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A 1.5-layer reduced-gravity shallow-water ocean model in spherical coordinates is described and discretized in a staggered grid
(standard Arakawa C-grid) with the forward-time central-space (FTCS) method and the Leap-frog finite difference scheme.
The discrete Fourier analysis method combined with the Gershgorin circle theorem is used to study the stability of these two
finite difference numerical models. A series of necessary conditions of selection criteria for the time-space step sizes and model
parameters are obtained. It is showed that these stability conditions are more accurate than the Courant-Friedrichs-Lewy (CFL)
condition and other two criterions (Blumberg and Mellor, 1987; Casulli, 1990, 1992). Numerical experiments are proposed to test
our stability results, and numerical model that is designed is also used to simulate the ocean current.

1. Introduction

The shallow-water model is a set of partial differential equa-
tions (PDEs), which derived from the principles of conser-
vation of mass and conservation of momentum (the Navier-
Stokes equations). Because the horizontal length scale is
much greater than the vertical length scale, under this con-
dition, the conservation of mass implies that the vertical
velocity of the fluid is very small. It can be shown from the
momentum equations that horizontal pressure gradients are
due to the displacement of the pressure surface (or free sur-
face) in a fluid, and that vertical pressure gradients are nearly
hydrostatic [1]. The vertical integrating allows the vertical
velocity to be removed from the equations; this is a classical
derivation of the shallow-water system.

The situations in fluid dynamics where the horizontal
length scale is much greater than the vertical length scale are
very common; that is to say, the vertical acceleration of the
fluid can be negligible.Theflowofwater over a free surface is a
ubiquitous physical phenomenon that has aroused many
scientists and engineers’ interest. For instance, if we consider
the Coriolis forces in shallow-water model (the Coriolis term

exists because we describe flows in a reference frame fixed
on earth), this set of equations is particularly well suited for
the study and numerical simulations of a large class of
geophysical phenomena, such as atmospheric flows, ocean
circulation, coastal flows, tides, tsunamis, and river and lake
flows [2–10].

The shallow-water equations are derived from theNavier-
Stokes equations that are nonlinear partial differential equa-
tions, which describe the motion of fluids. The nonlinearity
makes most problems difficult or impossible to solve and it is
the main contributor to the turbulence. Mathematicians and
physicists believe that the turbulence can be found through
an understanding of solutions to theNavier-Stokes equations.
However, in the mathematical field, mathematicians have not
yet proven that in three dimensions solutions always exist
(existence), or that if they do exist, then they do not contain
any singularity (that is smoothness). These are called the
Navier-Stokes existence and smoothness problems; this is one
of the seven most important open problems (the Millennium
Prize Problems) in mathematics [11]. Therefore, it is also a
challenge to make substantial progress toward the exact solu-
tion of shallow-water equations.
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Research on numerical methods for the solution of the
shallow-water system has attracted much attention; numeri-
cal simulation is an effective tool in solving them and a great
variety of numerical methods have been developed to solve
this system [12–22]. The numerical models which are based
on the shallow-water equations, especially for finite difference
numericalmodels, have been successfully applied to study the
ocean circulation; for example, the low-frequency variability
and bifurcation structure of wind-driven ocean circulation
[5–7], the shallow-water model for the study of the Gulf
Streamand its extension region [23–25], theKuroshio current
and its extension system [26–30], and so on. Although
few people discuss the stability of numerical models, only
several papers give the stability conditions of the simple
formulation and linearized shallow-water equations [20, 31–
36]. In this paper, we use the discrete Fourier analysismethod
and the Gerschgorin circle theorem to study the stability
of the shallow-water numerical models and give a series of
necessary conditions for the selection criteria of time step
size.

The remainder of the paper is organized as follows. In
Section 2, the brief description of 1.5-layer reduced-gravity
shallow-water oceanmodel has been introduced. In Section 3,
we use the FTCS method and the Leap-frog finite difference
scheme to solve the shallow-water equations in a staggered
grid. In Section 4, the discrete Fouriermethod combinedwith
the Gerschgorin circle theorem is used to analyze the stability
of these two numerical methods. In Section 5, numerical
examples are given to test our results. The conclusions are
given in Section 6.

2. Matematical Model

The mathematical derivation of the shallow-water equations
can be found in many fluid dynamics books [37] and has
already been presented by many authors. In our study, 1.5-
layer shallow-water equations in spherical coordinates are
nondimensionalized using the length scale 𝑟

0
, which is radius

of the earth, the mean depth of the upper layer 𝐻, a
characteristic horizontal velocity scale 𝑈, a time scale 𝑟

0
/𝑈,

and a wind-stress scale 𝜏
0
(see [27, 38]).

The nondimensional equations are governed by the fol-
lowing reduced-gravity, nonlinear partial differential equa-
tions:
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in which 𝑢 is the zonal velocity, V is the meridional velocity, 𝜙
is the coordinate in the zonal direction, 𝜃 is the coordinate in
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Figure 1: Staggered grid on space domain.

the meridional direction, and ℎ is the thickness of the upper
ocean. The parameters in the equations are 𝜀 = 𝑈/2Ω𝑟

0
, 𝐸 =

𝐴
𝐻
/2Ω𝑟
2

0
, and 𝐹 = 𝑔󸀠𝐻/𝑈2, where Ω is the rotation rate of

the earth, 𝐴
𝐻
is the lateral friction coefficient, and 𝑔󸀠 is the

reduced gravity.
The terms 𝐹

𝜙
and 𝐹

𝜃
in (1)-(2) are defined as follows:

𝐹
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where 𝛼 = 𝜏
0
(2Ω𝜌𝐻𝑈) is wind stress coefficient (𝜏

0
is the

amplitude of wind stress) and 𝜏
𝜙
and 𝜏
𝜃
are the zonal compo-

nent and meridional component of wind stress, respectively.
In addition, 𝜇 = 𝛾/(2Ω), where 𝛾 is the interfacial friction
coefficient.

3. Finite Difference Schemes

If one discretizes the domain to a grid with equally spaced
points with a spacing of Δ𝜙 in the 𝜙-direction, Δ𝜃 in the
𝜃-direction, and Δ𝑡 in the 𝑡-direction, we define 𝑢𝑛

𝑖,𝑗
=

𝑢(𝜃
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for 𝑖 = 0, 1, . . . ,𝑀, 𝑗 = 0, 1 . . . , 𝑁, and 𝑛 = 1, 2, . . . , 𝑄, where
𝑀, 𝑁, and 𝑄 are positive integers. The variables 𝑢, V, and ℎ
are evaluated at a staggered grid (standard Arakawa C-grid)
as shown in Figure 1; then the shallow-water equations can be
solved by using finite difference method.

3.1. The FTCS Method. The forward difference approxima-
tion is used for the time derivative and the central difference
approximation for the spatial derivatives. The difference
approximation of (1)–(3) is given by
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3.2. The Leap-Frog Scheme. The Leap-frog differences are
used for time derivatives and centered differences for space
derivatives; the diffusion terms are lagged by one time step
following the previous studies [33, 35]; we obtain
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4. Stability Analysis

In this section we present the stability conditions of the finite
difference numerical models by using the discrete Fourier
analysis method and the Gerschgorin circle theorem. The
specific analysis of procedure is given in the following parts.
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(

(

(

(

Δ𝑡𝑢
∗

2Δ𝜙

+

Δ𝑡𝐸
∗

Δ𝜙
2

Δ𝑡𝐸
∗

1

2Δ𝜙

Δ𝑡𝐹
∗

2Δ𝜙

−

Δ𝑡𝐸
∗

1

2Δ𝜙

Δ𝑡𝑢
∗

2Δ𝜙

+

Δ𝑡𝐸
∗

Δ𝜙
2

0

Δ𝑡ℎ
∗

1

2Δ𝜙

0

Δ𝑡𝑢
∗

2Δ𝜙

)

)

)

)

.

(8)

In a similar fashion, (6) can be written as the followingmatrix
equations:

X𝑛+1
𝑖,𝑗
= 𝐴
2
X𝑛
𝑖−1,𝑗

+ 𝐵
2
X𝑛
𝑖+1,𝑗

+ 𝐶
2
X𝑛
𝑖,𝑗−1

+ 𝐷
2
X𝑛
𝑖,𝑗+1

+ 𝐸
2
X𝑛
𝑖,𝑗
+ 𝐹
2
X𝑛−1
𝑖+1,𝑗

+ 𝐻
2
X𝑛−1
𝑖−1,𝑗

+𝑀
2
X𝑛−1
𝑖,𝑗+1

+ 𝑁
2
X𝑛−1
𝑖,𝑗−1

+ 𝑃
2
X𝑛−1
𝑖,𝑗
+ e
𝑛
,

(9)

where e
𝑛
= (2Δ𝑡𝐻

∗
𝜏
𝜙
, 2Δ𝑡𝐻

∗
𝜏
𝜃
, 0)
𝑇,

𝐴
2
= −𝐵
2
=
(

(

Δ𝑡V∗

Δ𝜃

0 0

0

Δ𝑡V∗

Δ𝜃

Δ𝑡𝐹

Δ𝜃

0

Δ𝑡ℎ
∗

Δ𝜃

Δ𝑡V∗

Δ𝜃

)

)

,

𝐶
2
= −𝐷
2
=

(

(

(

(

Δ𝑡𝑢
∗

Δ𝜙

Δ𝑡𝐸
∗

1

Δ𝜙

Δ𝑡𝐹
∗

Δ𝜙

−

Δ𝑡𝐸
∗

1

Δ𝜙

Δ𝑡𝑢
∗

Δ𝜙

0

Δ𝑡ℎ
∗

1

Δ𝜙

0

Δ𝑡𝑢
∗

Δ𝜙

)

)

)

)

,

𝐸
2
= (

−2Δ𝑡Φ 2Δ𝑡𝑓
∗
0

−2Δ𝑡𝑓
∗
−2Δ𝑡Φ 0

0 2Δ𝑡ℎ
∗

2
0

) ,

𝐹
2
= 𝐻
2
=(

2Δ𝑡𝐸
∗

Δ𝜃
2

0 0

0

2Δ𝑡𝐸
∗

Δ𝜃
2
0

0 0 0

),
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𝑀
2
= 𝑁
2
=(

2Δ𝑡𝐸
∗

Δ𝜙
2

0 0

0

2Δ𝑡𝐸
∗

Δ𝜙
2
0

0 0 0

),

𝑃2

=(

(

1− 4Δ𝑡𝐸
∗
(
1

Δ𝜙
2
+
1

Δ𝜃
2
) 0 0

0 1 − 4Δ𝑡𝐸
∗
(
1

Δ𝜙
2
+
1

Δ𝜃
2
) 0

0 0 1

)

)

.

(10)

Definition 1. The two-dimensional discrete Fourier trans-
form of 𝑢 ∈ ℓ

2
is the function 𝑢† ∈ 𝐿

2
([−𝜋, 𝜋] × [−𝜋, 𝜋])

defined by (see [39])

𝑢
†
(𝜉, 𝛽) =

1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽)) 𝑢
𝑚,𝑘 (11)

for 𝜉, 𝛽 ∈ [−𝜋, 𝜋].

We begin by taking the discrete Fourier transform of both
sides of (7), and we can obtain

X†𝑛+1 (𝜉, 𝛽) = 1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))X𝑛+1
𝑚,𝑘

=

1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))

× (𝐴
1
X𝑛
𝑚+1,𝑘

+ 𝐶
1
X𝑛
𝑚−1,𝑘

+ 𝐵
1
X𝑛
𝑚,𝑘

+𝐷
1
X𝑛
𝑚,𝑘+1

+ 𝐸
1
X𝑛
𝑚,𝑘−1

+ e
𝑛
)

=

𝐴
1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))X𝑛
𝑚+1,𝑘

+

𝐶
1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))X𝑛
𝑚−1,𝑘

+

𝐵
1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))X𝑛
𝑚,𝑘

+

𝐷
1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))X𝑛
𝑚,𝑘+1

+

𝐸
1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))X𝑛
𝑚,𝑘−1

+

1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽)) e
𝑛
.

(12)

By making the change of variables 𝑙 = 𝑚 ± 1 we get

1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))X𝑛
𝑚±1,𝑘

=

1

2𝜋

∞

∑

𝑙,𝑘=−∞

exp [−𝑖 ((𝑙 ∓ 1) 𝜉 + 𝑘𝛽)]X𝑛
𝑙,𝑘

= exp (±𝑖𝜉) 1
2𝜋

∞

∑

𝑙,𝑘=−∞

exp (−𝑖 (𝑙𝜉 + 𝑘𝛽))X𝑛
𝑙,𝑘

= exp (±𝑖𝜉)X†𝑛 (𝜉, 𝛽) .

(13)

Similarly, we have

1

2𝜋

∞

∑

𝑚,𝑘=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽))X𝑛
𝑚,𝑘±1

= exp (±𝑖𝛽)X†𝑛 (𝜉, 𝛽) .

(14)

Thus using the expressions (13)-(14) in (12) leads to

X†𝑛+1 (𝜉, 𝛽) = 𝐺
1
(𝜉, 𝛽)X†𝑛 (𝜉, 𝛽) + e󸀠

𝑛
, (15)

where e󸀠
𝑛
= (1/2𝜋)∑

∞

𝑚,𝑘=−∞
exp(−𝑖(𝑚𝜉 + 𝑘𝛽))e

𝑛
, and the

growth matrix

𝐺
1
(𝜉, 𝛽)

= 𝐴
1
exp (𝑖𝜉) + 𝐶

1
exp (−𝑖𝜉) + 𝐵

1

+ 𝐷
1
exp (𝑖𝛽) + 𝐸

1
exp (−𝑖𝛽)

= (

𝑎
11
𝑎
12
𝑎
13

𝑎
21
𝑎
22
𝑎
23

𝑎
31
𝑎
32
𝑎
33

) ,

(16)

in which

𝑎
11
= 𝑎
22
= 1 − Δ𝑡Φ − 2Δ𝑡𝐸

∗
(

1

Δ𝜙
2
+

1

Δ𝜃
2
)

+ 2Δ𝑡𝐸
∗
(

cos𝛽
Δ𝜙
2
+

cos 𝜉
Δ𝜃
2
)−𝑖Δ𝑡 (

𝑢
∗ sin𝛽
Δ𝜙

+

V∗ sin 𝜉
Δ𝜃

) ,

𝑎
12
= Δ𝑡𝑓

∗
−

𝑖Δ𝑡𝐸
∗

1

Δ𝜙

sin𝛽, 𝑎
13
=

−𝑖Δ𝑡𝐹
∗

Δ𝜙

sin𝛽,

𝑎
21
= −Δ𝑡𝑓

∗
+

𝑖Δ𝑡𝐸
∗

1

Δ𝜙

sin𝛽, 𝑎
23
=

−𝑖Δ𝑡𝐹

Δ𝜃

sin 𝜉,

𝑎
31
= −

𝑖Δ𝑡ℎ
∗

1

Δ𝜙

sin𝛽, 𝑎
32
= Δ𝑡ℎ

∗

2
−

𝑖Δ𝑡ℎ
∗

Δ𝜃

sin 𝜉,

𝑎
33
= 1 − 𝑖Δ𝑡 (

𝑢
∗

Δ𝜙

sin𝛽 + V∗

Δ𝜃

sin 𝜉) .

(17)

Remark 2. The discrete Fourier transform is used to deal
with the vector X𝑛

𝑖,𝑗
= (𝑢
𝑛

𝑖+1/2,𝑗
, V𝑛
𝑖,𝑗+1/2

, ℎ
𝑛

𝑖,𝑗
)
𝑇. Therefore, the

individual variables 𝑢∗, V∗, and ℎ∗ in the coefficient matrix of
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expression (7) can be treated as constants. Consequently, the
coefficient matrixes can be extracted from the Fourier trans-
form in the expression (12). These are similar to the frozen
coefficients approach for discussing the stability of numerical
solution of variable coefficient partial differential equation
(see [40–42]).

Definition 3. The three-dimensional discrete Fourier trans-
form of 𝑢 ∈ ℓ

2
is the function 𝑢† ∈ 𝐿

2
([−𝜋, 𝜋] × [−𝜋, 𝜋] ×

[−𝜋, 𝜋]) defined by

𝑢
†
(𝜉, 𝛽, 𝜑) =

1

2𝜋

∞

∑

𝑚,𝑘,𝑛=−∞

exp (−𝑖 (𝑚𝜉 + 𝑘𝛽 + 𝑛𝜑)) 𝑢𝑛
𝑚,𝑘

(18)

for 𝜉, 𝛽, 𝜑 ∈ [−𝜋, 𝜋].

Taking the discrete Fourier transform (18) to the both
sides of (9), similar to the derivation of (15), we have

X†𝑛+1 (𝜉, 𝛽, 𝜑) = 𝐺
2
(𝜉, 𝛽, 𝜑)X†𝑛 (𝜉, 𝛽, 𝜑) + e󸀠

𝑛
, (19)

where the growth matrix

𝐺
2
(𝜉, 𝜃, 𝛽) = 𝐴

2
exp (−𝑖𝜉) + 𝐵

2
exp (𝑖𝜉) + 𝐶

2
exp (−𝑖𝛽)

+ 𝐷
2
exp (𝑖𝛽) + 𝐸

2
+ 𝐹
2
exp [𝑖 (𝜉 − 𝜑)]

+ 𝐻
2
exp [−𝑖 (𝜉 + 𝜑)] + 𝑀

2
exp [𝑖 (𝛽 − 𝜑)]

+ 𝑁
2
exp [−𝑖 (𝛽 + 𝜑)] + 𝑃

2
exp (−𝑖𝜑)

= (

𝑏
11
𝑏
12
𝑏
13

𝑏
21
𝑏
22
𝑏
23

𝑏
31
𝑏
32
𝑏
33

) ,

(20)

in which

𝑏
11
= 𝑏
22
= −2Δ𝑡Φ − 2𝑖Δ𝑡 (

𝑢
∗

Δ𝜙

sin𝛽 + V∗

Δ𝜃

sin 𝜉)

+ [1 − 4Δ𝑡𝐸
∗
(

1

Δ𝜙
2
+

1

Δ𝜃
2
)] exp (−𝑖𝜑)

+

2Δ𝑡𝐸
∗

Δ𝜙
2
[exp (𝑖 (𝛽 − 𝜑)) + exp (−𝑖 (𝛽 + 𝜑))]

+

2Δ𝑡𝐸
∗

Δ𝜃
2
[exp (𝑖 (𝜉 − 𝜑)) + exp (−𝑖 (𝜉 + 𝜑))]

𝑏
12
= 2Δ𝑡𝑓

∗
−

2𝑖Δ𝑡𝐸
∗

1

Δ𝜙

sin𝛽,

𝑏
13
= −

2𝑖Δ𝑡𝐹
∗

Δ𝜙

sin𝛽, 𝑏
21
= −2Δ𝑡𝑓

∗
+

2𝑖Δ𝑡𝐸
∗

1

Δ𝜙

sin𝛽,

𝑏
23
= −

2𝑖Δ𝑡𝐹

Δ𝜃

sin 𝜉, 𝑏
31
= −

2𝑖Δ𝑡ℎ
∗

1

Δ𝜙

sin𝛽,

𝑏
32
= 2Δ𝑡ℎ

∗

2
−

2𝑖Δ𝑡ℎ
∗

Δ𝜃

sin 𝜉,

𝑏
33
= exp (−𝑖𝜑) − 2𝑖Δ𝑡 ( 𝑢

∗

Δ𝜙

sin𝛽 + V∗

Δ𝜃

sin 𝜉) .

(21)

Theorem 4. The difference schemes (7) and (9) are stable in
the ℓ
2
norm; then there exist constants Δ𝑥

0
, Δ𝑦
0
, Δ𝑡
0
, and C,

independent of Δ𝑥, Δ𝑦, and Δ𝑡, so that
󵄨
󵄨
󵄨
󵄨
𝜌 (𝐺)

󵄨
󵄨
󵄨
󵄨
≤ 1 + 𝐶Δ𝑡 (22)

for 0 < Δ𝑡 ≤ Δ𝑡
0
, and 0 < Δ𝑥 ≤ Δ𝑥

0
, 0 < Δ𝑦 ≤ Δ𝑦

0
, and for

all 𝜉, 𝜃, 𝜑 ∈ [−𝜋, 𝜋]. 𝜌(𝐺) is the spectral radius of the matrix 𝐺
(𝐺
1
and 𝐺

2
) [39].

Theorem 5 (Gerschgorin circle theorem, see [39]). Suppose
𝐴 = (𝑎

𝑖𝑗
) is a general 𝑛 × 𝑛 matrix, and 𝜌

𝑠
= ∑
𝑛

𝑗=1,𝑗 ̸= 𝑠
|𝑎
𝑠𝑗
| is

the sum of the absolute values of the elements in the 𝑠th row
except for the diagonal element. For each eigenvalue 𝜆 of 𝐴,
there exists an 𝑠 such that

󵄨
󵄨
󵄨
󵄨
𝜆 − 𝑎
𝑠𝑠

󵄨
󵄨
󵄨
󵄨
≤ 𝜌
𝑠
, 𝑠 = 1, 2, . . . 𝑛. (23)

If 𝜆 is an eigenvalue of 𝐺
1
, by using Gerschgorin circle

theorem and the triangular inequality, one has

|𝜆| −
󵄨
󵄨
󵄨
󵄨
𝑎
11

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑎
12

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑎
13

󵄨
󵄨
󵄨
󵄨
,

|𝜆| −
󵄨
󵄨
󵄨
󵄨
𝑎
22

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑎
21

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑎
23

󵄨
󵄨
󵄨
󵄨
,

|𝜆| −
󵄨
󵄨
󵄨
󵄨
𝑎
33

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑎
31

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑎
32

󵄨
󵄨
󵄨
󵄨
.

(24)

Then the time-space steps size and model parameters yield
the following conditions (one takes𝐶 ≤ 𝜖/Δ𝑡, where 0 < 𝜖 ≤ 1):

Δ𝑡 ≤

𝜖

󵄨
󵄨
󵄨
󵄨
𝑓
∗󵄨󵄨
󵄨
󵄨
+ |Φ|

, Δ𝑡 ≤

𝜖

󵄨
󵄨
󵄨
󵄨
ℎ
∗

2

󵄨
󵄨
󵄨
󵄨

(𝜉 = 𝛽 = 0) , (25)

Δ𝑡(
󵄨
󵄨
󵄨
󵄨
𝑓
∗󵄨
󵄨
󵄨
󵄨
+ |Φ| +

4
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜙
2
+

4
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜃
2
) ≤ 𝜖 (𝜉 = 𝛽 = 𝜋) ,

(26)

Δ𝑡

Δ𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑢
∗󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐸
∗

1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐹
∗󵄨
󵄨
󵄨
󵄨
) +

Δ𝑡
󵄨
󵄨
󵄨
󵄨
V∗󵄨󵄨󵄨
󵄨

Δ𝜃

+ Δ𝑡 (|Φ| +
󵄨
󵄨
󵄨
󵄨
𝑓
∗󵄨
󵄨
󵄨
󵄨
)

+

2Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜙
2
+

2Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜃
2
≤ 𝜖,

Δ𝑡

Δ𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑢
∗󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐸
∗

1

󵄨
󵄨
󵄨
󵄨
) +

Δ𝑡

Δ𝜃

(
󵄨
󵄨
󵄨
󵄨
V∗󵄨󵄨󵄨
󵄨
+ |𝐹|) + Δ𝑡 (|Φ| +

󵄨
󵄨
󵄨
󵄨
𝑓
∗󵄨
󵄨
󵄨
󵄨
)

+

2Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜙
2
+

2Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜃
2
≤ 𝜖,

Δ𝑡

Δ𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑢
∗󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
ℎ
∗

1

󵄨
󵄨
󵄨
󵄨
) +

Δ𝑡

Δ𝜃

(
󵄨
󵄨
󵄨
󵄨
V∗󵄨󵄨󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
ℎ
∗󵄨
󵄨
󵄨
󵄨
) + Δ𝑡

󵄨
󵄨
󵄨
󵄨
ℎ
∗

2

󵄨
󵄨
󵄨
󵄨
≤ 𝜖

(𝜉 = 𝛽 =

𝜋

2

) .

(27)



Journal of Applied Mathematics 7

u
300

250

200

150

100

50

0

−50

−100

−150

−200

−250

−300

−350

132E 133E 134E 135E 136E 137E 138E 139E 140E

(a)

80
70
60
50
40
30
20
10

0
−10

−20

−30

−40

−50

−50

−60

−70

�

132E 133E 134E 135E 136E 137E 138E 139E 140E

(b)

Figure 2: The figures show the values of the zonal velocity 𝑢 and the meridional velocity V at the latitude 30∘N after running the model with
30 steps.

Therefore, one has |𝜆| ≤ 1 + 𝐶Δ𝑡, and the FTCS scheme is
conditionally stable. The condition is as follows:

Δ𝑡 ≤ min{ 𝜖

󵄨
󵄨
󵄨
󵄨
𝑓
∗󵄨󵄨
󵄨
󵄨
+ |Φ|

,

𝜖

󵄨
󵄨
󵄨
󵄨
ℎ
∗

2

󵄨
󵄨
󵄨
󵄨

,

𝜖

𝛿
1

,

𝜖

𝛿
2

,

𝜀

𝛿
3

,

𝜖

𝛿
4

} , (28)

in which 𝛿
1
= |𝑓
∗
| + |Φ| + (4|𝐸

∗
|/Δ𝜙
2
) + (4|𝐸

∗
|/Δ𝜃
2
), 𝛿
2
=

(1/Δ𝜙)(|𝑢
∗
|+|𝐸
∗

1
|+|𝐹
∗
|)+(|V∗|/Δ𝜃)+|Φ|+|𝑓∗|+(2|𝐸∗|/Δ𝜙2)+

(2|𝐸
∗
|/Δ𝜃
2
), 𝛿
3
= (1/Δ𝜙)(|𝑢

∗
| + |𝐸
∗

1
|) + (1/Δ𝜃)(|V∗| + |𝐹|) +

|Φ|+|𝑓
∗
|+(2|𝐸

∗
|/Δ𝜙
2
)+(2|𝐸

∗
|/Δ𝜃
2
), and 𝛿

4
= (1/Δ𝜙)(|𝑢

∗
|+

|ℎ
∗

1
|) + (1/Δ𝜃)(|V∗| + |ℎ∗|) + |ℎ∗

2
|.

Similarly, one obtains the stable condition of the explicit
Leap-frog finite-difference scheme (9):

Δ𝑡 ≤ min{ 𝜖

2 (
󵄨
󵄨
󵄨
󵄨
𝑓
∗󵄨󵄨
󵄨
󵄨
+ |Φ|)
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𝜖

2
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,

𝜖

2𝛿
4

} ,

(29)

where 𝛿
1
, 𝛿
2
, 𝛿
3
, and 𝛿

4
are the same as in expression (28).

Remark 6. The derivations of stability conclusions in this
study are still valid for both A-grid and B-grid; the results
dependmainly on the choice of vectorX𝑛

𝑖,𝑗
; for example, in the

A-grid, we take X𝑛
𝑖,𝑗
= (𝑢
𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
, ℎ
𝑛

𝑖,𝑗
)
𝑇. In addition, it is easy to

prove that the stability conditions derived fromC-grid are the
same for both A-grid and B-grid.

As amatter of fact, when the rotation, eddy viscosity, wind
stress, and interfacial friction are neglected, the second ex-
pression in (27) can be written as (𝜖 = 1)

Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝑢
∗󵄨󵄨
󵄨
󵄨

Δ𝜙

+

Δ𝑡
󵄨
󵄨
󵄨
󵄨
V∗󵄨󵄨󵄨
󵄨

Δ𝜃

+

Δ𝑡 |𝐹|

Δ𝜃

≤ 1. (30)

Table 1: The standard values of parameters in the model.

Parameter Value
𝑟
0

6.37 × 106 m
𝐻 500m
𝜏
0

0.1 Pa
𝑈 0.1m s−1

𝛾 4.3752 × 10−8 s−1

𝑔 9.8m s−2

𝜌 1023.5 kgm−3

𝐴
𝐻

450m2 s−1

𝜔 7.292 × 10−5 s−1

𝑔
󸀠 0.044m s−2

This is theCourant-Friedrichs-Lewy condition (CFL con-
dition; see [13, 34, 42]) in two-dimensional case. Assuming
the terms |𝑓∗| = 0, |Φ| = 0 and 𝜖 = 1 in the expression (26),
then we have

4Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜙
2
+

4Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜃
2
≤ 1. (31)

In fact, this is the same as the conditions identified by
Blumberg and Mellor in 1987 [43]. When the rotation, wind
stress and interfacial friction terms are neglected and set 𝜖 =
1, the first and second expressions in (27) are given as

Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝑢
∗󵄨󵄨
󵄨
󵄨

Δ𝜙

+

Δ𝑡
󵄨
󵄨
󵄨
󵄨
V∗󵄨󵄨󵄨
󵄨

Δ𝜃

+

1

2

(

Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜙
2
+

Δ𝑡
󵄨
󵄨
󵄨
󵄨
𝐸
∗󵄨󵄨
󵄨
󵄨

Δ𝜃
2
) ≤ 1. (32)

This condition is the same as [15, 20] that given by Casulli
and Cheng. The stability criteria (30)–(32) have been widely
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Figure 3: The figures show the values of the zonal velocity 𝑢 and the meridional velocity V at the longitude 135∘E after running the model
with 30 steps.
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Figure 4: The figures show the values of the zonal velocity 𝑢 and the meridional velocity V at the latitude 29∘N after a time integration of 5
hours.

applied to the numerical model for the selection of the time-
step size. However, these three conditions are only special
cases in our results.

5. Numerical Experiments

In this section, numerical examples are given to test our
results. In the present study, we take the FTCS scheme, for

example (because the stability criterions of the Leap-frog
finite-difference scheme are similar to the FTCS scheme).The
domain of integration is set as a part of theNorth Pacific basin
(25∘–35∘N, 132∘–140∘E). We use a realistic coastline and the
200m depth contour as the continental boundary [27]. The
horizontal resolution is 0.2∘× 0.2∘; that is, the space-step size
Δ𝜃 = Δ𝜙 = 0.2. Standard parameter values in the shallow-
water model are shown in Table 1.
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Figure 5: The figures show the values of the zonal velocity 𝑢, the meridional velocity V, and the layer thickness ℎ after a time integration of 8
hours.
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Figure 6: The figures show the values of the zonal velocity 𝑢, the meridional velocity V, and the layer thickness ℎ after a time integration of 8
years.
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Figure 7: The figures show the meridional velocity of the ocean current throughout a period of the time-dependent solution that evolves in
one day.
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5.1. Example 1. We take 𝜖 = 0.3, the zonal velocity 𝑢 = 0.3,
and the meridional velocity V = 0.3. According to the
expression (28), it is easy to obtain Δ𝑡 < 3/233020;
multiplying by the time scale, we have Δ𝑡 < 821 s.

In the light of the CFL condition (30), we have Δ𝑡 <
5790 s.
With the expression (31), we obtain Δ𝑡 < 4.6 × 108 s.
From the stability criterion (32), we get Δ𝑡 < 2.2 ×
10
7 s.

Case 1. Setting a time-step size Δ𝑡 = 825 s, after running the
model with 30 steps (55/8 hours), Figure 2 gives the values
(the dimensionless quantity, as well as the following results)
of the zonal velocity 𝑢 and the meridional velocity V at the
latitude 30∘N; Figure 3 gives the results at the longitude 135∘E.
It is not difficult to find that the current velocities 𝑢 and V are
not in accord with the actual condition of ocean.

Case 2. When we choose the step size Δ𝑡 = 1200 s, the
results in Figure 4 give the values of the zonal velocity 𝑢
and the meridional velocity V at the latitude 29∘N after a
time integration of 5 hours. Obviously, the results are also
unreasonable. Moreover, after continuing the calculation of
model, we find that the results start to overflow after running
the model with 17 steps (17/3 hours).

Case 3. The model is run with a time step size of Δ𝑡 = 300 s,
Figures 5 and 6 show the values of the zonal velocity 𝑢, the
meridional velocity V, and the layer thickness ℎ after a time
integration of 8 hours and 8 years, respectively. These results
illustrate that themodel is integrated for long periods of time,
and the results are still reasonable.

It is obvious that the stability condition (28) is reasonable,
because the numerical model is unstable when we take the
time step size Δ𝑡 > 821 s (as shown in Cases 1 and 2). On the
other hand, it is easy to see that our results aremore strict and
accurate than theCFL condition (30) and other two criterions
(31) and (32).

5.2. Example 2. In this example, the 1.5-layer shallow-water
numerical model that is designed by us is used to simulate
the ocean current. Based on Example 1, the ocean basin is
also adopted with the part of the North Pacific basin (25∘–
35∘N, 132∘–140∘E).The time-space step sizes and the standard
values of parameters in the model are the same as Case 3 in
Example 1. Figure 7 gives themeridional velocity of the ocean
current throughout a period of the time-dependent solution
that evolves in one day. We will make an attempt to use
this explicit shallow-water numerical model to simulate the
Kuroshio current and its extension system in further studies.

6. Conclusions

The FTCS and the Leap-frog finite difference scheme for
solving 1.5-layer shallow-water equations in spherical coor-
dinates have been presented.The stability conditions of these
two types of difference schemes are given, which include

the CFL condition and other two criterions [15, 20, 43]. The
numerical experiments are proposed for testing the stability
of the FTCS scheme; the numerical results illustrate that our
stability conditions are effective and reasonable. Moreover,
the present stability criterion is shown to be more accurate
than other criterions that this researchmentioned.The theory
of stability analysis in this paper can also be used to study the
complex coupled atmosphere-ocean models.
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