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This paper concerns motion of relativistic membranes in the Schwarzschild-anti de Sitter space-time. We derive a nonlinear
equation for relativistic membranes moving in the Schwarzschild-anti de Sitter space-time, discuss spherical symmetric solutions
for the motion equations, and obtain some interesting physical results.

1. Introduction

This paper concerns the motion of relativistic strings in the
Schwarzschild-anti de Sitter space-time. The metric reads
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which is a spherically symmetric solution of the Einstein field
equations. The Schwarzschild-anti de Sitter space-time is a
fundamental physical space-time; it plays an important role
in general relativity, the theory of black holes, and modern
cosmology.

As is well known, the theory of minimal surfaces/sub-
manifolds has a long history originating from the papers of
Lagrange in 1760 and the famous Plateau problem. And this
theory plays a significant role in general relativity, the theory
of black holes, particle physics, and so on. A good deal of
attention has been paid to the theory of minimal surfaces
in the Euclidean space R𝑛 and Riemannian manifolds in
recent years. On this topic, we refer to two classical books
[1, 2]. For the theory of extremal surfaces/submanifolds in
theMinkowski space-time,many important results have been
derived ([3–6]). Particularly, the theory of extremal sur-
faces/submanifolds is very important in elementary particle
physics. It is a relativistic string model that deals with a one-
dimensional relativistic object, whose world surface is an

extremal surface in the Minkowski space-time [7]. For the
relativistic string theory, we refer to an excellent book by
Barbashov and Nesterenko [8].

The authors in [9] simplified the description of relativis-
tic membrane in the Minkowski space-time by the light-
cone gauge. By variables transformations, a relationship was
established between the dynamics of relativistic membrane
and two-dimensional fluid dynamics. Moreover, in [10] they
obtained a vector-valued equation of first order for relativistic
membrane by introducing the orthonormal (1 + 3)-gauge,
and then they deduced a second-order equation for minimal
graph 𝑧 = 𝑧(𝑡, 𝑥

1
, 𝑥
2
) in the Minkowski space-time R1+3

by the hodograph technique. Furthermore, using reduction
of membrane equation in light-cone gauge, they obtained
a second-order partial differential equation for the velocity
potential. In the paper [11], a lot of simplifications of the
equations of motion for the relativistic membrane were
exhibited such as the orthonormal light-cone gauge, minimal
graph method, and level set method. According to these
reformulations, Hoppe found some classical solutions for the
equations governing the motion of relativistic membrane in
the Minkowski space-time.

Here we want to mention a result in [12]: the authors
investigated the basic equations for the motion of rela-
tivistic membranes in the Schwarzschild space-time and
got a nonlinear wave equation, and then they studied a
spherical symmetric solution for the motion of relativistic
membranes, giving many new physical results. By variational
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and geometrical methods, Huang and Kong in [13] obtained
a new kind of equation describing the motion of relativistic
membranes in the Minkowski space-time R1+𝑛 (𝑛 ⩾ 3),
gave some interesting properties, and showed that all plane-
wave solutions of these equations were light-like extremal
submanifolds and vice versa except for a type of special
solution.

Kong and Zhang studied the motion of relativistic closed
strings in the Minkowski space R1+𝑛 in [14]; particularly,
the authors obtained a general solution formula for this
systemof nonlinear equations. Based on the solution formula,
they showed that the motion of closed strings was always
time-periodic and extended the solution formula to finite
relativistic strings. Moreover, in [15], Kong et al. investigated
the dynamics of relativistic strings in the Minkowski space-
time R1+𝑛 (𝑛 ≥ 2). They first obtained a system with 𝑛
nonlinear wave equations of Born-Infeld type describing
the motion of the string, and then they showed that this
system enjoyed some interesting geometric properties; in the
end, they gave a sufficient and necessary condition for the
global existence of extremal surfaces without a space-like
point in R1+𝑛. Furthermore, they made a lot of numerical
analyses demonstrating that various topological singularities
developed in finite time in the motion of the string.

This paper mainly focuses on the equations and spherical
symmetric solutions for themotion of relativistic membranes
in the Schwarzschild-anti de Sitter space-time. Concretely, we
derive an interesting nonlinear wave equation for relativistic
membranes and study systematically the spherical symmetric
solutions for the motion of membranes.

The paper is organized as follows. In Section 2, we recall
the basic equations for the motion of relativistic membranes
in the Schwarzschild-anti de Sitter space-time. Section 3 is
devoted to a systematical study on the spherical symmetric
solutions of the equations for the motion of relativistic
membranes; at the same time, some new and interesting
physical phenomena are discovered and illustrated. Some
discussions are given in Section 4.

2. Basic Equation

A four-dimensional Lorentzian manifold (𝑀,𝑔
𝜇]) is called

the Schwarzschild-anti de Sitter space-time if the metric of
𝑀 can be written as (2) with 𝜆 < 0 ([16]). Consider
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where 𝑚 is a positive constant representing the mass of the
universe and 𝜆 is the cosmological constant. Assume 𝑋 =
(𝑡, 𝑟, 𝜃, 𝜑) is a position vector of a point in the Schwarzschild-
anti de Sitter space-time. Moreover, let 𝑟

+
be the largest root

of the equation 1−2𝑚/𝑟−(𝜆/3)𝑟2 = 0. Obviously, it holds that
0 < 𝑟

+
< 2𝑚. Since we are only interested in the motion of

membrane in the region 𝑟 > 𝑟
+
, we may suppose that 𝑟

0
> 𝑟
+
.

Consider the motion of a relativistic membrane in the
Schwarzschild-anti de Sitter space-time

(𝑡, 𝜃, 𝜑) → (𝑡, 𝑟 (𝑡, 𝜃, 𝜑) , 𝜃, 𝜑) . (3)

In the coordinates (𝑡, 𝜃, 𝜑), the inducedmetric of the subman-
ifoldM is
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We assume that the submanifold M is 𝐶2 and time-like;
that is,
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The area element ofM is

𝑑A = √−Δ𝑑𝑡 𝑑𝜃 𝑑𝜑. (8)

And the submanifoldM is called extremal if 𝑟 = 𝑟(𝑡, 𝜃, 𝜑) is a
critical point of the area functional

I =∭√−Δ𝑑𝑡 𝑑𝜃 𝑑𝜑. (9)
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By calculations, we obtain the corresponding Euler-
Lagrange equation as follows:
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3. Spherical Symmetric Solutions

This section is concentrated on spherical symmetric solutions
for the motion of relativistic membranes. Now we study the
spherical symmetric solutions 𝑟 = 𝑟(𝑡) for the motion of
relativistic membranes. Therefore, in the present situation,
(10) can be simplified as the following ordinary differential
equation:
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Using (14), we derive
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which implies

𝑟 (𝑡) → +∞, when 𝑡 ↗ 𝑇max. (30)
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Figure 1: The graph of the solution 𝑟 = 𝑟(𝑡) for Cases 1(a) and 2(b).

Equation (30) shows that the solution of the initial value
problem (11) and (12) must blow up in finite time and the
life span is [0, 𝑇max), where 𝑇max is defined by (28). Different
from the case that initial velocity is equal to critical velocity in
[12], where the solution 𝑟 = 𝑟(𝑡) of the Cauchy problem exists
globally on the time 𝑡 ∈ [0,∞), in this paper the solution of
the initial value problem (11) and (12) blows up in finite time
when initial velocity is equal to critical velocity. See Figure 1
for the graph of the solution 𝑟 = 𝑟(𝑡) in the present situation.

Case 1(b) 𝑟
1
> (𝑟
0
− 2𝑚 − (𝜆/3)𝑟

3

0
)/𝑟
0
.

In this case, we have 𝐹 (𝑟
0
, 𝑟
1
) > 0. Since 𝑟

𝑡
> 0 and 𝑟

𝑡𝑡
>

0, 𝑟(𝑡) goes to the infinity. In what follows, we prove that 𝑟(𝑡)
tends to the positive infinity in finite time.

Similar to the above case, it follows from (16) that

𝑡 = ∫

𝑟

𝑟0

𝑟

𝑟 − 2𝑚 − (𝜆/3) 𝑟3

×
1

√1 + 𝐹 (𝑟
0
, 𝑟
1
) 𝑟3 (𝑟 − 2𝑚 − (𝜆/3) 𝑟3)

𝑑𝑟.

(31)

Denote

𝑇max = ∫
∞

𝑟0

𝑟

𝑟 − 2𝑚 − (𝜆/3) 𝑟3

×
1

√1 + 𝐹 (𝑟
0
, 𝑟
1
) 𝑟3 (𝑟 − 2𝑚 − (𝜆/3) 𝑟3)

𝑑𝑟.

(32)

Obviously, we have 𝑡 ⩽ 𝑇max.

We next show that 𝑇max < ∞. For a certain large 𝑟,

𝑇max = ∫
𝑟

𝑟0

𝑟

𝑟 − 2𝑚 − (𝜆/3) 𝑟3

×
1

√1 + 𝐹 (𝑟
0
, 𝑟
1
) 𝑟3 (𝑟 − 2𝑚 − (𝜆/3) 𝑟3)

𝑑𝑟

+ ∫

∞

𝑟

𝑟

𝑟 − 2𝑚 − (𝜆/3) 𝑟3

×
1

√1 + 𝐹 (𝑟
0
, 𝑟
1
) 𝑟3 (𝑟 − 2𝑚 − (𝜆/3) 𝑟3)

𝑑𝑟

< ∫

𝑟

𝑟0

𝑟

𝑟 − 2𝑚 − (𝜆/3) 𝑟3

×
1

√1 + 𝐹 (𝑟
0
, 𝑟
1
) 𝑟3 (𝑟 − 2𝑚 − (𝜆/3) 𝑟3)

𝑑𝑟

+ ∫

∞

𝑟

𝑟

− (𝜆/3) 𝑟6√− (𝜆/3) 𝐹 (𝑟
0
, 𝑟
1
)

𝑑𝑟

= ∫

𝑟

𝑟0

𝑟

𝑟 − 2𝑚 − (𝜆/3) 𝑟3

×
1

√1 + 𝐹 (𝑟
0
, 𝑟
1
) 𝑟3 (𝑟 − 2𝑚 − (𝜆/3) 𝑟3)

𝑑𝑟

+
1

− (4/3) 𝜆√− (𝜆/3) 𝐹 (𝑟
0
, 𝑟
1
)𝑟
4

< ∞.

(33)

This proves that

𝑟 (𝑡) → +∞, when 𝑡 ↗ 𝑇max. (34)
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Equation (34) implies that the solution of the Cauchy
problem (11)-(12) must blow up in finite time and the life
span is the interval [0, 𝑇max), where 𝑇max is defined by (32).
Compared to the case that initial velocity is larger than critical
velocity in [12], in the present paper 𝑇max is controlled by the
constant 𝜆. See Figure 1 for the graph of the solution 𝑟 = 𝑟(𝑡).

Case 2. Consider

𝑟
0
− 2𝑚 − (𝜆/3) 𝑟

3

0

𝑟
0

√
2𝑟
0
− 3𝑚 − 𝜆𝑟

3

0

2𝑟
0
− 𝑚 − (5/3) 𝜆𝑟

3

0

< 𝑟
1
<
𝑟
0
− 2𝑚 − (𝜆/3) 𝑟

3

0

𝑟
0

.

(35)

In this situation, we obtain from (17) and (21) that

−
2𝑚 − (2/3) 𝜆𝑟

3

0

𝑔 (𝑟
0
)
< 𝐹 (𝑟

0
, 𝑟
1
) < 0,

𝑟
𝑡
(0) = 𝑟

1
> 0, 𝑟

𝑡𝑡
(0) > 0.

(36)

By the properties of 𝑓(𝑟) and 𝑔(𝑟), there exists a point 𝑟∗ ∈
(𝑟
+
, +∞) such that

𝑓 (𝑟
∗
) = −

1

𝐹 (𝑟
0
, 𝑟
1
)
. (37)

Thus, it follows from (20) that

𝑧 = 𝑟
𝑡
= 0, when 𝑟 = 𝑟∗. (38)

On the one hand, noting (20) and the second inequality
in (36), 𝑟(𝑡) will increase until a time 𝑡∗ > 0. At the time 𝑡∗, it
holds that

𝑟
𝑡𝑡
< 0, when 𝑟 = 𝑟∗. (39)

By (36), we have 𝑟
𝑡𝑡
> 0, when 𝑟 = 𝑟

0
. So there exists a point

𝑟
⋆
∈ (𝑟
0
, 𝑟
∗
), such that

𝑟
𝑡𝑡
= 0, when 𝑟 = 𝑟

⋆
. (40)

On the other hand, when 𝑟 → 𝑟
+
+ 0,

𝑟
𝑡
→ 0, 𝑟

𝑡𝑡
→ 0. (41)

For 𝑟 → 𝑟
+
+𝛿 (𝛿 is sufficiently small and positive), both

𝑟−2𝑚−(𝜆/3)𝑟
3 and 𝑔(𝑟) are small enough and positive; thus

𝑟
𝑡𝑡
is sufficiently small and 𝑟

𝑡𝑡
> 0. Combined with (39), it

holds that there exists a point 𝑟
∗
∈ (𝑟
+
+ 𝛿, 𝑟
∗
) such that

𝑟
𝑡𝑡
= 0, when 𝑟 = 𝑟

∗
. (42)

Now we will discuss the developing with time of the
membrane, that is, the properties enjoyed by the solution of
the Cauchy problem (11) and (12). At the time 𝑡∗, it holds that

𝑟 = 𝑟
∗
, 𝑟

𝑡
= 0, 𝑟

𝑡𝑡
< 0. (43)

Therefore, 𝑟
𝑡
(𝑡) < 0 for 𝑡 > 𝑡∗. That is, when 𝑡 > 𝑡∗, 𝑟(𝑡) is a

strictly decreasing function; then there exists a time 𝑡
∗
such

that

𝑟 (𝑡
∗
) = 𝑟
∗
, 𝑟

𝑡
(𝑡
∗
) < 0, 𝑟

𝑡𝑡
(𝑡
∗
) = 0. (44)

Hence, by (20) and (21), we obtain that for 𝑡 > 𝑡
∗

𝑟 (𝑡) < 𝑟
∗
, 𝑟

𝑡
(𝑡) < 0, 𝑟

𝑡𝑡
(𝑡) > 0. (45)

Furthermore, from the fact that (42) holds when 𝑟 → 𝑟
+
+

0, we see that the solution of the Cauchy problem (11) and
(12) exists globally on the time 𝑡 ∈ [0,∞), and the solution
satisfies the following decay properties:

𝑟 (𝑡) → 𝑟
+
, 𝑟

𝑡
(𝑡) → 0, 𝑟

𝑡𝑡
(𝑡) → 0, (46)

when 𝑡 → ∞. Figure 2 is the graph of the solution for Case
2.

Case 3. Consider

0 < 𝑟
1
⩽
𝑟
0
− 2𝑚 − (𝜆/3) 𝑟

3

0

𝑟
0

× √
2𝑟
0
− 3𝑚 − 𝜆𝑟

3

0

2𝑟
0
− 𝑚 − (5/3) 𝜆𝑟

3

0

.

(47)

In this situation, it follows from (17) and (21) that

−
1

𝑓 (𝑟
0
)
< 𝐹 (𝑟

0
, 𝑟
1
) ⩽ −
2𝑚 − (2/3) 𝜆𝑟

3

0

𝑔 (𝑟
0
)
,

𝑟
𝑡
(0) = 𝑟

1
> 0, 𝑟

𝑡𝑡
(0) ⩽ 0.

(48)

Similar to Case 2, we can exactly analyze the properties
enjoyed by the solution of the Cauchy problem (11) and (12).
The graph of the solution is shown in Figure 2. Figure 2 shows
that, in this case, the solution of the Cauchy problem (11) and
(12) exists globally on the time 𝑡 ∈ [0,∞), and the solution
satisfies the decay condition (46).

Case 4. Consider

−
𝑟
0
− 2𝑚 − (𝜆/3) 𝑟

3

0

𝑟
0

× √
2𝑟
0
− 3𝑚 − 𝜆𝑟

3

0

2𝑟
0
− 𝑚 − (5/3) 𝜆𝑟

3

0

< 𝑟
1
⩽ 0.

(49)

In this case, it holds that

−
1

𝑓 (𝑟
0
)
≤ 𝐹 (𝑟

0
, 𝑟
1
) < −
2𝑚 − (2/3) 𝜆𝑟

3

0

𝑔 (𝑟
0
)
,

𝑟
𝑡
(0) = 𝑟

1
⩽ 0, 𝑟

𝑡𝑡
(0) < 0.

(50)

Similar to the discussion in Cases 2 and 3, we can exactly
analyze the properties enjoyed by the solution of the Cauchy
problem (11) and (12). See Case 4 in Figure 3 for the graph of
the solution. In this case, the solution of the Cauchy problem
(11) and (12) also exists globally on the time 𝑡 ∈ [0,∞), and
the solution 𝑟 = 𝑟(𝑡) satisfies the decay condition (46).
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Figure 2: The graph of the solution 𝑟 = 𝑟(𝑡) for Cases 2 and 3.
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Figure 3: The graph of the solution 𝑟 = 𝑟(𝑡) for Cases 4 and 5.

Case 5. Consider

𝑟
1
⩽ −
𝑟
0
− 2𝑚 − (𝜆/3) 𝑟

3

0

𝑟
0

× √
2𝑟
0
− 3𝑚 − 𝜆𝑟

3

0

2𝑟
0
− 𝑚 − (5/3) 𝜆𝑟

3

0

.

(51)

In this case, we have

𝐹 (𝑟
0
, 𝑟
1
) ⩾ −
2𝑚 − (2/3) 𝜆𝑟

3

0

𝑔 (𝑟
0
)
,

𝑟
𝑡
(0) = 𝑟

1
< 0, 𝑟

𝑡𝑡
(0) ⩾ 0.

(52)

In the present situation we only consider the case that
𝐹(𝑟
0
, 𝑟
1
) ⩾ 0; then it follows from (21) that

𝑟
𝑡𝑡
> 0, (53)

provided that 𝑟 > 𝑟
+
.

Therefore, noting (53) and using (42), we know that the
solution of the Cauchy problem (11) and (12) exists globally
on the time 𝑡 ∈ [0,∞), and the solution 𝑟 = 𝑟(𝑡) satisfies the
decay conditions (46).The graph and detailed information of
the solution in the present situation are shown in Figure 3.

4. Discussions

The Schwarzschild-anti de Sitter space-time is a fundamental
physical space-time and plays an important role in general
relativity and the theory of black holes.Thenotion of extremal
surfaces/submanifolds is used to formulate the Wilson crite-
rion of quark confinement in gauge models of strong interac-
tions.The theory of extremal surfaces/submanifolds is impor-
tant in the elementary particle physics. The world sheets of
relativistic membranes moving in physical space-times are
nothing but extremal surfaces/submanifolds in these space-
times. Some beautiful and deep results have been obtained,
but unfortunately only a few results have been known for



8 Journal of Applied Mathematics

relativistic membranes moving in the Schwarzschild-anti de
Sitter space-time.

In the present paper, we study the equations and spherical
symmetric solutions for relativistic membranes moving in
the Schwarzschild-anti de Sitter space-time. First, a nonlinear
wave equation for themotion of relativisticmembranes in the
Schwarzschild-anti de Sitter space-time is derived, and then
spherical symmetric solutions for the motion of relativistic
membranes are studied systematically.We can summarize the
main results as follows. In this paper we consider a spherical
membrane centered at the black hole 𝑟 = 0 and assume that 𝑟

0

and 𝑟
1
represent the initial position and initial velocity of the

membrane, respectively. For a given initial position 𝑟
0
> 𝑟
+
,

we find a critical initial velocity V
𝑐
= (𝑟
0
− 2𝑚 − (𝜆/3)𝑟

3

0
)/𝑟
0

such that the motion with a different initial velocity has
essentially different behavior. Exactly, (i) when 𝑟

1
> V
𝑐
, the

solution for motion of the spherical membrane must blow up
in finite time and the life span of the solution is [0, 𝑇max),
where 𝑇max is defined by (32) and 𝑇max < ∞. (ii) When
𝑟
1
= V
𝑐
, the solution also blows up in finite time and the life

span of the solution is [0, 𝑇max), where 𝑇max is given by (28)
and 𝑇max < ∞. (iii) When 𝑟

1
< V
𝑐
, the solution exists globally

on the time 𝑡 ∈ [0,∞), and the solution satisfies the following
decay conditions:

𝑟 (𝑡) → 𝑟
+
, 𝑟

𝑡
(𝑡) → 0, 𝑟

𝑡𝑡
(𝑡) → 0, (54)

when 𝑡 → ∞.
In geometry, our results show that, for a given spherical

membrane centered at the black hole 𝑟 = 0, (i) if the initial
velocity is larger than the critical velocity V

𝑐
, then singularities

in the motion will develop in finite time, precisely, at the
time 𝑇max; that is, the spherical membrane disappears at the
time 𝑇max in this case. (ii) If the initial velocity is equal to
the critical velocity V

𝑐
, similar to the above case, singularities

will develop in finite time, and the spherical membrane
disappears at the time 𝑇max in this situation. (iii) If the initial
velocity is less than the critical velocity V

𝑐
, then motion of the

spherical membrane will not stop at any finite time, and the
spherical membrane converges to the event horizon 𝑟 = 𝑟

+

when the time tends to infinity. From the graphs we see that
motion of the spherical membrane may be different due to
the different initial velocity. In this case, the moving velocity
of the membrane goes to zero when the membrane tends to
the event horizon.
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