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This paper is concerned with the fractional quasigeostrophic equation with modified dissipativity. We prove the local existence of
solutions in Sobolev spaces for the general initial data and the global existence for the small initial data when 1/2 ≤ 𝛼 < 1.

1. Introduction

This paper is concerned with the nonlocal quasigeostrophic
𝛽-plane model with modified dissipativity [1, 2]
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where (𝑥, 𝑦) ∈ Ω can be either the 2D torus T2 or the whole
space R2, 𝑡 ≥ 0, 𝑞 = Δ𝜓 − 𝐹𝜓 + 𝛽𝑦, and (1/𝑅

𝑒
)(−Δ)

1+𝛼

𝜓

with 𝛼 ∈ (0, 1) being the modified dissipative term. Let
𝐽(𝑓, 𝑔) = 𝑓

𝑥
𝑔
𝑦
− 𝑓
𝑦
𝑔
𝑥
denote the Jacobian operator; (1) can

be notationally simplified as

𝜕
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[Δ𝜓 − 𝐹𝜓] + 𝐽 (𝜓, Δ𝜓) + 𝛽
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𝑅
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(−Δ)
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In this model, 𝜓 is the geostrophic pressure, also called
the geostrophic stream function, 𝜉 = Δ𝜓 is the vertical
component of the relative vorticity, ∇⊥𝜓 = (−𝜕𝜓/𝜕𝑦, 𝜕𝜓/𝜕𝑦)

is a zeroth-order balance in the momentum equation, and
𝐹, 𝛽, and 𝑅

𝑒
are the rotational Froude number, the Coriolis

parameter, and the Reynolds number, respectively. Usually,
] = 1/𝑅

𝑒
is also called viscosity parameter. It has some

features in common with the much studied two-dimensional
surface quasigeostrophic equation (SQGE) (see [3–9] and
references therein). However the quasi-geostrophic 𝛽-plane
model has a number of novel and distinctive features.

Recently, this equation has been intensively investigated
because of both itsmathematical importance and its potential

applications in meteorology and oceanography. The quasi-
geostrophic 𝛽-plane model is a simplified model for the shal-
low water 𝛽-plane model [2, 10, 11] when the Rossby number
is small under several assumptions on the magnitude of the
bottom topography variations, which is used to understand
the atmospheric and oceanic circulation, the gulf stream, and
the variability of this circulation on time scales from several
months to several years. In this regime, quasi-geostrophic
theory is an adequate approximation to describe the flow
and is developed for the simulation of large-scale geophysical
currents in the middle latitudes.

When𝛼 = 1, this is the standard quasi-geostrophicmodel
studied in [1], which was put forward as a simplifiedmodel of
the shallowwatermodel (see also [2] for a review). In [12], the
author studied a multilayer quasi-geostrophic model, which
is a generalization of the single layer model in the case 𝛼 = 1.
The general fractional power𝛼was considered by Pu andGuo
[13]. The equation is

𝜕

𝜕𝑡
[Δ𝜓 − 𝐹𝜓] + 𝐽 (𝜓, Δ𝜓) + 𝛽
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𝑒

(−Δ)
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𝜓 + 𝑓, (3)

𝜓 (𝑥, 𝑦, 0) = 𝜓
0
(𝑥, 𝑦) . (4)

In [13], they proved the global existence of weak solutions
by employing the Galerkin approximation method for ini-
tial data belonging to the (inhomogeneous) Sobolev space
𝐻
2

(Ω). If the initial data is in the (homogeneous) Sobolev
space 𝐻̇𝑠(Ω) (𝑠 > 2), it is natural for us to ask whether (3)
has regular solutions.
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In this paper, we only consider the 2D torus T2 with
periodic boundary conditions. And we will prove the well-
posedness results of (3) under certain condition on initial
data which belong to the (homogeneous) Sobolev space
𝐻̇
𝑠

(T2) (𝑠 > 3 − 2𝛼). In Section 3, the local existence and
uniqueness of the solutions of the problem are proved in
𝐻̇
𝑠

(T2) when 𝑠 > 3 − 2𝛼 for 1/2 < 𝛼 < 1. That is, for any
initial data 𝜓
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such that (3) has a uniqueness solution on [0, 𝑇], satisfying
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However, we may not obtain the global existence of solutions
from energy (34), if the initial data has large 𝐻̇𝑠 norm.
The main reason is that in the 𝐻̇𝑠 energy estimate for (3),
the integral (Λ2(𝑠−1), 𝐽(𝜓, Δ𝜓)) ̸= 0 for 𝑠 > 2, where (𝑢, V)
denotes the integral ∫

T2
𝑢(𝑥, 𝑦)V(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 as usual. Thus, it

is necessary to control it. To overcome this essential difficulty,
we will make use of the properties of the product estimates
(Proposition 2) as well as those of the Sobolev embedding
inequality.

In Section 4, global existence and uniqueness for small
initial data in 𝐻̇𝑠(T2) are also proved when 𝑠 > 3 − 2𝛼. More
precisely, we just need the following condition:
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where 𝛾 = 1 − ((3 − 2𝛼)/𝑠).
For the cases, 𝛼 = 1/2 and 𝑠 > 3, we also obtain the

unique global solution in𝐻𝑠 proved by
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where 𝛾
1
= 1 − 2/𝑠 and 𝛾

2
= 1 − 3/𝑠.

We conclude this introduction by mentioning the global
existence result of weak solutions obtained [13].

Proposition 1. Let 𝛼 ∈ (0, 1), 𝑇 > 0, 𝜓
0
∈ 𝐻
2

(Ω), and 𝑓 ∈

𝐿
2

(0, 𝑇; 𝐿
2

(Ω)). There exists a weak solution of (3)-(4) which
satisfies

𝜓 ∈ 𝐿
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2. Notations and Preliminaries

We now review the notations used throughout the paper.
Let us denote Λ = (−Δ)

1/2. The Fourier transform 𝑓 of a
tempered distribution 𝑓(𝑥) on T2 is defined as

𝑓 (𝑘) =
1

(2𝜋)
2
∫

T2
𝑓 (𝑥) 𝑒

−𝑖𝑘⋅𝑥

𝑑𝑥. (10)

Generally, Λ𝛽𝑓 for 𝛽 ∈ R can be identified with the Fourier
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𝑖𝑘⋅𝑥

. (11)

𝐿
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(T2) denotes the space of the 𝑝th-power integrable func-
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For any tempered distribution 𝑓 onΩ and 𝑠 ∈ R, we define
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𝐻̇
𝑠 denotes the homogeneous Sobolev space of all𝑓 for which

‖𝑓‖
𝐻̇
𝑠 is finite. The homogeneous counterparts of 𝐻̇𝑠 are

denoted by𝐻𝑠.
Next, this section contains a few auxiliary results used

in the paper. In particular, we recall, by now, the classical,
product, and commutator estimates, as well as the Sobolev
embedding inequalities. Proofs of these results can be found
for instance, in [14–16].

Proposition 2 (product estimate). If 𝑠 > 0, then, for all 𝑓, 𝑔 ∈
𝐻
𝑠

∩ 𝐿
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1
, 𝑝
2
, and

𝑝
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∈ (1,∞). In particular
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In the case of a commutator we have the following
estimate.

Proposition 3 (commutator estimate). Suppose that 𝑠 > 0

and 𝑝 ∈ (1,∞). If 𝑓, 𝑔 ∈ S, then
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𝑠
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𝑠
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where 𝑠 > 0, 1/𝑝 = 1/𝑝
1
+ 1/𝑝

2
= 1/𝑝

3
+ 1/𝑝

4
, and 𝑝

1
, 𝑝
2
,

and 𝑝
3
∈ (1,∞).

We will use as well the following Sobolev inequality.
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Proposition 4 (Sobolev inequality). Suppose that 𝑞 > 1, 𝑝 ∈
[𝑞,∞), and

1

𝑝
=
1

𝑞
−
𝑠

𝑑
. (17)

Suppose that Λ𝑠𝑓 ∈ 𝐿
𝑞; then 𝑓 ∈ 𝐿

𝑝 and there is a constant
𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝

≤ 𝐶
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𝑠
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󵄩󵄩󵄩󵄩𝐿𝑞
. (18)

The following result is from Henry [17] with extensions
for nonintegral order derivatives like in, for example, Triebel
[18, 19].

Proposition 5. If 0 ≤ 𝑎 ≤ 1, 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞, and 𝑚, 𝑘 are
nonnegative with

𝑘 −
𝑛

𝑞
= 𝑎(𝑚 −

𝑛

𝑝
) + (1 − 𝑎) (−

𝑛

𝑟
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1

𝑞
≤
𝑎

𝑝
+
1 − 𝑎

𝑟

(19)

except that one requires 𝑎 ̸= 1when𝑚−(𝑛/𝑝) = 𝑘, 1 < 𝑝 < ∞,
then there is a constant 𝐶 such that
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1−𝑎
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for all 𝑢 ∈ 𝐶∞
𝑐
.

3. Local Existence and Large Data

In [7], the authors studied and established the existence
and uniqueness of local and global solutions to the two-
dimensional SQGE. It is natural that (3) ismore complex than
SQGE.However, we also establish an analogue. In this section
we will prove that (3) is locally well-posed in 𝐻̇𝑠(T2) when
𝑠 > 3 − 2𝛼 for 1/2 < 𝛼 < 1. Regarding arbitrarily large initial
data, we obtain the following result.

Theorem 6 (local existence). Let 𝛼 ∈ (1/2, 1) and fix 𝑠 > 3 −
2𝛼. Assume that 𝜓
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Proof. First of all, multiplying (3) by Λ2(𝑠−1)𝜓, we get the
following energy inequality:
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Integration by parts gives us the following estimate:
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We estimate the first term on the right side by
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2(𝑠−1)

𝜓)
󵄨󵄨󵄨󵄨󵄨
≤
𝑅
𝑒

2

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−2

𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

1

2𝑅
𝑒

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 . (25)

To handle the second term, we proceed as follows.
First note that

󵄨󵄨󵄨󵄨󵄨
(𝐽 (𝜓, Δ𝜓) , Λ

2(𝑠−1)

𝜓)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(∇
⊥

𝜓 ⋅ ∇Δ𝜓,Λ
2(𝑠−1)

𝜓)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
Λ
𝑠−𝛼−2

(∇
⊥

𝜓 ⋅ ∇Δ𝜓) , Λ
𝑠+𝛼

𝜓
󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−2

(∇
⊥

𝜓 ⋅ ∇Δ𝜓)
󵄩󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−1

(∇
⊥

𝜓 ⋅ Δ𝜓)
󵄩󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
.

(26)

The estimate of the product term follows from Proposition 2.
Hence, we have
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−1

(∇
⊥

𝜓 ⋅ Δ𝜓)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 (
󵄩󵄩󵄩󵄩Λ
𝑠−𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Δ𝜓

󵄩󵄩󵄩󵄩𝐿2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼+1

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿2𝑝/(𝑝−2)
) .

(27)

We now fix an arbitrary 𝑝 such that

2

𝑠 − 1
< 𝑝 <

2

1 + (1 − 2𝛼)
=

1

1 − 𝛼
. (28)

Note that 𝑝 > 2 since 𝑠 > 2 and the range for 𝑝 is
nonempty since 𝑠 > 3 − 2𝛼. For 𝛼 ∈ (1/2, 1), our choice of
𝑝 and Proposition 5 give

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼+1

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝

≤
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝜉

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

𝜉

𝐿
2 , (29)

where 𝜉 ∈ (0, 1) may be computed explicitly from 𝜉𝛼 = 2 −

𝛼 − (2/𝑝).
In order to estimate ‖Λ𝑠−𝛼𝜓‖

𝐿
2‖Δ𝜓‖

𝐿
2 in (27), we split it

into two cases.

Case 1 (3 − 2𝛼 < 2 < 𝑠). From Proposition 5 and Sobolev
inequality, we have

󵄩󵄩󵄩󵄩Λ
𝑠−𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

𝜃

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

1−𝜃

𝐿
2

≤
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

𝜃

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝜃

𝐿
2 ,

(30)
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where 𝜃 = (1 −𝛼)/(1 + 𝛼). In addition, since 𝜓 has zero mean
and 𝑝 > 2/(𝑠 − 1), from the Sobolev embedding we obtain

󵄩󵄩󵄩󵄩Λ𝜓
󵄩󵄩󵄩󵄩𝐿2𝑝/(𝑝−2)

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2
,

󵄩󵄩󵄩󵄩Δ𝜓
󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2
.

(31)

Combining estimates (27)–(31) gives

1

2

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
] +

1

𝑅
𝑒

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2

≤ 𝑅
𝑒

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−2

𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶(

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

1+𝜃

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2−𝜃

𝐿
2

+
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

1+𝜉

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2−𝜉

𝐿
2 ) ,

(32)

where 0 < 𝜉 < 1 and 𝜃 = (1 − 𝛼)/(1 + 𝛼) is as defined earlier.
The second term on the right side of (32) is bounded using
the 𝜀-Young inequality as

1

2𝑅
𝑒

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐶𝑅

−(1+𝜃)/(1−𝜃)

𝑒

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

(2−𝜃)/(1−𝜃)

𝐿
2

+ 𝐶𝑅
−(1+𝜉)/(1−𝜉)

𝑒

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

(2−𝜉)/(1−𝜉)

𝐿
2

(33)

and we finally obtain the following estimate:

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
] +

1

2𝑅
𝑒

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2

≤ 𝑅
𝑒

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−2

𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶(
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2(2−𝜃)/(1−𝜃)

𝐿
2 +

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2(2−𝜉)/(1−𝜉)

𝐿
2 ) .

(34)

Using Gronwall’s inequality, from estimate (34) we may
deduce the existence of a positive time

𝑇 = (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻̇𝑠−𝛼−2)

,
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩𝐻̇𝑠
, 𝑅
𝑒
) (35)

such that

𝜓 ∈ 𝐿
∞

(0, 𝑇; 𝐻̇
𝑠

(T
2

)) ∩ 𝐿
2

(0, 𝑇; 𝐻̇
𝑠+𝛼

(T
2

)) . (36)

Note that we have 2(2 − 𝜃)/(1 − 𝜃) > 2, 2(2 − 𝜉)/(1 − 𝜉) > 2,
and hence wemay not obtain the global existence of solutions
from the energy (34), if the initial data has large 𝐻𝑠 norm.
These a priori estimates can be made formal using a standard
approximation procedure. We omit further details

Case 2 (3 − 2𝛼 < 𝑠 < 2). Using Proposition 5, we obtain

󵄩󵄩󵄩󵄩Δ𝜓
󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝜃
1

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

𝜃
1

𝐿
2 , (37)

where 𝜃
1
= (2 − 𝑠)/𝛼. From Sobolev embedding, we have

󵄩󵄩󵄩󵄩Λ
𝑠−𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2
. (38)

Then, using the same method as in Case 1, we can complete
Theorem 6.

4. Global Existence and Small Data

The main result of this section concerns global well-
posedness in case of small initial data.

Theorem 7 (global existence). Let 𝛼 ∈ (1/2, 1), 𝑓 ∈

𝐿
2

(0,∞; 𝐻̇
𝑠−𝛼−2

(T2)) ∩ 𝐿2(0,∞; 𝐿
2

(T2)) and let 𝜓
0
∈ 𝐻̇
𝑠

(T2)

have zero mean on T2, where 𝑠 > 3 − 2𝛼. There exists a small
enough constant 𝜀 > 0 depending on 𝑅

𝑒
, such that if

󵄩󵄩󵄩󵄩𝜓0
󵄩󵄩󵄩󵄩𝐻̇𝑠
𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2
𝑡
𝐻̇
𝑠−𝛼−2

𝑥

+ (
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

𝛾

𝐻
1

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝛾

𝐿
2

𝑡
𝐿
2

𝑥

) (
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

1−𝛾

𝐻̇
𝑠

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

1−𝛾

𝐿
2

𝑡
𝐻̇
𝑠−𝛼−2

𝑥

) < 𝜀,

(39)

where 𝛾 = 1 − (3 − 2𝛼)/𝑠, then the unique smooth solution 𝜓
of the Cauchy problem (3)-(4) is global in time; that is, 𝜓 ∈

𝐿
∞

(0,∞; 𝐻̇
𝑠

(T2)).

Proof. We proceed as in the proof ofTheorem 6.The product
term in (27) is now estimated by

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−1

(∇
⊥

𝜓 ⋅ Δ𝜓)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 (
󵄩󵄩󵄩󵄩Λ
𝑠−𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Δ𝜓

󵄩󵄩󵄩󵄩𝐿2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼+1

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿2𝑝/(𝑝−2)
) ,

(40)

where 𝑝 = 1/(1 − 𝛼), so that

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼+1

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝

≤
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
. (41)

Similarly, in order to estimate ‖Λ𝑠−𝛼𝜓‖
𝐿
2‖Δ𝜓‖

𝐿
2 in (40),

we split it into two cases.

Case 3 (3 − 2𝛼 < 2 < 𝑠). From Sobolev imbedding, we have

󵄩󵄩󵄩󵄩Λ
𝑠−𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
,

󵄩󵄩󵄩󵄩Δ𝜓
󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2
.

(42)

Case 4 (3 − 2𝛼 < 𝑠 < 2). Using Sobolev imbedding, we have

󵄩󵄩󵄩󵄩Λ
𝑠−𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2
,

󵄩󵄩󵄩󵄩Δ𝜓
󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
.

(43)

So, we can always obtain the following estimate

󵄩󵄩󵄩󵄩Λ
𝑠−𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Δ𝜓

󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
. (44)

With this choice of 𝑝 and the above embedding, the
product estimate gives us

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−1

(∇
⊥

𝜓 ⋅ Δ𝑢)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 (
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿2𝑝/(𝑝−2)
)

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2

(
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿2𝑝/(𝑝−2)
) .

(45)
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Combining (24)with (45) and proceeding as in (34)we obtain

1

2

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
] +

1

𝑅
𝑒

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−2

𝑓
󵄩󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿2

+ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 (
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿2𝑝/(𝑝−2)
)

(46)

which in turn implies

1

2

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
] +

1

2𝑅
𝑒

󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2

≤
𝑅
𝑒

2

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−𝛼−2

𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶
󵄩󵄩󵄩󵄩Λ
𝑠+𝛼

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 (
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿2𝑝/(𝑝−2)
) .

(47)

Observe that
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿2𝑝/(𝑝−2)
≤ 𝐶

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

𝛾

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝛾

𝐿
2 , (48)

where 𝛾 = 1 − (3 − 2𝛼)/𝑠. Therefore, if

𝐶 (
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

𝛾

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝛾

𝐿
2 ) ≤

1

4𝐶𝑅
𝑒

(49)

estimate (47) combined with Sobolev imbedding inequality
‖Λ
𝑠+𝛼

𝜓‖
𝐿
2 ≥ ‖Λ

𝑠

𝜓‖
𝐿
2 shows that

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
]

+
1

2𝑅
𝑒

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 ≤ 𝑅𝑒

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐻̇
𝑠−𝛼−2

𝑥

(50)

and hence

sup
0≤𝑡<∞

{
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
}

≤
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
0

󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
0

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝑅
𝑒

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑡
𝐻̇
𝑠−𝛼−2

𝑥

.

(51)

By Sobolev imbedding, we have
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
0

󵄩󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
0

󵄩󵄩󵄩󵄩𝐿2
. (52)

Combining (51) and (52), we get
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 ≤ 𝐶

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
0

󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝑅𝑒

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑡
𝐻̇
𝑠−𝛼−2

𝑥

. (53)

Note that taking the 𝐿2-product of (3) with 𝜓 gives for any
𝑡 > 0

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩
∇𝜓

󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
] +

1

𝑅
𝑒

∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
Λ
1+𝛼

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
≤ 𝑅
𝑒

󵄩󵄩󵄩󵄩
𝑓
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑥

.

(54)

Thus, there exists some constant 𝐾 (dependent on 𝐹) such
that

sup
0≤𝑡<∞

{
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐹

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2} ≤ 𝐾

󵄩󵄩󵄩󵄩𝜓0
󵄩󵄩󵄩󵄩

2

𝐻
1 + 𝐾

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2
𝑡
𝐿
2

𝑥
(55)

which gives us a basic uniform estimate of 𝜓 in 𝐿∞
𝑡
𝐻
1

𝑥
.

Hence, from (53) and (55) we obtain that condition (49)
is satisfied for all 𝑡 > 0 as long as we have

󵄩󵄩󵄩󵄩𝜓0
󵄩󵄩󵄩󵄩𝐻̇𝑠
𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2
𝑡
𝐻̇
𝑠−𝛼−2

𝑥

+ (
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

𝛾

𝐻
1

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝛾

𝐿
2

𝑡
𝐿
2

𝑥

)

× (
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

1−𝛾

𝐻̇
𝑠

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

1−𝛾

𝐿
2

𝑡
𝐻̇
𝑠−𝛼−2

𝑥

) < 𝜀,

(56)

where 𝜀 is sufficiently small, thereby concluding the proof of
the theorem.

Note also that the proof of Theorem 7 fails for the value
𝛼 = 1/2. Thus, 𝛼 = 1/2 indeed is the limit of the local well-
posedness theory. Nonetheless, we still can prove that the
considered system is globally well-posed for small data.

Theorem 8 (global existence for small data). Let 𝑠 > 3

and assume that the initial data 𝜓
0
∈ 𝐻̇
𝑠

(T2) and 𝑓 ∈

𝐿
2

(0,∞; 𝐻̇
𝑠−(5/2)

(T2)) ∩ 𝐿2(0,∞; 𝐿
2

(T2)) have zero mean on
T2. There exists a sufficiently small constant 𝜀 > 0 depending
on 𝑅
𝑒
, such that if

(
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

𝛾
1

𝐻
1

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝛾
1

𝐿
2

𝑡
𝐻̇
𝑠−(5/2)

𝑥

)(
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

1−𝛾
1

𝐻̇
𝑠

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

1−𝛾
1

𝐿
2

𝑡
𝐻̇
𝑠−(5/2)

𝑥

)

+ (
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

𝛾
2

𝐻
1

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝛾
2

𝐿
2

𝑡
𝐿
2

𝑥

) (
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

1−𝛾
2

𝐻̇
𝑠

𝑥

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

1−𝛾
2

𝐿
2

𝑡
𝐻̇
𝑠−(5/2)

𝑥

) < 𝜀,

(57)

where 𝛾
1
= 1−(2/𝑠) and 𝛾

2
= 1−(3/𝑠), then the unique smooth

solution

𝜓 ∈ 𝐿
∞

(0,∞; 𝐻̇
𝑠

(T
2

)) (58)

of the Cauchy problem (3)-(4) is global in time.

Proof. We proceed as in the proof of Theorem 7 and obtain
the energy estimate

1

2

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
] +

1

𝑅
𝑒

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠+(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−(5/2)

𝑓
󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠+(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−(3/2)

(∇
⊥

𝜓 ⋅ Δ𝜓)
󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠+(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿2
.

(59)

The second term on the right side is estimated using the
product estimate in Proposition 2. Thus we obtain, similar to
(45),
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−(3/2)

(∇
⊥

𝜓 ⋅ Δ𝜓)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 (
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿∞
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠+(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Δ𝜓

󵄩󵄩󵄩󵄩𝐿∞
)

≤ 𝐶 (
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿∞
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠+(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑠+(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩Δ𝜓

󵄩󵄩󵄩󵄩𝐿∞
) .

(60)

By interpolation inequality, we have
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩𝐿∞
≤
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝛾
1

𝐿
2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

𝛾
1

𝐿
2 ,

󵄩󵄩󵄩󵄩Δ𝜓
󵄩󵄩󵄩󵄩𝐿∞

≤
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝛾
2

𝐿
2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

𝛾
2

𝐿
2 ,

(61)
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where 𝛾
1
= 1− (2/𝑠) and 𝛾

2
= 1− (3/𝑠). Combining estimates

(61) gives

1

2

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−1

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
] +

1

𝑅
𝑒

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠+(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤
1

2𝑅
𝑒

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠−(5/2)

𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
𝐶𝑅
𝑒

2

󵄩󵄩󵄩󵄩󵄩
Λ
𝑠+(1/2)

𝜓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

× (
󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝛾
1

𝐿
2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

𝛾
1

𝐿
2 +

󵄩󵄩󵄩󵄩Λ
𝑠

𝜓
󵄩󵄩󵄩󵄩

1−𝛾
2

𝐿
2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

𝛾
2

𝐿
2) .

(62)

We obtain the desired result as in the proof ofTheorem 7.

Remark 9. When 2 < 𝑠 ≤ 3, the result of Theorem 8 is still
open.
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