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This paper presents a flexible solution methodology for the capacitated vehicle routing problem with stochastic travel times
(CVRPSTT).One of the basic ideas of themethodology is to consider a vehicleworking time lower than the actualmaximumvehicle
working time when designing CVRPSTT solutions. In this way, the working time surplus can be used to cope with unexpected
congestions when necessary. Another important idea is to transform the CVRPSTT instance to a limited set of capacitated vehicle
routing problems (CVRP), each ofwhich is defined by a given percentage of themaximumvehicle working time.Thus, our approach
can take advantage of any efficient heuristic that already exists for the CVRP. Based on the two key ideas, this paper presents a
simulation-based algorithm, in which Monte Carlo simulation is used to obtain estimates of the cost and the reliability of each
solution, and the Clarke and Wright heuristic is improved to generate more reliable solutions. Finally, a number of numerical
experiments are done in the paper with the purpose of analyzing the efficiency of the described methodology under different
uncertainty scenarios.

1. Introduction

Congestion is a common phenomenon in most urban areas
of the world, and it can be caused by a variety of factors, such
as accidents, traffic conditions, and weather conditions. In
urban logistics, congestion creates substantial fluctuations in
travel times and hence affects carriers’ cost structure and the
relative weight of wages and overtime expenses [1]. Ignoring
congestion and the travel time fluctuations when developing
route plans for pick-up and/or delivery vehicles can result
in inefficient and suboptimal solutions. Therefore, the travel
time among customers and depot is found to be a crucial
factor of vehicle routing in urban logistics.

Despite a great amount of research on the vehicle routing
problem (VRP), considerable research has been devoted to
the general problem by using constant values to represent
the travel times. Research on the problem with variant travel
times is comparatively sparse. To our knowledge, there are
mainly two types of research that are related to the problem
with variant travel times in the existing literature. These
research work are discussed in the following.

Considering time-dependent travel times in solving
vehicle routing problems can reduce the costs of ignoring
the changing environment to some extent [2]. The time-
dependent VRP (TDVRP) was first formulated by Malan-
draki and Daskin [3, 4], who proposed dividing the time
horizon in𝑀 slices and assigning a constant travel time 𝑡

𝑖𝑗

𝑚

for each arc (𝑖, 𝑗) and slice𝑚.Therefore, the travel time of each
arc is a piecewise step function [5]. Most studies on TDVRP
have paid attention to the FIFO property when developing
models and algorithms for the problem. And it is only in
recent years that a number of heuristics had emerged [6–9]
that are enabled to deal with large-scale problems.

However, the TDVRP is not completely correspondent
with the actual congestions as a result of the following two
points despite the fact that the planning gap (difference
between plan and actual) has been reduced by the research of
TDVRP. First, a number of researches in the transportation
science have revealed that many factors can lead to conges-
tions, such as length and width of road, number of crossings,
tunnels, and bridges, accident possibilities, weather condi-
tions, and even seasonal shopping [10]; congestion levels are
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never the same from day to day on the same route because the
variety of traffic-influencing events that influence congestion
are never the same [10], and hence, travel times on the same
route are usually different even at the same period of a day
[10–12]. Second, there are usually some alternative routes
between twoplaces in the actual transportation network, each
of which has its own distribution of travel times. Therefore,
the travel time distribution between two places should be a
composite function of the travel time distribution of each
alternative route. A recent study by Garaix et al. [13] showed
that not considering alternative paths can be disadvantageous
in many situations.

The above findings undermine the hypothesis of the
studies of TDVRP because the travel time 𝑡

𝑖𝑗

𝑚 for each arc
(𝑖, 𝑗) and slice 𝑚 should be a variable, not a constant, even
at the same time of a day. The study of Kenyon and Morton
[14], from their experiments of small stochastic vehicle
routing problems (SVRP) with only nine nodes, indicates
that solutions to the stochastic model, in which the travel
time 𝑡

𝑖𝑗

𝑚, for each arc (𝑖, 𝑗) and slice 𝑚, is considered as a
stochastic variable, can be significantly better than solutions
obtained by solving the associatedmean-valuemodel (i.e., the
deterministic vehicle routing problem in which all random
parameters are replaced with their population means). This
can be explained from a simple fact that given a variable
𝑡
𝑖𝑗

𝑚 for the travel time of edge (𝑖, 𝑗), there is little probability
for a solution to contain the edge (𝑖, 𝑗) as a result of a large
variance of 𝑡

𝑖𝑗

𝑚. However, if 𝑡
𝑖𝑗

𝑚 is regarded as a constant, the
characteristic of 𝑡

𝑖𝑗

𝑚, such as its variance and its probability
density, will be certainly neglected. Furthermore, a great deal
of research in the transportation science field has founded
their theory on a stochastic time-dependent transportation
network [15], which also indicates the importance of consid-
ering the stochasticity of travel times.

Studies of the vehicle routing problems with stochastic
travel times (VRPSTT), in which the travel time between
every node pair is a stochastic variable, canmake up the above
deficiencies of TDVRP. However, the VRPSTT is arguably
one of the most challenging and practical variants of the VRP
[16], and in the literature, only a few studies addressed the
VRPSTT. Laporte et al. [17] proposed a variant of VRPSTT
chance-constrained programming model and compensation
model, where a penalty function was introduced to prorate
the delay time. Park and Song [18] subsequently constructed
three new heuristic algorithms based on an extension of VRP
algorithms. Kenyon and Morton [14] developed two stochas-
tic programming models. Lecluyse et al. [19] introduced the
variability in traffic flow into the model, which was used
to evaluate the routes based on the uncertainty involved.
Connors and Sumalee [20] and Chen and Zhou [21] studied
the stochasticity of travel times from the view of travelers’
equilibrium. Zhang et al. [16] studied the stochastic travel-
time vehicle routing problem with simultaneous pick-ups
and deliveries and developed a new scatter search approach
for the problem by incorporating a new chance-constrained
programming method. Furthermore, an efficient way to
generate multivariate random variables that are interrelated
is presented in [22], which gives a better way to look at the

�
3

�
11

R
3

V = {�
0
, �

1
, . . . , �

14
}

E = {(�
0
, �

4
), (�

4
, �

3
), (�

3
, �

2
), (�

2
, �

1
), (�

1
, �

0
), . . .}

R
1

R
2

�
10

�
9

�
8

�
7

�
6

�
5�

4

�
1

�
2 �

0

�
12

�
13

�
14

Figure 1: A graphical representation of an example of the problem.

randomness of the travel times froma global level, rather than
redistricting it to each local route. And papers [23–25] show a
novel approach, that is, the joint diagonalization strategy, for
solving stochastic algebraic equations, which is an alternative
to solve the VRPSTT.

Although there have been a number of studies on
VRPSTT in the literature, practical algorithms and solution
approaches are still needed for such problem which is a very
challenging anddifficult combinatorial optimization problem
due to the stochasticity of travel times.

To solve the CVRPSTT, we present a novel simulation-
based algorithm. Different from other methods on VRPSTT,
this algorithm solves the problem by “reducing” a complex
CVRPSTT, where no efficient metaheuristics have been
developed yet, to a limited set of more tractable CVRPs
where excellent, fast, and extensively tested metaheuristics
exist. Furthermore, this algorithm is valid for any travel time
statistical distribution with a known mean, and cannot only
solve CVRPSTT instances with hundreds of nodes efficiently
but also provide decision makers with various solutions to
practical problems.

The remainder of this paper is arranged as follows. First,
the CVRPSTT is described and analyzed in the next section.
Section 3 describes the main framework and the details of
the solution procedures. The experimental settings and the
results are presented in Section 4, and the paper finishes with
the conclusions.

2. Problem Description

Let 𝐺 = (𝑉, 𝐸) be a graph, as exemplified in Figure 1, where
𝑉 = {V

0
, V
1
, . . . , V

𝑛
} is the set of customer nodes {V

1
, . . . , V

𝑛
}

and depot node V
0
and 𝐸 = {(V

𝑖
, V
𝑗
) : V
𝑖
, V
𝑗
∈ 𝑉, 𝑖 ̸= 𝑗} is the set

of edges. Each node V
𝑖
is associated with a positive demand

𝑞
𝑖
except 𝑞

0
= 0. Each edge (V

𝑖
, V
𝑗
) ∈ 𝐸(𝑖 ̸= 𝑗) is associated

with a positive random travel time 𝑡
𝑖𝑗
. Define 𝐾 as a set of

identical vehicles available to deliver goods from the depot to
the customers. Each vehicle has the same capacity 𝐶 (𝐶 ≫

max{𝑞
𝑖
/1 ≤ 𝑖 ≤ 𝑛}) and the same maximum vehicle working

time𝑊which can be also defined as the depot closing time in



Journal of Applied Mathematics 3

a day given that the depot opening time is 0. Some additional
constraints associated with the problem are as follows:

(1) each customer node is serviced by a single vehicle;
(2) a vehicle cannot stop twice at the same customer

node;
(3) all vehicles begin and end their routes at the depot

(V
0
);

(4) no vehicle can be loaded exceeding its maximum
capacity 𝐶;

(5) a vehicle can perform only one route in a day;
(6) once a routing plan is made, vehicles must run

according to the plan no matter what disruption
events occur until they return to depot in order to
meet delivery commitments for customers;

(7) if a vehicle returns to the depot after the depot closing
time, a penalty related to the overtime wages for
vehicle driver and depot worker will be incurred.
Actually, it is likely for a vehicle to return later than
its scheduled time to depot if any unexpected traffic
congestion occurs.

The route of vehicle 𝑘,𝑅
𝑘
, which is defined as (V

0

𝑘
, V
1

𝑘
, . . .,

V
𝑛

𝑘
, V
𝑛+1

𝑘
) where V

0

𝑘 and V
𝑛+1

𝑘 represent the depot and the
other vertices represent customers, is a cycle starting and
ending at the depot and serving a given subset of sequential
customers. Let𝑥

𝑖𝑗

𝑘
= 1 if the edge (V

𝑖
, V
𝑗
) is included in𝑅

𝑘
and

0 otherwise. Define 𝑇
𝑘
as the completion time that vehicle 𝑘

completes all its delivery tasks and returns to the depot given
its route 𝑅

𝑘
in. It is called “deficient route” for the route of

vehicle 𝑘 if 𝑇
𝑘
> 𝑊. In a deficient route, a penalty cost has to

be incurred.
The CVRPSTT studied in this paper is a single-objective

problem in which the total cost, including the travel cost of
vehicles and the overtime wages, should be minimised. The
objective function for CVRPSTT can be defined as formula
(1), where 𝑐

1
and 𝑐
2
are used to transform the travel time and

the vehicle’s lag time of returning to depot to travel cost and
overtime wage, respectively. Generally, 𝑐

2
/𝑐
1
> 1, implying

a penalty of overtime wage, and hence, formula (1) can be
naturally simplified to formula (2), where𝑝 = 𝑐

2
/𝑐
1
indicating

a penalty coefficient when vehicles arrive at depot later than
their closing time. And the value of𝑝 can bemuch larger than
1, for example, 10, 20. Consider

𝑓
0
= 𝑐
1
⋅ ∑

𝑘∈𝐾

∑

(V𝑖 ,V𝑗)∈𝐸

𝑡
𝑖𝑗
𝑥
𝑖𝑗

𝑘
+ 𝑐
2
⋅ ∑

𝑘∈𝐾

max {𝑇
𝑘
−𝑊, 0} , (1)

𝑓 = ∑

𝑘∈𝐾

∑

(V𝑖 ,V𝑗)∈𝐸

𝑡
𝑖𝑗
𝑥
𝑖𝑗

𝑘
+ 𝑝 ⋅ ∑

𝑘∈𝐾

max {𝑇
𝑘
−𝑊, 0} . (2)

Formula (2) can be also understood as the total cost when
𝑐
1
= 1. Thus, the total cost contains two components, the

travel cost defined as∑
𝑘∈𝐾
∑
(V𝑖 ,V𝑗)∈𝐸

𝑡
𝑖𝑗
𝑥
𝑖𝑗

𝑘 and the penalty cost
defined as 𝑝⋅∑

𝑘∈𝐾
max{𝑇

𝑘
− 𝑊, 0}. Let 𝑧𝑘 = 1 if𝑇

𝑘
> 𝑊 and

0 otherwise.Then the reliability of a solution can be defined as

∑
𝑘∈𝐾
𝑧
𝑘
/|𝐾|, indicating the percentage of the total number of

deficient routes in a solution, and it is an important index in
analyzing a solution.

3. The Simulation-Based Algorithm

There are two points that make it difficult to solve the
CVRPSTT. First, it is challenging to integrate the stochasticity
of travel times into an algorithm. Note that 𝑡

𝑖𝑗
in formula (2)

is a random value which can be different from day to day
even in the same time of a day. And it is not reasonable to
represent it with a single value in solving the problem. Second,
how to balance the travel cost and the penalty cost is another
important factor in constructing a solution. In general, a
solution with less travel cost usually has more penalty cost.
This is mainly because a route in a solution with less travel
cost is often fully engaged in delivery tasks, and hence, there
is often not much flexible time left to cope with unexpected
transportation congestions. And once the unexpected event
occurs, the penalty cost will probably be incurred. Therefore,
an algorithm that is devoted to minimizing the total cost 𝑓
should be able to integrate the stochasticity of travel times and
generate a solution that can balance well the travel cost and
the penalty cost and hence minimize the total cost.

To solve the CVRPSTT, we present a new simulation-
based algorithm (SBA), which can cope well with the above
difficulties.The key idea behind our algorithm is to transform
the issue of solving CVRPSTT into a new issue which consists
of solvingmultiple “conservative” CVRPs, each characterized
by a specific risk (probability) of suffering deficient routes.
The term “conservative” refers here to the fact that only a
certain percentage of the maximum vehicle working time
will be considered when solving CVRPs. In other words, part
of the maximum vehicle working time will be reserved for
attending possible “emergencies” caused by underestimated
random congestions during the actual distribution (routing
execution) process. The motivation of transforming CVRP-
STT to CVRP comes from the facts that: (a) reducing the
value of𝑊 generally means that more time can be reserved
for a vehicle to cope with the possible congestion, and thus,
the risk of returning late to the depot will simultaneously
be reduced; (b) but on the other hand, if too much time is
reserved for vehicles, the travel cost will increase because
long routes that have exceeded the specified percentage of
the maximum vehicle working time have to be split; (c) there
will be a certain percentage of the maximum vehicle working
time that can minimize the total cost defined by formula
(1); and (d) our algorithm is devoted to finding the optimal
percentage by transforming CVRPSTT to multiple CVRPs
and solving every CVRP.

The main framework of SBA is described in Algorithm 1.
The specific details of our algorithm are explained in the

following.

(1) The random travel time 𝑡
𝑖𝑗
for edge (𝑖, 𝑗) can follow

any known statistical distribution, either theoretical
or empirical, as long as its expected value exists. Our
algorithm does not assume that all travel times must
necessarily follow one designated distribution so that
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1 Set Solutions=⌀, TotalCosts=⌀, TravelCosts=⌀, PenaltyCosts=⌀, Reliabilities=⌀;
2 Calculate the expected travel time 𝑒𝑡

𝑖𝑗
for each edge (𝑖, 𝑗) (V

𝑖
, V
𝑗
∈ 𝑉, 𝑖 ̸= 𝑗) in CVRPSTT

according to its distribution function;
3 For 𝑟 = 𝑟

0
to 𝑟max step 𝑟step, do:

4 Transform CVRPSTT to the well-known CVRP in which the maximum vehicle working
time is set to𝑊× 𝑟 that cannot be exceeded by any vehicle and the travel time
between any pair of nodes is replaced with its expected value;

5 Solve the CVRP (𝑟) by using any existing heuristic and insert the obtained solution OS into
Solutions;

6 Set TotalCost = 0, where TotalCost denotes the expected total cost for solution OS,
TravelCost = 0, where TravelCost denotes the expected travel cost for solution OS,
PenaltyCost = 0, where PenaltyCost denotes the expected penalty cost for solution OS, and
Reliability = 0, where Reliability denotes the reliability for solution OS;

7 For 𝑖 = 1 to 𝑖max step 1, do:
8 Construct the simulant travel time matrix, each element of which is generated

according to its travel time distribution function and indicates the simulant travel time
for an edge, for example 𝑑𝑡

𝑖𝑗
(0 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 𝑛) for the travel time of edge (𝑖, 𝑗);

9 Calculate the total cost, denoted as C1, the travel cost, denoted as C2, the penalty
cost, denoted as C3, and the reliability, denoted as C4 for solution OS according to
their definitions in Section 2 by using 𝑑𝑡

𝑖𝑗
to substitute the travel time of each edge

(𝑖, 𝑗) and usingW to represent the maximum vehicle working time that cannot be
exceeded by any vehicle;

10 Set TotalCost =TotalCost +C1/𝑖max, TravelCost =TravelCost +C2/𝑖max,
PenaltyCost =PenaltyCost +C3/𝑖max, and Reliability =Reliability +C4/𝑖max;

11 Next 𝑖;
12 Insert TotalCost into TotalCosts, TravelCost into TravelCosts, PenaltyCost into

PenaltyCosts, and Reliability into Reliabilities;
13 Next 𝑟;
14 Get the minimum expected total cost from TotalCosts and its corresponding solution CS from

Solutions.
15 Improve the solution CS by a method that is further described in Algorithm 2;
16 Return the improved solution CS and its corresponding total cost, travel cost, penalty

cost and reliability, which have been updated in step 15.

Algorithm 1: The suggested algorithm of the SBA.

different edges can follow different distributions.
Furthermore, since our algorithm uses simulations,
it could also consider dependences among different
travel times.

(2) The loop variable 𝑟 (0 < 𝑟 ≤ 1) represents the
percentage of𝑊 that is considered for solving CVRP.
In otherwords, when solvingCVRP(r), themaximum
vehicle working time is set to𝑊× 𝑟, and𝑊× (1 − 𝑟)

represents the reserved time for a vehicle to cope with
travel time delays due to congestions.

(3) The CVRP(r) can be solved by using any efficient
CVRP methodology, for example, the classic Clarke
and Wright heuristic [26] which is used in our
experiments because the heuristic is able to generate
a very good solution in short time and is thus suitable
for large-scale simulation.

(4) The total cost of solution OS obtained by solving
CVRP(r) in step 5 does not contain any penalty cost,
and this is an assumed situation that the travel time
is equal to the expected travel time 𝑒𝑡

𝑖𝑗
for edge (𝑖, 𝑗),

and no congestions or unexpected events exist during
the distribution process. However, congestions are

inevitable in actual distributions. Therefore, it is
necessary to simulate the actual travel times in order
to determine the expected cost for a solution.

(5) Steps 7–11 use Monte Carlo simulation to generate
random travel time for each edge according to its
distribution function and calculate the total cost, the
travel cost, the penalty cost, and the reliability of
OS based on the disrupted travel time value 𝑑𝑡

𝑖𝑗
of

any edge (𝑖, 𝑗) in OS. After iterating this process for
some hundred/thousand times, a random sample of
observations regarding these variable travel time are
obtained, and an estimate for the expected total cost
of OS can be calculated in step 10 by the following
expression: 𝐸(𝑓) = ∑

𝑖max
𝑖=1
𝑓
𝑖
⋅ (1/𝑖max) where 𝑓

𝑖

represents the total cost of 𝑖th time simulation. And
estimates for the expected travel cost, the expected
penalty cost, and reliability of OS can be simultane-
ously calculated in step 10 by similar expressions.

(6) In step 8, 𝑑𝑡
𝑖𝑗
is generated as the travel time for an

edge (𝑖, 𝑗) in a simulation and is used to substitute its
expected travel time 𝑒𝑡

𝑖𝑗
which is employed in solving

its corresponding CVRP in step 5. Given a reasonable
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1 Set the incumbent solution IS=CS, where CS is obtained from step 14 of Algorithm 1;
2 Fabricate a solution IS whose expected total cost is set to an infinite value that cannot be

exceeded by the total cost of any solution;
3 While the expected total cost of IS is less than that of IS, do:
4 Set IS = IS, Solutions=⌀;
5 Fetch the vehicle that returns to depot at the earliest expected time from all vehicles in IS

and denote the vehicle’s route by er;
6 Fetch the vehicle that returns to depot at the latest expected time from all vehicles in IS

and denote the vehicle’s route by lr;
7 For each customer node cn of lr, do:
8 For each position ep of er, into which a customer node can be inserted, do:
9 Delete cn from lr and insert cn into er at its position ep;
10 Insert the solution obtained from the above step into Solutions;
11 Next ep;
12 Next cn;
13 Fetch a solution with the least expected travel cost from Solutions into IS;
14 Use Monte Carlo simulation method like steps 6–11 in Algorithm 1 to calculate the expected

total cost of solution IS;
15 Endwhile;
16 Return the solution IS.

Algorithm 2: The method of improving a solution generated by a CVRP heuristic.

travel time distribution function, it is obvious that
𝑑𝑡
𝑖𝑗
should not be negative or less than or more than

values that violate common sense.

(7) The solution CS obtained in step 14 can be improved
because we have found from a large number of obser-
vations that some routes in the obtained solution
CS are fully engaged in deliveries while others are
relatively idle and able to undertake more tasks in
their spare time. The reason that produces the result
of the imbalance is that the solution CS is generated
by an existing heuristic for CVRP which aims at
minimizing the travel cost but not penalty cost of a
solution. In other words, CVRP does not consider
penalty cost at all. As a result, the fully engaged route
is prone to return late to depot and hence results in a
higher penalty cost once any unexpected congestion
occurs.

To solve the problem, we develop a method for step 15
to balance the workloads among multiple vehicle routes so
that the penalty cost and the associated total cost of solution
CS could be reduced simultaneously.The key idea behind the
method is to iterate the process of deleting a customer node
from a relatively engaged route, inserting it into a relatively
idle route and evaluating the new solution by using Monte
Carlo simulation until the total cost cannot be reduced. The
method in step 15 is described in Algorithm 2.

Note that step 14 in Algorithm 2 is the most time-
consuming step whose efficiency should be improved. We
implement the improvement by (1) storing the expected total
cost for each route of solution IS, (2) calculating the expected
total costs for only two changed routes er and lr in step 15,
and (3) adding up the expected total costs of all the changed

routes and unchanged routes as the total cost of solution IS.
This way is proved from our experiments to greatly accelerate
the simulation process of step 14.

4. Computational Results

In this section, we present some computational results of the
SBA, which has been coded in Java and run on a laptop with
an Intel Core 2 Duo CPU T7100 at 1.8 GHz, 2GB RAM, and
the Microsoft Windows XP operating system.

4.1. Test Instances and Parameter Setting. As mentioned by
Li et al. [27], there are no commonly used benchmarks in
the SVRP literature, and therefore, each paper presents a
different set of randomly generated instances for the different
SVRP variants that they studied [14, 16, 17, 27]. This situation
makes it difficult to compare the performance of different
approaches. As a result, we generalize a well-known set of
59 classical CVRP instances which includes a diversity of
clustered and disperse problems of different sizes by using
random travel times instead of constant ones and compare the
results of our algorithmwith the best-knownCVRP solutions
reported in [28]. The details of these instances can also be
found here [28], and the distribution and its parameters used
to randomly generate travel times are given below so that
other authors can use the same data sets and distribution for
verifying and benchmarking purposes.

Since the travel times in VRPSTT can follow any dis-
tribution and our heuristic does not have any limitation as
long as its mean value is known, we choose the Log-Normal
distribution to model the travel time for each edge as a result
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Table 1: The relationship between the variance and the mean value for each variance level.

Variance level The relationship between the variance and the mean value
The relatively low variances Var[𝑡

𝑖𝑗
] = 0.05𝐸[𝑡

𝑖𝑗
]
2

Themedium variances Var[𝑡
𝑖𝑗
] = 0.5𝐸[𝑡

𝑖𝑗
]
2

The relatively high variances Var[𝑡
𝑖𝑗
] = 1.5𝐸[𝑡

𝑖𝑗
]
2

Table 2: Results of alternative solutions to the A-n54-k7 instance with medium variances.

𝑟
0
and 𝑟max # Routes Travel cost Penalty cost Total cost Reliability

0.80 8 1445.73 57.45 2020.25 0.866
0.81 8 1297.66 42.62 1723.82 0.895
0.82 7 1252.56 40.78 1660.33 0.890
0.83 7 1266.24 44.90 1715.29 0.888
0.84 7 1248.71 33.89 1587.61 0.903
0.85 7 1247.59 38.08 1628.41 0.908
0.86 7 1244.77 20.54 1450.13 0.901
0.87 7 1251.99 20.35 1455.48 0.908
0.88 7 1262.13 33.05 1592.59 0.911
0.89 7 1197.46 36.35 1560.94 0.912
0.90 7 1187.62 35.31 1540.76 0.898
0.91 7 1197.09 39.53 1592.39 0.895
0.92 7 1198.62 39.40 1592.66 0.899
0.93 7 1196.18 38.65 1582.66 0.896
0.94 7 1198.17 42.13 1619.50 0.887
0.95 7 1207.03 38.95 1596.48 0.885
0.96 7 1200.60 40.72 1607.76 0.887
0.97 7 1195.30 43.04 1625.75 0.887
0.98 7 1203.17 45.07 1653.87 0.885
0.99 7 1202.01 47.90 1681.00 0.884
1 7 1202.31 50.46 1706.94 0.878
The bold two lines represent the two solutions with the minimum total cost and the maximum reliability, respectively.

of its nonnegative values.The two parameters of the distribu-
tion, the location parameter 𝜇

𝑖
and the scale parameter 𝜎

𝑖
, are

formulated by the following two expressions, respectively:

𝜇
𝑖
= ln (𝐸 [𝑡

𝑖𝑗
]) −

1

2
⋅ ln(1 +

Var [𝑡
𝑖𝑗
]

𝐸[𝑡
𝑖𝑗
]
2
) ,

𝜎
𝑖

2
= ln(1 +

Var [𝑡
𝑖𝑗
]

𝐸[𝑡
𝑖𝑗
]
2
) .

(3)

For each instance, we changed the travel time of an edge
(𝑖, 𝑗) (V

𝑖
, V
𝑗
∈ 𝑉, 𝑖 ̸= 𝑗) in CVRP instances to a random value

𝑡
𝑖𝑗
by setting 𝐸[𝑡

𝑖𝑗
] to the Euclidean distance between the

two nodes according to their coordinates.The original CVRP
instances can be particularly defined with Var[𝑡

𝑖𝑗
] = 0. But for

CVRPSTT instances, we have the inequation Var[𝑡
𝑖𝑗
] > 0. A

larger variance of an edge indicates a higher uncertaintywhen
travelling the edge. Referencing the idea from Juan et al. [29],
our heuristic is tested under three different variance levels,
the relatively low variances, the medium variances, and the
relatively high variances. And these variance levels are further
illustrated in Table 1, in which the relationship between the
variance and the mean value for each variance level is given.

In order to decide the parameter values of our algorithm,
preliminary experiments were performed on some instances
with different parameter configurations to determine which
configuration would be effective in solving the CVRPSTT.
The preliminary experiments showed a satisfactory perfor-
mance when the parameter values were set to 𝑟

0
= 0.8,

𝑟step = 0.01, 𝑟max = 1, 𝑖max = 1000, 𝑝 = 10, and𝑊 = 1.5
∗ (the

average route length of each instance’s best-known solution).

4.2. Detailed Results for One Instance. In this section, we
present the numerical results for only one of the 59 instances
in order to better illustrate our algorithm. Given the classical
A-n54-k7 instance, we generalized it by considering the travel
time 𝑡

𝑖𝑗
for edge (𝑖, 𝑗) (V

𝑖
, V
𝑗
∈ 𝑉 and 𝑖 ̸= 𝑗) as a Log-Normal

random variable with E[𝑡
𝑖𝑗
] = the Euclidean distance and

Var[𝑡
𝑖𝑗
] = 0.5𝐸2 (medium-variance scenario). Next, we ran

our algorithm for theA-n54-k7 instance 21 ((1−0.8)/0.01+1 =
21) times in which different runs have different 𝑟

0
and 𝑟max

values. But in one run we set 𝑟max = 𝑟0 in order to make the
algorithm generate a solution for only one percentage of the
maximum working time. Table 2 shows alternative solutions
(for the A-n54-k7 instance with medium variances) that we
obtained for different values of 𝑟

0
and 𝑟max. For each of the

obtained solutions, the following additional information is
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Figure 2: The changing trends of travel costs, penalty costs, total costs, and reliabilities for all values of 𝑟.

provided: number of routes employed, travel costs, penalty
costs, total costs, and reliabilities.

In order to better demonstrate the character of alternative
solutions to the A-n54-k7 instance, graphical representations
are given in Figure 2 to illustrate the changing trends of travel
costs, penalty costs, total costs, and reliabilities for all values
of 𝑟. Definitions and solving procedures of these four indexes
are given in Sections 2 and 3. FromFigure 2, the following five
points can be observed and discussed.

4.2.1. Discussions on Travel Costs. Overall, the index of travel
costs shows a first decreased and then steady trend. The
overall decreased trend when the 𝑟 value is between 0.8 and
0.9 is because with the growth of the 𝑟 value, a vehicle is able
to complete more tasks, and hence, some good routes with
more tasks can be adopted for a solution. And one of the
main reasons to explain the overall steady trend when the 𝑟
value is between 0.9 and 1 is that the major factor that limits
the task number of a route becomes the vehicle capacity, not
the maximum working time, when the 𝑟 value is bigger than
0.9. In other words, vehicles that satisfy the constraint of the
maximumworking time do not necessarily meet the capacity
requirement, but vehicles that meet the capacity requirement
usually satisfy the constraint of the maximum working time.
And the situation is maintained for this instance when the 𝑟
value is between 0.8 and 1.

However, there are some exceptions in the overall trend,
such as a small increase when the 𝑟 value is between 0.8 and
0.9.This is consistent with common sense under the situation
of random travel times.

4.2.2. Discussions on Penalty Costs. There are two factors
that influence the index of penalty costs: the total travel
distance of all vehicles and the time span reserved to cope
with congestions. The longer the travel distance, the greater
the possibility of returning late to depot and hence the greater
the penalty cost. The more the reserved time, the smaller the

possibility of returning late to depot and hence the smaller the
penalty cost. If the travel distance is long and simultaneously
much time has been reserved to cope with congestions,
whether the penalty cost increases or decreases depends on
the factor which plays a greater role. When the 𝑟 value is
less than 0.87, the penalty cost is gradually reduced with the
growth of the 𝑟 value, which indicates that the travel distance
factor plays a greater role. When the 𝑟 value is greater than
0.87, the penalty cost gradually increases with the growth of
the 𝑟 value, which indicates that the reserved time factor plays
a greater role.

4.2.3. Discussions on Total Costs. The figure of the total costs
shows a first decreased and then increased trend. This is
an index of the weighted sum of travel cost and penalty
cost according to formula (2) in Section 2. Note that when
𝑟 is 0.86, neither the travel cost of 1244.77 nor the penalty
cost of 20.54 is the minimum, but the total cost reaches the
minimum value of 1450.13.

4.2.4. Discussions on Reliabilities. The two indexes of both
penalty costs and reliabilities can illustrate the level of a
solution’s probability of suffering deficient routes. However,
the index of reliabilities shows a first increased and then
decreased trend, which is just the opposite to the overall
trend of penalty costs.This is because the index of reliabilities
denotes the percentage of the total number of deficient routes
while the penalty cost is the sum of penalty costs of deficient
routes. But note that the maximum reliability (0.912) and the
minimum penalty cost (20.35) do not simultaneously appear
in the same 𝑟 value as a result of the difference in their
expressions.

Relative to the penalty cost index, a solution’s reliability
provides decision makers with another index to evaluate the
reliability of the solution. If a decision maker cares about the
length of (𝑇

𝑘
− 𝑊), he can consider the index of penalty

cost; otherwise, if a decision maker wants to minimize the
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Table 3: Average results of the 59 instances for three different scenarios.

Scenario Results of best-known CVRP solutions Results of SBA Gap
BKS expected
total cost # Routes Reliability

SBAS
expected
total cost

# Routes Reliability 𝑟

Low-variance scenario Var[𝑡
𝑖𝑗
] = 0.15𝐸[𝑡

𝑖𝑗
]
2 901.56 7.44 0.956 889.75 8.25 0.976 0.934 1.25%

Medium-variance scenario Var[𝑡
𝑖𝑗
] = 0.5𝐸[𝑡

𝑖𝑗
]
2 1462.23 7.44 0.855 1398.87 8.44 0.887 0.915 4.19%

High-variance scenario Var[𝑡
𝑖𝑗
] = 1.5𝐸[𝑡

𝑖𝑗
]
2 3517.20 7.44 0.692 3401.83 8.46 0.740 0.902 3.73%

number of deficient routes, the index of reliabilitiesmay come
in handy.

4.2.5.TheRunning Time ofOurAlgorithm. As for the running
time of our algorithm, the process of generating the results
for one alternative solution to the A-n54-k7 instance can be
completed in just three seconds (average 3062 milliseconds
in our laptop whose configuration is relatively low). Even for
an instance with 135 nodes (instance F-n135-k7), the process
of generating the results for one alternative solution can be
completed in about 19 seconds. Therefore, it is completely
affordable to implement the process for most real cases.

4.3. Results for 59 Instances. Table 3 shows the average results
obtained for all 59 classical instances that we generalized and
tested under three different scenarios. The meaning of each
column is as follows.

(i) BKS expected total cost: the expected total cost of
the best-known solution (BKS), whose computing
process is similar to SBA (Algorithm 1) except the
following differences: the BKS computing process
does not include step 15; meanwhile, steps 4 and 5 are
replaced by directly reading the best-known solution
instead of generating a solution for CVRP(r), and 𝑟

0

and 𝑟max are set equal to ensure the loop (steps 2–13)
can be run only once.

(ii) SBAS expected total cost: the expected total cost of
the solution generated by the SBA (SBAS) described
in Algorithm 1.

(iii) # Routes: number of routes.
(iv) Gap: the gaps in expected total costs between BKS and

SBAS, calculated as ((BKS − SBAS)/SBAS) × 100%,
where BKS and SBAS stand for the values of their
expected total costs.

The table corresponds to three uncertainty scenarios
(low-variance, medium-variance, and high-variance) which
were previously described. As discussed in this section,
similar ideas and conclusions to the ones reached for the A-
n54-k7 instance with medium variance also apply for other
instances and uncertainty levels.

From the above tables, the following four points can be
observed and discussed.

(1) In a low-variability scenario defined by Var[𝑡
𝑖𝑗
] =

0.15𝐸[𝑡
𝑖𝑗
]
2, results show that the expected total costs

of SBAS tend to provide a better average reliability
level of 0.976 when applied to the CVRPSTT. As is
discussed before, lower reliability levels imply larger
number of deficient routes and thus higher expected
variable costs. This explains the average gap of 1.25%
between expected total costs of BKS and SBAS, the
former containing the total expected costs associated
with the BKS when demands are stochastic instead of
deterministic. Notice also that the mean number of
routes for the chosen solutions has slightly increased
from 7.44 in BKS to 8.25 in SBAS, reserving some
extra time tends to increase the number of necessary
routes, but the resulting solution tends to bemore reli-
able or robust. Finally, in this low-variability scenario
the average value for the recommended reserving
time level is 𝑟 = 0.934; that is, each vehicle will reserve
up to 6.6% of the maximum vehicle working time to
attend unexpected congestions.

(2) In the case of the medium-variability scenario with
Var[𝑡
𝑖𝑗
] = 0.5E[𝑡

𝑖𝑗
]2, the BKS is less reliable than

before (the average reliability level is about 0.855),
and therefore, their associated expected total costs
tend to be higher in this new scenario characterized
by a higher degree of uncertainty. And the average
gap in expected total costs between BKS and SBAS
is about 4.19%. Meanwhile, our methodology is able
to provide more reliable solutions (approximated
average reliability of 0.887). Other interesting results
in this second scenario are the average number of
routes (8.44), which is slightly higher than the case
of the low-variability (8.25), and the average 𝑟 value
(0.915), which is lower than the case of the low-
variability (0.934).

(3) The high-variability scenario reports an estimated
average reliability of just 0.692 for the BKS and a
corresponding average gap of 3.73% in expected total
costs between BKS and SBAS. At the same time, our
methodology generates solutions with an estimated
reliability index of 0.740. Also, the average number of
routes in our solutions is 8.46, which is slightly higher
than in previous scenarios, and the average 𝑟 value
is 0.902, which is slightly smaller than in previous
scenarios.

(4) It is interesting that all average reliabilities of SBAS in
Table 3 are higher than the average reliabilities of BKS.
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Figure 3: Average reliabilities for different uncertainty levels and
solutions.

Figure 3 graphically summarizes the average reliabil-
ity indices for each uncertainty level and solution
(BKS versus SBAS).

5. Conclusions

In this paper, we present a simulation-based algorithm for
the capacitated vehicle routing problemwith stochastic travel
times (CVRPSTT).One of the basic ideas of ourmethodology
is to consider a vehicle working time lower than the actual
maximum vehicle working time when designing CVRPSTT
solutions. In this way, theworking time surplus can be used to
cope with unexpected congestions when necessary. Another
important idea is to transform the CVRPSTT instance to a
limited set of CVRPs, each of which is defined by a given
percentage of the maximum vehicle working time. Finally,
a number of numerical experiments are done in the paper
with the purpose of analyzing the efficiency of the described
methodology under different uncertainty scenarios.

In our view, the main contributions of this paper include
the following.

(1) The methodology is virtually valid for any statistical
distribution with a known mean, either theoretical,
for example, Normal, Log-Normal, Weibull, Gamma,
and so forth, or experimental, in which historical
data could be used to model each edge’s travel time.
Also, the methodology can be naturally extended
to consider different distributions for different edges
and possible dependences among these travel times.
The methodology is thus developed because in the
practical situations travel time between any pair of
nodes can be different from day to day even at the
same time of a day and theremay be some correlations
among travel times of multiple routes, which, to our
knowledge, cannot be easily dealt with by the existing
methodologies.

(2) Our methodology can be used to solve CVRPSTT
instances with hundreds of nodes in a reasonable
time by “reducing” a complex CVRPSTT, where no
efficient metaheuristics have been developed yet, to a

limited set of more tractable CVRPs where excellent,
fast, and extensively tested metaheuristics exist.

(3) Moreover, our methodology can provide decision
makers with various solutions to practical problems,
each of which considers a different percentage of
the actual maximum vehicle working time, indicating
different levels of risk or reliability. This makes the
methodologymore flexible in order to satisfy different
decision makers.
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