state at 𝑡

𝑓
from any admissible

initial data (𝑥
0
, 𝜓) ∈ A.

Theorem 6. Canonical system (11) is controllable if and only if

rank [𝐵
1
, 𝐴
1
𝐵
1
, . . . , 𝐴

𝑛
1
−1

1
𝐵
1
, 𝐶
1
, 𝐴
1
𝐶
1
, . . . , 𝐴

𝑛
1
−1

1
𝐶
1
] = 𝑛
1
,

(66)

rank [𝐵
2
, 𝑁𝐵
2
, . . . , 𝑁

𝑛
2
−1

𝐵
2
, 𝐶
2
, 𝑁𝐶
2
, . . . , 𝑁

𝑛
2
−1

𝐶
2
] = 𝑛
2
.

(67)

Proof. We firstly prove the necessity of Theorem 6. If system
(11) is controllable, for any 𝜔 = [

𝜔
1

𝜔
2
] ∈ R𝑛, to the initial state

𝑥
0
= 0 and initial control function 𝜓 ≡ 0, there exists 𝑡

𝑓
> 0

and a control function 𝑢(⋅) ∈ Cℎ
𝑝
([0, +∞) such that 𝜔

1
, 𝜔
2

could be written in the form of (58) and (59). That is
𝜔 ∈ ⟨𝐴

1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ , (68)

which implies that
R
𝑛

⊆ ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ . (69)

Obviously,
R
𝑛

⊇ ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ . (70)

Consequently, we have

R
𝑛

= ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ ,

⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ = R

𝑛
1 , ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩ = R

𝑛
2 .

(71)

Thus, (66) and (67) are true.
Next, we prove the sufficiency of Theorem 6. If (66) and

(67) are true, then we know that (71) holds. For any 𝜔 ∈ R𝑛

and any initial state 𝑥
0
and initial control function 𝜓(⋅), let

𝑘
1
= 𝜔
1
− 𝐸
𝛼,1

(𝐴
1
𝑡
𝛼

) 𝑥
1
(0)

− ∫

𝑡

𝑡−𝜏

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
𝜓 (0) 𝑑𝑠

− ∫

𝑡−𝜏

0

{(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
+ (𝑡 − 𝜏 − 𝑠)

𝛼−1

× 𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
} 𝜓 (0) 𝑑𝑠

− ∫

0

−𝜏

(𝑡 − 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
𝜓 (𝑠) 𝑑𝑠,

𝑘
2
= 𝜔
2
+ 𝐵
2
𝜓 (0) + 𝐶

2
𝜓 (0) .

(72)

For 𝑘 = [
𝑘
1

𝑘
2

] ∈ R𝑛 = ⟨𝐴
1
| 𝐵
1
, 𝐶
1
⟩ ⊕ ⟨𝑁 | 𝐵

2
, 𝐶
2
⟩, we have

𝑘 ∈ R(0, 0). Then there exists a control �̃�(𝑠) such that

𝑘
1
= ∫

𝑡

𝑡−𝜏

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
�̃� (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏

0

[(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
+ (𝑡 − 𝜏 − 𝑠)

𝛼−1

× 𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
] �̃� (𝑠) 𝑑𝑠,

𝑘
2
= −

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

�̃� (𝑡) + 𝑁
𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

�̃� (𝑡 − 𝜏)] .

(73)
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Let 𝑢(𝑠) = �̃�(𝑠) + 𝜓(0), then we have

𝜔
1
= 𝐸
𝛼,1

(𝐴
1
𝑡
𝛼

) 𝑥
1
(0)

+ ∫

𝑡

𝑡−𝜏

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1
𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏

0

{(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝑠)

𝛼

] 𝐵
1

+(𝑡− 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡− 𝜏 −𝑠)

𝛼

] 𝐶
1
} 𝑢 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

(𝑡 − 𝜏 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴
1
(𝑡 − 𝜏 − 𝑠)

𝛼

] 𝐶
1
𝜓 (𝑠) 𝑑𝑠,

(74)

𝜔
2
= −

]−1

∑

𝑘=0

[𝑁
𝑘

𝐵
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡) + 𝑁
𝑘

𝐶
2

𝑐

𝐷
𝑘𝛼

𝑢 (𝑡 − 𝜏)] . (75)

Thus, by Definition 5, system (11) is controllable. Therefore,
the proof is completed.

Applying the results of Yip and Sincovec [3], Tang and Li
[4], andTheorem 6 to the pair of matrices, we can obtain the
following results.

Theorem 7. Canonical system (11) is controllable if and only if

rank [𝑠𝐼 − 𝐴
1
, 𝐵
1
, 𝐶
1
] = 𝑛
1
, ∀𝑠 ∈ C, 𝑠 finite,

rank [𝑁, 𝐵
2
, 𝐶
2
] = 𝑛
2
.

(76)

Theorem 8. System (1) is controllable if and only if

rank [𝑠𝐸 − 𝐴, 𝐵, 𝐶] = 𝑛, ∀𝑠 ∈ C, 𝑠 finite,

rank [𝐸, 𝐵, 𝐶] = 𝑛.

(77)

Remark 9. If we choose 𝛼 = 1 and 𝐶 = 0, then system (1)
reduces to an integer-order singular system without control
delay. FromTheorem 8, system (1) is controllable if and only
if

rank [𝑠𝐸 − 𝐴, 𝐵] = 𝑛, ∀𝑠 ∈ C, 𝑠 finite,

rank [𝐸, 𝐵] = 𝑛,

(78)

which is just the result in [1].

If we choose 𝐸 = 𝐼, 𝐶 = 0, then system (1) reduces
to a fractional normal system without control delay. From
Theorem 8, system (1) is controllable if and only if

rank [𝐵, 𝐴𝐵, . . . , 𝐴𝑛−1𝐵] = 𝑛, (79)

which is just Corollary 3.4 in [23].
If we choose 𝐸 = 𝐼, then system (1) reduces to a fractional

normal system with control delay. From Theorem 8, system
(1) is controllable if and only if

rank [𝐵, 𝐴𝐵, . . . , 𝐴𝑛−1𝐵, 𝐶, 𝐴𝐶, . . . , 𝐴𝑛−1𝐶] = 𝑛, (80)

which is justTheorem 3 in [25].Therefore, our results extend
the existing results [1, 23, 25].

Remark 10. Theorem 8 actually offers an algebraic criterion of
the exact controllability for linear fractional singular dynam-
ical systems, which is concise and convenient to check the
controllability of such systems. Motivated and inspired by
the works of Sakthivel et al. [32–35], the approximate con-
trollability of linear (nonlinear) fractional singular dynamical
systems with the control delay will become our future inves-
tigative work.

5. An Illustrative Example

In this section, we give an example to illustrate the applica-
tions of Theorem 8.

Example 11. Consider the controllability of fractional singu-
lar dynamical systems as follows:

[

[

1 0 0

0 0 1

0 0 0

]

]

𝐷
1/2

𝑥 (𝑡) = [

[

1 0 0

0 1 1

1 0 1

]

]

𝑥 (𝑡) + [

[

1 0

1 1

0 1

]

]

𝑢 (𝑡)

+ [

[

1 0

0 1

1 1

]

]

𝑢(𝑡 −
𝜋

4
) , 𝑡 ∈ [0, +∞) ,

𝑢 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [−
𝜋

4
, 0] ,

𝑥 (0) = 𝑥
0
,

(81)

where the admissible initial data (𝑥
0
, 𝜓) ∈ A. Now, we apply

Theorem 8 to prove that system (81) is controllable. Let us
take

𝛼 =
1

2
, 𝐸 = [

[

1 0 0

0 0 1

0 0 0

]

]

, 𝐴 = [

[

1 0 0

0 1 1

1 0 1

]

]

,

𝐵 = [

[

1 0

1 1

0 1

]

]

, 𝐶 = [

[

1 0

0 1

1 1

]

]

.

(82)

If we choose 𝜆 = 1 such that det(𝜆𝐸 + 𝐴) = 2 ̸= 0, then (𝐸, 𝐴)

is regular. By using the elementary transformation of matrix,
one can obtain

rank [𝑠𝐸 − 𝐴, 𝐵, 𝐶] = rank[

[

1 0 1 ⋆ ⋆ ⋆ ⋆

0 1 −1 ⋆ ⋆ ⋆ ⋆

0 0 2 ⋆ ⋆ ⋆ ⋆

]

]

= 3,

rank [𝐸, 𝐵, 𝐶] = rank[

[

1 0 1 ⋆ ⋆ ⋆ ⋆

0 1 0 ⋆ ⋆ ⋆ ⋆

0 0 1 ⋆ ⋆ ⋆ ⋆

]

]

= 3.

(83)

Thus, byTheorem 8, system (81) is controllable.

6. Conclusions

In this paper, the reachability and controllability of frac-
tional singular dynamical systems with control delay have
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been investigated. The state structure of fractional singular
dynamical systems with control delay has been characterized
by analysing the state response and reachable set. A set of
sufficient and necessary conditions of controllability criteria
for such systems has been established based on the algebraic
approach. An example is also presented to illustrate the effec-
tiveness and applicability of the results obtained. Both the
proposed criteria and the example show that the controllabil-
ity property of fractional linear singular dynamical systems
is dependent neither on the order of fractional derivative nor
on control delay. Comparing with some existing results [1, 23,
25], we find that the algebraic approach has been extended to
consider the controllability of more general fractional singu-
lar dynamical systems. Motivated and inspired by the works
of Sakthivel et al. [32–35], the approximate controllability of
linear (nonlinear) fractional singular dynamical systems will
become our future investigative work.
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