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The concept of solar sailing and its developing spacecraft is presented. The gravitational and solar radiation forces are considered.
The effect of source of radiation pressure and the force due to coronal mass ejections and solar wind on the sailcraft configurations
is modeled. Some analytical control laws with some mentioned input constraints for optimizing sailcraft dynamics in heliocentric
orbit using lagrange’s planetary equations are obtained. Optimum force vector in a required direction is maximized by deriving
optimal sail cone angle. Ignoring the absorbed and diffusely reflected parts of the radiation, some special cases are obtained. New
control laws that maximize thrust to obtain certain required maximization in some particular orbital element are obtained.

1. Introduction

The theoretical concept of solar sails is old-standing and
dates back to Johannes Kepler when he observed that comet
tails point away from the Sun and he suggested that the Sun
caused this propulsion effect. After that it transferred into
practice by the Soviet pioneers of astronautics. Solar sails
are a form of spacecraft propulsion using a combination of
light (radiation pressure) and high speed ejected gasses from
a star (e.g., solar wind and coronal mass ejection) to push
large ultra-thin mirrors to high speeds. This concept of using
solar radiation pressure as a means of propulsion for space
vehicles was first introduced in the 1920s by the father of
Russian astronautics, Tsiolkovsky [1] and Tsander [2]. It is
also used in the spacecraft attitude dynamics. Rizvi [3] he
developed a control method for the solar sail normal vector
to trace a desired circular coning trajectory at orbit rate. He
finally concludes that the control torques can be applied to
the sailcraft to enable orbit rate cone tracing of the sail normal
and yield the desired orbital effects.

In his book, Wright [4] presents a detailed analysis on
some possible solar sail applications. During his time at the
Jet Propulsion Laboratory (JPL),Wrightwas actively involved
in the planning of a rendezvous mission to comet Halley
using solar sail technology. In 1977, a solar electric propulsion

conceptwas selected instead, primarily because of technology
maturity. Not long thereafter, the Halley rendezvous mis-
sion was dropped by NASA. All these concepts were first
experienced with the Mariner 10 mission to Mercury and
Venus. Mariner 10 was also the first spacecraft to use a gravity
assist trajectory, accelerating as it entered the gravitational
influence of Venus, then using the planet’s gravity field to
move onto a slightly different course to reach Mercury. Since
then, there have been several attempts to realize a solar sail
mission.

The sail concept is performed by gaining momentum
from an ambient source, solar electromagnetic radiation.
Using momentum gained only byreflecting ambient sunlight,
the sail slowly but continuously accelerated to accomplish a
wide-range of potential missions. Light sails could also be
driven by energy beams to extend their range of operations,
which is strictly beam sailing rather than solar sailing.
Solar sailcrafts offer the possibility of low-cost operations
combined with long operating lifetimes. Since they have few
moving parts and use no propellant, they can potentially be
used numerous times for delivery of payloads.

The mechanism of this concept refering to the momen-
tum carried by individual photons is extremely small. Thus,
to provide a suitably largemomentum transfer, we require the
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sail to have a large surface, while maintaining mass as low a
as possible. At best, a solar sail will experience only 9N of
force per square km of sail located in Earth orbit. Adding the
impulse due to incident and reflected photons, it is found that
the thrust vector is directed normally to the surface of the sail;
hence, by controlling the orientation of the sail relative to the
Sun, we can gain or lose orbital angular momentum.

A true solar sail has yet to fly; however, significant steps
have been taken since the beginning of the 1990s. In February
1993, under the guidance of Vladimir Syromiatnikov, the
Russian Space Regatta Consortium deployed a 20m spinning
reflector, Znamya, from a progress supply vehicle. Observed
from the Mir station, this deployment showed that spin
deployment could be controlled by passive means. In May
1996, a large deployable reflector was demonstrated during
the shuttlemission STS-77.The 14m inflatable antenna exper-
iment was primarily designed as a radio frequency reflector,
but the promise of inflatable technology towards solar sailing
was clearly demonstrated despite mission anomalies. In
Köln, in December 1999, the German space agency, DLR,
in association with ESA deployed a square, 20m solar sail.
This deployment now forms the basis for a future DLR/ESA
in-orbit deployment demonstration perhaps in early 2006.
Furthermore, in August 2004, the Institute of Space and
Astronautical Science in Japan, ISAS, deployed two solar sails
in space from a S-310 sounding rocket. NASA and several
private enterprises all seeking to advance solar sailing are also
conducting further work. It is thus clear that the technology is
currently undergoing a revival in interest and a renewed drive
towards flight status.

The literature on sailing dynamics, development, and
attitude control is wealthy and it is of great interest to sketch
some important ideas on these problems. The first solar
sail trajectories were calculated by Tsu [5] and London [6].
Tsu investigated various means of propulsion and showed
that in many cases solar sails show superior performance
when compared to chemical and ion propulsion systems.
He used approximated heliocentric equations of motion to
obtain spiraling trajectories. London presented similar spiral
solutions for Earth-Mars transfers with constant sail orien-
tation using the exact equations of motion. Optimal solar
sail trajectories were first computed by Zhukov and Lebedev
[7] for interplanetary missions between coplanar circular
orbits. In 1980, Jayaraman [8] published similar minimum-
time trajectories for transfers between the Earth and Mars.
Two years later, Wood et al. [9] presented an analytical
proof to show that the orbital transfer times obtained by
Jayaraman [8] were incorrect due to the incorrect application
of a transversality condition of variational calculus and an
erroneous control law. Powers et al. [10] and Powers and
Coverstone [11] obtained results similar to those reported
in Wood’s paper and obtained solutions for transfers to
synchronous orbits. The more general time-optimal control
problemof three-dimensional, inclined and elliptic departure
and rendezvous planet orbits was discussed by Sauer [12].
Hughes and McInnes [13] used genetic algorithms and
sequential quadratic programming to obtain interplanetary
trajectories via a direct method. Dachwald [14] presented
a novel approach based on evolutionary neurocontrollers

(ENC) to calculate optimal solar sail trajectories for inter-
planetary missions.

Wie [15] considered the orbital dynamics of a solar
sail in the Earth-Sun circular restricted 3-body problem.
The equations of motion of the sail are given by a set of
nonlinear autonomous ordinary differential equations, which
are nonconservative due to the noncentral nature of the
force on the sail. They found there are equilibria admitting
homoclinic paths, where the stable and unstable invariant
manifolds are identical. As well as these periodic orbits about
these equilibria also admit homoclinic paths.

Waters and McInnes [16] developed an attitude control
systems for solar sail spacecraft are presented. He analysed
a sailcraft in an Earth centered elliptic orbit, with particular
emphasis on the significant effect of a solar-pressure distur-
bance torque (caused by an uncertain center-of-mass and
center-of-pressure offset).

Gong et al. [17] investigated the time-optimal inter-
planetary transfer trajectories to a circular orbit of given
inclination and radius. They derived optimal control law
from the principle of maximization. An indirect method
is used to solve the optimal control problem by selecting
values for the initial adjoint variables. The conditions for the
existence of the time-optimal transfer are dependent on the
lightness number of the sail and the inclination and radius of
the target orbit. A numerical method is used to obtain the
boundary values for the time-optimal transfer trajectories.
For the cases where no time-optimal transfer trajectories
exist, first-order necessary conditions of the optimal control
are proposed to obtain feasible solutions. The results show
that the transfer time decreases as the minimum distance
from the Sun decreases during the transfer duration. For a
solar sail with a small lightness number, the transfer timemay
be evaluated analytically for a three-phase transfer trajectory.
The analytical results are compared with previous results
and the associated numerical results. The transfer time of
the numerical result is smaller than the transfer time from
previous results and is larger than the analytical result.

In contrast to ordinary ballistic navigation, the mission
analysis for solar sail trajectories is not a simple task. The
difference is that ballistic navigation is determined by a
finite sequence of manoeuvres, with each of them being fully
defined by Keplerian theory; 5 orbital parameters (the time
they are executed, the intensity of the pulse, and the 3 angles
determining its direction). But solar sailing, on the contrary,
is a continuous process and the mathematics for reaching
final conditions is far more complex, even more than in the
case of electric propulsion, since the thrust intensity is related
to the sail orientation: the orientation of the force vector
applying to a perfectly reflective solar sail is normal to the
sail, in the antisolar direction. Its intensity is proportional to
the square cosine of the angle between the normal to the sail
and the sunline.

2. Modeling the Source of Radiation Pressure

The absorbed energy heats the sail, which reradiates that
energy from the front and rear surfaces. A solar sail is an
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Figure 1: Solar radiation pressure due to a finite solar disc.

oriented surface such that the acceleration experienced by the
surface is a function of the surfaces attitude. The variation
of the solar radiation pressure with solar distance can be
approximated by an inverse square variation relationship;
this assumption breaks down at low solar radius, when the
finite angular size of the solar disc must be considered. The
modeling of the source of radiation pressure is distinct and
independent from the modeling of solar radiation pressure
force, which is dependent on the optical properties of the sail
surface.

Initially, we assume the solar disc has uniform brightness,
such that an element of the solar disc will appear equally
bright when viewed from any aspect angle. Thus, the specific
intensity 𝐼

𝑟
is time independent and isotropic across the

solar disc. Therefore, the solar radiation pressure exerted on
a radially oriented, perfectly reflecting sail at a heliocentric
distance 𝑟, can be written as

𝑃 (𝑟) =
2
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where is the velocity of light and 𝜃
0
is the angular radius of

the solar disc that is given by 𝜃
0
= sin−1(𝑅Sun/𝑟) as shown in
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where 𝐼
0
is the frequency integrated-specific intensity.

3. The Force Model on
the Sailcraft Configurations

3.1. The Force due to Solar Radiation Pressure. Solar radiation
exerts a pressure on the 𝑖th surface of area 𝐴

𝑖
of the solar

sail due to photons impinging on a surface in space. If a
fraction 𝜌

𝑎
of the impinging photons is absorbed, a fraction 𝜌

𝑠

is specularly reflected, and a fraction 𝜌
𝑑
is diffusely reflected

by a surface, then we have 𝜌
𝑎
+ 𝜌
𝑠
+ 𝜌
𝑑

= 1. The force due
to solar radiation pressure (in brief SRP) acting on such a
flat Lambertian surface located one astronomical unit (1 AU)
from the Sun is modeled as
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where 𝑃 = 4.563 × 10
−6N/m2 is the nominal solar-radiation

pressure constant 1 AU from the Sun, 𝐴 is the surface area, n̂
is a unit vector normal to the sail film, and ê

𝑠
is a unit vector

pointing from the Sun to the sail, as shown in Figure 2. The
solar radiation pressure varies inversely with the square of
the distance from the Sun. The unit vector ê

𝑠
, as is clear from

the geometry depicted in Figure 1, can be written as a linear
combination of n̂ and a unit vector transverse to it, t̂; that is,
ê
𝑠
= cos𝛼n̂ + cos𝛼t̂. Therefore, (3) can be written as
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Now, we can rewrite (4) in the coordinate system ê
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ê
𝑤
,

where ê
𝑡
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𝑠
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the right-handed coordinate system (STW). Thus, the thrust
unit vector (sail normal) in the three-dimensional space is
defined by
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Now, the force due solar radiation pressure becomes
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Carrying out the dot products, we get
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Figure 2: Definition of sail control angles.

3.2. The Forces due to Coronal Mass Ejections and Solar Wind.
Mass is carried away from the Sun into interplanetary space,
primarily in the form of protons, through several mecha-
nisms: solar wind, solar flares, and coronal mass ejections.
The majority of the solar mass carried away is in the solar
wind, a persistent stream of plasma particles generated in the
photosphere of the Sun that flows out in all directions. At the
Earth, the speed of the solar wind is typically ∼400 km/s with
a particle density of about 10 protons/cm3, Breen et al. [18].
WhenMariner 10 flew byMercury in 1974 it measured a solar
wind speed of 423 km/s and a quiescent solar wind particle
density of about 60 protons/cm3.

Assuming the following simplifying assumptions: (a)
spherical envelope for the angular span of ejections, and
(b) all particle collisions with the sailcraft are inelastic. The
perturbing accelerations on the sailcraft, due to the coronal
mass ejections, and due to solar wind respectively are given
by Abd El-Salam [19]:
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where (𝐴
𝑖
/𝑚)SW, 𝑛SW and VSW are the 𝑖th area-mass ratio

exposed to the solar wind stream, particle density, and the
velocity of the solar wind and 𝑀

𝑃
is the mass of the proton,

while (𝐴
𝑖
/𝑚)CME, 𝜏CME, 𝑀CME and VCME are the area-mass

ratio exposed to the coronal mass ejections, the overall
volume, the mass, and the velocity of the coronal mass
ejections, respectively. Adding (8) and (7), we obtain the force

model due to the solar radiation pressure, solar wind, and the
coronal mass ejection:
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4. Optimum Force Vector

Referring to Figure 2, we see the orientation of the solar sail,
and so the thrust force vector is described relative to the sun-
line by the sail pitch angle, 𝛼, and clock angle, 𝛿. We note that
the sail control angles 𝛼 and 𝛿 can be defined as either

0
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∘
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∘

.

(10)

Now, the sail thrust vector is defined by the cone and clock
angles in the radial-transverse-normal (STW) frame. In order
to optimize the sail control angles, we define a required
direction, 𝜉, along which the component of the sail thrust is
to be maximized:
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The force in this required direction, namely, 𝜉-direction is
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Using (11), we can obtain
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Arranging the terms and using the trigonometric identities,
we get
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Equation (14) can be simplified to
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3

1

sin𝛼
[(1 − tan2𝛼)] sin �̃� cos (𝛿 − 𝛿) = 0,

−
A
1

3
cos �̃� −

A
1

3
tan2𝛼 cos �̃�

− A
2
cos �̃� +

tan �̃� cos (𝛿 − 𝛿)

3 cos𝛼 sin𝛼
A
2
cos �̃�
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− tan𝛼 tan �̃� cos (𝛿 − 𝛿)A
2
cos �̃�

+
A
3

3

1

sin𝛼
sin �̃� cos (𝛿 − 𝛿)

−
A
3

3

1

sin𝛼
tan2𝛼 sin �̃� cos (𝛿 − 𝛿) = 0,

(18)

which can be simplified to

(
1

3 cos𝛼 sin𝛼
)

× {tan �̃� cos (𝛿 − 𝛿)A
2
cos �̃� − A

1
cos �̃� cos𝛼 sin𝛼

− 3A
2
cos �̃� cos𝛼 sin𝛼

− A
1
tan2𝛼 cos �̃� cos𝛼 sin𝛼

+ A
3
sin �̃� cos (𝛿 − 𝛿) cos𝛼

− A
3
tan2𝛼 sin𝛼 sin �̃� cos (𝛿 − 𝛿)

−3A
2
tan𝛼 tan �̃� cos (𝛿 − 𝛿) cos �̃� cos𝛼 sin𝛼} = 0.

(19)

Equating the numerator to zero and rearranging the terms
yield

tan �̃� cos (𝛿 − 𝛿)A
2
cos �̃�

− (A
1
+ 3A
2
) cos �̃� cos𝛼 sin𝛼

− A
1
tan2𝛼 cos �̃� cos𝛼 sin𝛼

+ A
3
sin �̃� cos (𝛿 − 𝛿) cos𝛼

− A
3
tan2𝛼 sin𝛼 sin �̃� cos (𝛿 − 𝛿)

− 3A
2
tan𝛼 tan �̃� cos (𝛿 − 𝛿) cos �̃� cos𝛼 sin𝛼

= 0.

(20)

Multiplying both sides by 1/cos2𝛼 = 1 + tan2𝛼 yields

A
2
tan �̃� cos (𝛿 − 𝛿) cos �̃� (1 + tan2𝛼)

− (A
1
+ 3A
2
) cos �̃� tan𝛼 − A

1
cos �̃�tan3𝛼

+ A
3
sin �̃� cos (𝛿 − 𝛿) (1 + tan2𝛼) cos𝛼

− A
3
sin �̃� cos (𝛿 − 𝛿) (1 + tan2𝛼) tan𝛼 sin𝛼

− 3A
2
tan �̃� cos (𝛿 − 𝛿) cos �̃� tan2𝛼

= 0,

A
2
tan �̃� cos (𝛿 − 𝛿) cos 5̃

+ A
2
tan �̃� cos (𝛿 − 𝛿) cos �̃� tan2𝛼

− (A
1
+ 3A
2
) cos �̃� tan𝛼

− A
1
cos �̃� tan3𝛼 + A

3
sin �̃� cos (𝛿 − 𝛿) cos𝛼

+ A
3
sin �̃� cos (𝛿 − 𝛿) tan2𝛼 cos𝛼

− A
3
sin �̃� cos (𝛿 − 𝛿) tan𝛼 sin𝛼

− A
3
sin �̃� cos (𝛿 − 𝛿) tan3𝛼 sin𝛼

− 3A
2
tan �̃� cos (𝛿 − 𝛿) cos �̃� tan2𝛼

= 0. (21)

Rearranging the terms yields

− A
3
sin �̃� cos (𝛿 − 𝛿) (tan𝛼 sin𝛼 − cos𝛼)

× [tan2𝛼 + 1] − A
1
cos �̃�tan3𝛼

− 2A
2
tan �̃� cos (𝛿 − 𝛿) cos �̃� tan2𝛼

− (A
1
+ 3A
2
) cos �̃� tan𝛼

+ A
2
tan �̃� cos (𝛿 − 𝛿) cos �̃�

= 0.

(22)

Dividing on cos �̃� yields

− A
3
tan �̃� cos (𝛿 − 𝛿) (tan𝛼 sin𝛼 − cos𝛼)

× [tan2𝛼 + 1] − A
1
tan3𝛼

− 2A
2
tan �̃� cos (𝛿 − 𝛿) tan2𝛼

− (A
1
+ 3A
2
) tan𝛼 + A

2
tan �̃� cos (𝛿 − 𝛿)

= 0.

(23)

This is a transcendental equation which is so difficult to be
solved analytically, but in the following, we will consider
some special cases.

4.1. Special Case I. Ignoring the absorbed and diffusely
reflected parts of the radiation, of the coefficients (15) become

A
1
= [(

𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW + (

𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME]

A
2
= 2𝜌
𝑠
𝐴, A

3
= 0

− A
1
tan3𝛼 − 2A

2
tan �̃� cos (𝛿 − 𝛿) tan2𝛼

− (A
1
+ 3A
2
) tan𝛼 + A

2
tan �̃� cos (𝛿 − 𝛿)

= 0.

(24)
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Dividing on −A
1
yields

tan3𝛼 +
2A
2

A
1

tan �̃� cos (𝛿 − 𝛿) tan2𝛼

+
(A
1
+ 3A
2
)

A
1

tan𝛼 −
A
2

A
1

tan �̃� cos (𝛿 − 𝛿)

= 0.

(25)

Let us now define these new coefficients:

B
1
=

2A
2

A
1

tan �̃� cos (𝛿 − 𝛿) ,

B
2
=

(A
1
+ 3A
2
)

A
1

,

B
3
= −

A
2

A
1

tan �̃� cos (𝛿 − 𝛿) .

(26)

Now, the cubic equation (25) becomes

tan3𝛼 + B
1
tan2𝛼 + B

2
tan𝛼 + B

3
= 0, (27)

which has the solution in the maximizing direction 𝜉

(tan𝛼
∗

1
)
𝜉
= −

1

3
B
1
+ B +

B2
1
− 3B
2

9B
, (28)

(tan𝛼
∗

2,3
)
𝜉

= −
1

3
B
1
−

1

2
B −

B2
1
− 3B

2

18B

±
𝑖√3

2
B
1
[B −

B2
1
− 3B

2

9B
] ,

(29)

where

B = (
1

6
B
1
B
2
−

1

2
B
3
−

1

27
B
3

1

+ (
1

27
B
3

1
B
3
−

1

108
B
2

1
B
2

2

−
1

6
B
1
B
2
B
3
+

1

27
B
3

2
+

1

4
B
2

2
)

1/2

)

1/3

.

(30)

Since tan𝛼
∗

2,3
given by (29) are imaginary solutions, therefore,

these two roots are rejected. And thus the only considered
root is the first root tan𝛼

∗

1
.

4.2. Special Case II. In addition to the simplification
addressed in the special Case I, If we consider also the solar
wind and the coronal mass ejection does not depend on the
cone angle 𝛼. Then, (27) can be reduced to the following
quadratic equation:

− 2A
2
tan �̃� cos (𝛿 − 𝛿) tan2𝛼

− 3A
2
tan𝛼 + A

2
tan �̃� cos (𝛿 − 𝛿) = 0.

(31)

The solution of this equation yields the required cone angle
𝛼 = 𝛼

∗ tomaximize the force vector in the required direction:

(tan𝛼
∗

)
𝜉
=

−3 ± √9 + 8tan2�̃�cos2 (𝛿 − 𝛿)

4 tan �̃� cos (𝛿 − 𝛿)

. (32)

5. Heliocentric Orbital Dynamics

In the first instance, the Sun-centered orbital dynamics of
solar sail spacecraft will be described, since this is tradition-
ally where solar sailing is applied and where the bulk of the
mission concepts exists, due to the largeΔV requirements.The
vector equation of motion of a solar sail spacecraft moving in
a heliocentric orbit is defined by (33), where 𝑟 is the position
vector of the spacecraft with respect to the Sun at time 𝑡. The
gravitational parameter of the Sun is defined by 𝜇. For an
ideal sail, the thrust vector is aligned along the sail normal
direction, 𝑛:

𝑑
2r

𝑑𝑡
2

+
𝜇

𝑟2
r̂

= 𝑃{ [𝐴
𝑖
cos𝛼 (1 − 𝜌

𝑠
+ 2𝜌
𝑠
cos2𝛼)

+ ((
𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME)] ê
𝑠

+ 𝐴
𝑖
cos𝛼(2𝜌

𝑠
cos𝛼 sin𝛼 cos 𝛿

+
2

3
𝜌
𝑑
sin𝛼 cos 𝛿) ê

𝑡

+ 𝐴
𝑖
cos𝛼(2𝜌

𝑠
cos𝛼 sin𝛼 sin 𝛿

+
2

3
𝜌
𝑑
sin𝛼 sin 𝛿) ê

𝑤
} .

(33)

For the simple analysis to follow, it is appropriate to show
how this equation is represented in two-dimensional polar
coordinates, where 𝜃 is the azimuth angle from the 𝑥-axis, 𝑟 is
the distance of the spacecraft from the Sun.The pitch or cone
angle, 𝛼, is defined as the angle between the sail normal and
the radial vector.

Consider

̈𝑟 − 𝑟 ̇𝜃
2

− 𝑟�̇�
2sin2𝜃

= −
𝜇

𝑟2
+ 𝛽

𝜇

𝑟2
𝑃𝐴
𝑖

× cos𝛼 [ (1 − 𝜌
𝑠
+ 2𝜌
𝑠
co s2𝛼)

+ (
𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+(
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME ] ,
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1

𝑟
(𝑟
2 ̇𝜃)
⋅

− 𝑟�̇�
2 sin 𝜃 cos 𝜃

= 𝛽
𝜇

𝑟2
𝑃𝐴 cos𝛼(2𝜌

𝑠
cos𝛼 sin𝛼 cos 𝛿

+
2

3
𝜌
𝑑
sin𝛼 cos 𝛿) ,

1

𝑟 sin 𝜃
(𝑟
2

�̇�sin2𝜃)
⋅

= 𝛽
𝜇

𝑟2
𝐴
𝑖
cos𝛼(2𝜌

𝑠
cos𝛼 sin𝛼 sin 𝛿 +

2

3
𝜌
𝑑
sin𝛼 sin 𝛿) .

(34)

The parameter, 𝛽, is known as the sail lightness number
and is defined as the ratio of the local solar radiation
pressure acceleration produced by the sail to the local solar
gravitational acceleration. This number is a useful parameter
since it is independent of the solar distance and defines
the performance of the sail. Another useful performance
parameter is the sail characteristic acceleration, ac, which is
the solar radiation pressure-induced acceleration of an ideal
sail, pitched face on to the Sun (𝛼 = 0) at 1 AU from the Sun. It
is easy to calculate that a characteristic acceleration of 1.0mm
s-2 corresponds to a dimensionless sail lightness number of
0.1686. As has been discussed, the solar sail characteristic
acceleration is dependent on the surface area and reflectivity
of the sail assembly and the mass of the spacecraft.

6. Lagrange’s Planetary Equations

The state of a spacecraft can be described by a vector of 6
orbital elements, namely, semimajor axis, 𝑎, eccentricity, 𝑒,
inclination, 𝑖, argument of perihelion, 𝜔, right ascension of
the ascending node, Ω, true anomaly, 𝑓, or any other time
elements. Theses 6 elements are equivalent to 6 Cartesian
position and velocity components. To measure the rate of
change in these elements, we use the very famous system
of 6 first-order differential equations known as Lagrange
planetary equations; see (35).They are used to solve the equa-
tions motion of the sailcraft. These equations are particularly
useful when we want to maximize the rate of change of a
particular orbital element. This is useful when we want to
modify one orbital element, while leaving the other time-
averaged elements unchanged. One form of this system is
given by

𝑑𝑎

𝑑𝑓
=

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2
[𝑆𝑒 sin𝑓 + 𝑇

𝑝

𝑟
] ,

𝑑𝑒

𝑑𝑓
=

𝑟
2

𝜇
[𝑆 sin𝑓 + 𝑇(1 +

𝑟

𝑝
) cos𝑓 + 𝑇

𝑟

𝑝
𝑒] ,

𝑑𝑖

𝑑𝑓
=

𝑟
3

𝜇𝑝
cos (𝑓 + 𝜔)𝑊,

𝑑Ω

𝑑𝑓
=

𝑟
3

𝜇𝑝 sin 𝑖
sin (𝑓 + 𝜔)𝑊,

𝑑𝜔

𝑑𝑓
= −

𝑑Ω

𝑑𝑓
cos 𝑖 + 𝑟

2

𝜇𝑒
[−𝑆 cos𝑓 + 𝑇(1 +

𝑟

𝑝
) sin𝑓] ,

𝑑𝑡

𝑑𝑓
=

𝑟
2

√𝜇𝑝
[1 −

𝑟
2

𝜇𝑒
[𝑆 cos𝑓 − 𝑇(1 +

𝑟

𝑝
) sin𝑓]] ,

(35)

where 𝑎, 𝑒, 𝑖, Ω, 𝜔, and 𝑓 are the usual Keplerian orbital
elements, semimajor axis, eccentricity, inclination, longitude
of the ascending node, and true anomaly, respectively, 𝑝 is
the semilatus rectum, 𝜇 the gravitational parameter, and 𝑛 is
the orbital mean motion. The components of the solar sail
thrust are denoted by 𝑆, 𝑇,𝑊 radial, transverse, and normal,
respectively.

All Lagrange planetary equations can be written in
compact form as only one equation as follows:

𝑑X

𝑑𝑓
= F ⋅ Ξ

X
, (36)

where X(≡𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑓) denotes any element of the Keple-
rian orbital elements. F, ΞX are the force vector and primer
vector of optimization, respectively. These vectors can be
conveniently written as

F = 𝑆ê
𝑠
+ 𝑇ê
𝑡
+ 𝑊ê
𝑤
,

Ξ
X

= Ξ
X
𝑠
ê
𝑠
+ Ξ

X
𝑡
ê
𝑡
+ Ξ

X
𝑤
ê
𝑤
,

(37)

where

𝑆 = 𝛽
𝜇

𝑟2
𝑃𝐴
𝑖

× cos𝛼 [(1 − 𝜌
𝑠
+ 2𝜌
𝑠
cos2𝛼) + (

𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+(
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME] ,

𝑇 = 𝛽
𝜇

𝑟2
𝑃𝐴
𝑖

× cos𝛼(2𝜌
𝑠
cos𝛼 sin𝛼 cos 𝛿 +

2

3
𝜌
𝑑
sin𝛼 cos 𝛿) ,

𝑊 = 𝛽
𝜇

𝑟2
𝐴
𝑖

× cos𝛼(2𝜌
𝑠
cos𝛼 sin𝛼 sin 𝛿 +

2

3
𝜌
𝑑
sin𝛼 sin 𝛿) .

(38)

The primer vector in the direction of maximizing the
semimajor axis is

Ξ
𝑎

= Ξ
𝑎

𝑠
ê
𝑠
+ Ξ
𝑎

𝑡
ê
𝑡
=

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2
[𝑒 sin𝑓ê

𝑠
+

𝑝

𝑟
ê
𝑡
] . (39)

The primer vector in the direction of maximizing the eccen-
tricity is

Ξ
𝑒

= Ξ
𝑒

𝑠
ê
𝑠
+ Ξ
𝑒

𝑡
ê
𝑡

=
𝑟
2

𝜇
[sin𝑓ê

𝑠
+ (1 +

𝑟

𝑝
(𝑒 + cos𝑓)) ê

𝑡
] .

(40)
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The primer vector in the direction of maximizing the inclina-
tion is

Ξ
𝑖

= Ξ
𝑖

𝑤
ê
𝑤

=
𝑟
3

𝜇𝑝
cos (𝑓 + 𝜔) ê

𝑤
. (41)

The primer vector in the direction of maximizing the longi-
tude of the ascending node is

Ξ
Ω

= Ξ
Ω

𝑤
ê
𝑤

=
𝑟
3

𝜇𝑝 sin 𝑖
sin (𝑓 + 𝜔) ê

𝑤
. (42)

The primer vector in the direction of maximizing the argu-
ment of periapsis is

Ξ
𝜔

= Ξ
𝜔

𝑠
ê
𝑠
+ Ξ
𝜔

𝑡
ê
𝑡
+ Ξ
𝜔

𝑤
ê
𝑤

=
𝑟
2

𝜇𝑒
[−

𝑒𝑟

𝑝 sin 𝑖
sin (𝑓 + 𝜔) cos 𝑖ê

𝑠

− cos𝑓ê
𝑡
+ (1 +

𝑟

𝑝
) sin𝑓ê

𝑤
] .

(43)

Using this system, we can maximize directly any orbital
elements or any other dynamical orbital parameters such as,
the radius of periapsis and apoapsis. For example, if the radius
of apoapsis, 𝑟

𝐴
= 𝑎(1 + 𝑒) is differentiated, we obtain

𝑑𝑟
𝐴

𝑑𝑓
=

𝑑𝑎

𝑑𝑓
(1 + 𝑒) + 𝑎

𝑑𝑒

𝑑𝑓
. (44)

7. Some New Locally Optimal Control Laws

To maximize the thrust to obtain certain required
maximization in some particular orbital element, we
set (𝜕/𝜕𝛼)(𝑑X/𝑑𝑓) = 0 and thus obtain a new set of locally
optimal control laws. These control laws cannot guarantee
global optimality, and they are often termed closed-loop
methods. Global optimality requires the use of numerical
methods, and even then, the true optimum solution is hard
to attain.

7.1. Optimal Control Law for the Rate of Change of Semi-
major Axis. The primer vector components maximize the
first Lagrange planetary equation for the rate of change of
semimajor axis.

In what follows, we will find an optimum cone angle that
maximizes the rate of change of semimajor axis:

𝜕

𝜕𝛼
(

𝑑𝑎

𝑑𝑓
) =

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2
[𝑒 sin𝑓(

𝜕𝑆

𝜕𝛼
) +

𝑝

𝑟
(
𝜕𝑇

𝜕𝛼
)] = 0

⇒ [𝑒 sin𝑓(
𝜕𝑆

𝜕𝛼
) +

𝑝

𝑟
(
𝜕𝑇

𝜕𝛼
)] = 0.

(45)

The force in this required direction is given by

𝑑𝑎

𝑑𝑡
= F ⋅ Ξ

𝑎

= 𝑃
2𝑝𝑟
2

𝜇(1 − 𝑒2)
2

× cos𝛼{[𝐴
𝑖
(1 − 𝜌

𝑠
+ 2𝜌
𝑠
cos2𝛼)

+ ((
𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME)]

× (e
𝑠
⋅ Ξ
𝑎

)

+ 𝐴
𝑖
(2𝜌
𝑠
cos𝛼 sin𝛼 cos 𝛿 +

2

3
𝜌
𝑑
sin𝛼 cos 𝛿)

× (e
𝑡
⋅ Ξ
𝑎

)

+ 𝐴
𝑖
(2𝜌
𝑠
cos𝛼 sin𝛼 sin 𝛿 +

2

3
𝜌
𝑑
sin𝛼 sin 𝛿)

× (e
𝑤

⋅ Ξ
𝑎

) } ,

(46)

𝑑𝑎

𝑑𝑡
= 𝑃

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2

× cos𝛼{ [𝐴
𝑖
(1 − 𝜌

𝑠
+ 2𝜌
𝑠
cos2𝛼)

+ ((
𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME)]

× (e
𝑠
⋅ 𝑒 sin𝑓ê

𝑠
)

+𝐴
𝑖
(2𝜌
𝑠
cos𝛼 sin𝛼 cos 𝛿 +

2

3
𝜌
𝑑
sin𝛼 cos 𝛿)

× (e
𝑡
⋅
𝑝

𝑟
ê
𝑡
)} ,

𝑑𝑎

𝑑𝑡
= 𝑃

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2

× cos𝛼{[𝐴
𝑖
(1 − 𝜌

𝑠
+ 2𝜌
𝑠
cos2𝛼)

+ ((
𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2
𝑆𝑊

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME)] 𝑒 sin𝑓
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+ 𝐴
𝑖

𝑝

𝑟
(2𝜌
𝑠
cos𝛼 sin𝛼 cos 𝛿

+
2

3
𝜌
𝑑
sin𝛼 cos 𝛿)} .

(47)

Consider the following definitions:

A
1
= 𝐴
𝑖
𝑃 (1 − 𝜌

𝑠
)

+ [(
𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME]

A
2
= 2𝜌
𝑠
𝐴
𝑖
𝑃,

A
3
=

2

3
𝜌
𝑑
𝐴
𝑖
𝑃.

(48)

Equation (46) can be simplified to

𝑑𝑎

𝑑𝑡
=

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2

× [A
1
𝑒 sin𝑓 cos𝛼

+ A
2
(𝑒 sin𝑓 cos𝛼 +

𝑝

𝑟
sin𝛼 cos 𝛿) cos2𝛼

+A
3

𝑝

𝑟
cos𝛼 sin𝛼 cos 𝛿] .

(49)

If we differentiate (49) with respect to the cone angle and find
the turning points , (𝜕𝐹

𝜉
/𝜕𝛼), then we can obtain the optimal

sail cone angle, which maximizes the force in the required
direction as follows:

𝜕

𝜕𝛼
(
𝑑𝑎

𝑑𝑡
) = −A

1
𝑒 sin𝑓 sin𝛼 + A

2
𝑒

× sin𝑓(−3cos2𝛼 sin𝛼 +
𝑝

𝑟

× [cos𝛼 − 3sin2𝛼 cos𝛼] cos 𝛿)

+ A
3

𝑝

𝑟
[cos2𝛼 − sin2𝛼] cos 𝛿 = 0.

(50)

Dividing on 3cos2𝛼 sin𝛼 yields

𝜕

𝜕𝛼
(
𝑑𝑎

𝑑𝑡
) = −

A
1

3
(1 + tan2𝛼) 𝑒 sin𝑓

+ A
2
𝑒

× sin𝑓(−1 +
𝑝 cos 𝛿

3𝑟 cos𝛼 sin𝛼
− 𝑝

tan𝛼 cos 𝛿
𝑟

)

+ A
3

𝑝

3𝑟 sin𝛼
[1 − tan2𝛼] cos 𝛿 = 0

= −
A
1

3
𝑒 sin𝑓 −

A
1

3
𝑒 sin𝑓tan2𝛼

− A
2
𝑒 sin𝑓 + A

2
𝑒 sin𝑓

𝑝 cos 𝛿
3𝑟 cos𝛼 sin𝛼

− A
2
𝑝 𝑒 sin𝑓

tan𝛼 cos 𝛿
𝑟

+ A
3

𝑝

3𝑟 sin𝛼
cos 𝛿

− A
3

𝑝

3𝑟 sin𝛼
tan2𝛼 cos 𝛿 = 0,

(51)

which can be written as

𝜕

𝜕𝛼
(
𝑑𝑎

𝑑𝑡
) = (

1

3 cos𝛼 sin𝛼
)

× {A
2

𝑒𝑝

𝑟
sin𝑓 cos 𝛿

− A
1
𝑒 sin𝑓 cos𝛼 sin𝛼

− A
1
𝑒 sin𝑓tan2𝛼 cos𝛼 sin𝛼

− 3A
2
𝑒 sin𝑓 cos𝛼 sin𝛼

− 3A
2

𝑝

𝑟
𝑒 sin𝑓 cos 𝛿 tan𝛼 cos𝛼 sin𝛼

+ A
3

𝑝

𝑟
cos 𝛿 cos𝛼

−A
3

𝑝

𝑟
cos 𝛿 tan2𝛼 cos𝛼} = 0.

(52)

Equating the numerator to zero and rearranging the terms
yield

𝜕

𝜕𝛼
(
𝑑𝑎

𝑑𝑡
) = A

2

𝑒𝑝

𝑟
sin𝑓 cos 𝛿

− (A
1
+ 3A
2
) 𝑒 sin𝑓 cos𝛼 sin𝛼

− A
1
𝑒 sin𝑓tan2𝛼 cos𝛼 sin𝛼

− 3A
2

𝑝

𝑟
𝑒 sin𝑓 cos 𝛿 tan𝛼 cos𝛼 sin𝛼

+ A
3

𝑝

𝑟
cos 𝛿 cos𝛼

− A
3

𝑝

𝑟
cos 𝛿 tan2𝛼 cos𝛼 = 0.

(53)
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Multiplying both sides by 1/cos2𝛼 = 1 + tan2𝛼 yields

𝜕

𝜕𝛼
(
𝑑𝑎

𝑑𝑡
) = A

2

𝑒𝑝

𝑟
sin𝑓 cos 𝛿 (1 + tan2𝛼)

− (A
1
+ 3A
2
) 𝑒 sin𝑓 tan𝛼

− A
1
𝑒 sin𝑓 tan3𝛼

− 3A
2

𝑝

𝑟
𝑒 sin𝑓 cos 𝛿tan2𝛼

+ A
3

𝑝

𝑟
cos 𝛿 (1 + tan2𝛼) cos𝛼

− A
3

𝑝

𝑟
cos 𝛿 tan𝛼 (1 + tan2𝛼) sin𝛼 = 0.

(54)

Finally, we can obtain

= −A
1
tan3 − 2A

2

𝑝

𝑟
cos 𝛿 tan2𝛼

+ A
3

𝑝

𝑟𝑒 sin𝑓
cos 𝛿 (1 + tan2𝛼)

× [cos𝛼 − tan𝛼 sin𝛼]

− (A
1
+ 3A
2
) tan𝛼 + A

2

𝑝

𝑟
cos 𝛿 = 0.

(55)

This is a transcendental equation which is so difficult to be
solved analytically, but in the following, we will consider
some special cases.

7.2. Special Case I. Ignoring the absorbed and diffusely
reflected parts of the radiation, of the coefficients (47) become

A
1
= [(

𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME]

A
2
= 2𝜌
𝑠
𝐴
𝑖
,

A
3
= 0.

(56)

Thus, (55) becomes

𝜕

𝜕𝛼
(
𝑑𝑎

𝑑𝑡
) = tan3𝛼 +

2A
2

A
1

𝑝

𝑟
cos 𝛿tan2𝛼

+ (1 +
3A
2

A
1

) tan𝛼 −
A
2

A
1

𝑝

𝑟
cos 𝛿 = 0.

(57)

Let us now define the new coefficients:

K
1
=

2A
2

A
1

𝑝

𝑟
cos 𝛿, K

2
= (1 +

3A
2

A
1

) ,

K
3
= −

A
2

A
1

𝑝

𝑟
cos 𝛿.

(58)

Equation (57) becomes clear as a cubic equation:

tan3𝛼 + K
1
tan2𝛼 + K

2
tan𝛼 + K

3
= 0, (59)

which has the same solution as given by (27), but upon replac-
ing the coefficients B𝑠 with the newly defined coefficients
K𝑠 we obtain

(tan𝛼
∗

1
)
𝑎
= −

1

3
K
1
+ K +

K2
1
− 3K

2

9K
,

(tan𝛼
∗

2,3
)
𝑎

= −
1

3
K
1
−

1

2
K −

K2
1
− 3 K

2

18K

±
𝑖√3

2
K
1
[K −

K2
1
− 3K

2

9K
] ,

(60)

where

K = (
1

6
K
1
K
2
−

1

2
K
3
−

1

27
K
3

1

+ (
1

27
K
3

1
K
3
−

1

108
K
2

1
K
2

2

−
1

6
K
1
K
2
K
3
+

1

27
K
3

2
+

1

4
K
2

2
)

1/2

)

1/3

.

(61)

Since tan𝛼
∗

2,3
are imaginary solution, therefore, these two

roots are rejected. And thus the only considered root is the
first root tan𝛼

∗

1
.

7.3. Special Case II. Ignoring the absorbed and diffusely
reflected parts of the radiation and assuming that the solar
wind and the coronal mass ejection do not depend on
the cone angle, then (57) can be reduced to the following
quadratic equation:

𝑑𝑎

𝑑𝑡
= F ⋅ Ξ

𝑎

= 𝑃
2𝑝𝑟
2

𝜇(1 − 𝑒2)
2

× {[2𝜌
𝑠
𝐴
𝑖
cos𝛼cos2𝛼

+ ((
𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME)] (e
𝑠
⋅ Ξ
𝑎

)

+ 𝐴
𝑖
cos𝛼 (2𝜌

𝑠
cos𝛼 sin𝛼 cos 𝛿) (e

𝑡
⋅ Ξ
𝑎

)

+ 𝐴
𝑖
cos𝛼 (2𝜌

𝑠
cos𝛼 sin𝛼 sin 𝛿)

× (e
𝑤

⋅ Ξ
𝑎

) } ,
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𝑑𝑎

𝑑𝑡
= 𝑃

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2

× {[2𝜌
𝑠
𝐴
𝑖
cos𝛼cos2𝛼

+ ((
𝐴
𝑖

𝑚
)
SW

𝑛
𝑆𝑊

𝑀
𝑃
V2
𝑆𝑊

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME)]

× (e
𝑠
⋅ 𝑒 sin𝑓ê

𝑠
)

+ 𝐴
𝑖
cos𝛼 (2𝜌

𝑠
cos𝛼 sin𝛼 cos 𝛿)

× (e
𝑡
⋅
𝑝

𝑟
ê
𝑡
) } ,

(62)

which can be simplified to

𝑑𝑎

𝑑𝑡
= 𝑃

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2

× {[2𝜌
𝑠
𝐴
𝑖
cos𝛼cos2𝛼

+ ((
𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME)]

×𝑒 sin𝑓 + 𝐴
𝑖

𝑝

𝑟
cos𝛼 (2𝜌

𝑠
cos𝛼 sin𝛼 cos 𝛿)} .

(63)

Consider the following definitions:

A
0
= (

𝐴
𝑖

𝑚
)
SW

𝑛SW𝑀
𝑃
V2SW

+ (
𝐴
𝑖

𝑚
)
CME

(
𝑀CME
𝜏CME

) V2CME,

A
2
= 2𝜌
𝑠
𝐴
𝑖
𝑃.

(64)

Equation (63) can be simplified to

𝑑𝑎

𝑑𝑡
=

2𝑝𝑟
2

𝜇(1 − 𝑒2)
2

× [A
0
𝑒 sin𝑓

+A
2
(𝑒 sin𝑓 cos𝛼 +

𝑝

𝑟
sin𝛼 cos 𝛿) cos2𝛼] .

(65)

Differentiating (65) with respect to 𝛼 and equating the result
to zero, we obtain

𝜕

𝜕𝛼
(
𝑑𝑎

𝑑𝑡
) = −3𝑒 sin𝑓cos2𝛼 sin𝛼

+
𝑝

𝑟
cos𝛼 cos 𝛿 − 3

𝑝

𝑟
sin2𝛼 cos𝛼 cos 𝛿

= 0.

(66)

Dividing on 3cos2𝛼 sin𝛼 yields

𝜕

𝜕𝛼
(
𝑑𝑎

𝑑𝑡
) = −𝑒 sin𝑓 +

1

3

𝑝

𝑟 sin𝛼 cos𝛼
cos 𝛿

− 3
𝑝

𝑟
tan𝛼 cos 𝛿 = 0,

(67)

which can be written as

(
1

3 cos𝛼 sin𝛼
) {−3𝑒 sin𝑓 cos𝛼 sin𝛼 +

𝑝

𝑟
cos 𝛿

−3
𝑝

𝑟
tan𝛼 cos𝛼 sin𝛼 cos 𝛿} = 0.

(68)

Equating the numerator to zero and rearranging the terms
yield

2 (
1 + 𝑒 cos𝑓

𝑒 sin𝑓
) cos 𝛿 tan2𝛼

+ 3 tan𝛼 −
1 + 𝑒 cos𝑓

𝑒 sin𝑓
cos 𝛿 = 0,

(69)

which has the solution of quadratic equations

(tan𝛼
∗

)
𝑎
=

−3 ± √9 + 8((1 + 𝑒 cos𝑓) /𝑒 sin𝑓)
2cos2𝛿

4 ((1 + 𝑒 cos𝑓) /𝑒 sin𝑓) cos 𝛿
.

(70)

This equation represents the control law that maximizes the
rate of change of semimajor axis. It computes the actual sail
pitch/cone angle profile necessary to increase the semimajor
axis at a maximum rate (Figure 3).

7.4. Optimal Control Law for the Rate of Change of Eccentricity.
When comparing (70) and (69), we observe that the required
direction to maximize certain variable is given by tan �̃� =

(1 + 𝑒 cos𝑓)/𝑒 sin𝑓 = (𝑝/𝑟)/𝑒 sin𝑓, which represents the
transverse component divided by the radial component of the
primer vector. Thus, in case of eccentricity, set

tan �̃� =
Ξ
𝑒

𝑡

Ξ𝑒
𝑠

=
cos𝑓 + (𝑟/𝑝) (𝑒 + cos𝑓)

sin𝑓

=
(2 + 𝑒 cos𝑓) cot𝑓

(1 + 𝑒 cos𝑓)
+

𝑒csc𝑓
(1 + 𝑒 cos𝑓)

.

(71)
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Figure 3: (a) The optimum cone angle that maximizes the rate of change of semimajor axis when taking the positive sign in the numerator.
(b) The optimum cone angle that maximizes the rate of change of semimajor axis when taking the negative sign in the numerator.

The maximum rate of change of the orbital eccentricity fol-
lows directly, taking into account the simplification addressed
in special Case II (Figure 4), as
(tan𝛼

∗

)
𝑒

= (−3 ± √9 + 8(
(2 + 𝑒 cos𝑓) cot𝑓 + 𝑒 csc𝑓

(1 + 𝑒 cos𝑓)
)

2

cos2𝛿)

× (4(
(2 + 𝑒 cos𝑓) cot𝑓 + 𝑒csc𝑓

(1 + 𝑒 cos𝑓)
) cos 𝛿)

−1

.

(72)

7.5. Optimal Control Law for the Rate of Change of Inclina-
tion. Changes in the out-of-plane orbital elements, such as
inclination and right ascension of the ascending node, can
be effected by the use of simple switching functions. For
maximum rate of change of inclination, the solar sail thrust
can be directed alternately above and below the orbit plane
every half orbit by the sign function which has +1 or −1.

In what follows, we will find an optimum cone angle that
maximizes the rate of change of inclination:

𝜕

𝜕𝛼
(

𝑑𝑖

𝑑𝑓
) =

𝑟
3

𝜇𝑝
sign [cos (𝑓 + 𝜔)]

𝜕

𝜕𝛼
𝑊 = 0, (73)

from which one can obtain

3
𝜌
𝑠

𝜌
𝑑

[1 − 2tan2𝛼] =
1

cos𝛼
[tan2𝛼 − 1] . (74)

Setting 𝑥 = tan2𝛼, the above equation can be written as

𝑥
3

+ (
−1 − 𝜌

𝑑

3𝜌
𝑠

)𝑥
2

+ (
2𝜌
𝑑
− 3𝜌
𝑠

3𝜌
𝑠

)𝑥 + (
1 − 𝜌
𝑑

3𝜌
𝑠

) = 0, (75)

which has the solution

(tan2𝛼∗
1
)
𝑖

=
1

9𝜌
𝑠

(1 + 𝜌
𝑑
) + (𝜌

0
+ 𝜌
1/2

1
)
1/3

+
1

9𝜌2
𝑠

[(1 + 𝜌
𝑑
)
2

− 9𝜌
𝑠

(2𝜌
𝑑
− 3𝜌
𝑠
)]

+
1

81𝜌
𝑠

[
1

6
(−1 − 𝜌

𝑑
) (2𝜌
𝑑
− 3𝜌
𝑠
) −

1

2
(1 − 𝜌

𝑑
)

−
1

27
(−1 − 𝜌

𝑑
)
3

] (𝜌
0
+ 𝜌
1/2

1
)
−1/3

,

(tan2𝛼∗
2,3

)
𝑖

=
1

9𝜌
𝑠

(1 + 𝜌
𝑑
) −

1

2
(𝜌
0
+ 𝜌
1/2

1
)
1/3

−
1

9 × 18𝜌2
𝑠

[(1 + 𝜌
𝑑
)
2

− 9𝜌
𝑠
(2𝜌
𝑑
− 3𝜌
𝑠
)]

× (𝜌
0
+ 𝜌
1/2

1
)
−1/3

±
𝑖√3

6𝜌
𝑠

(1 + 𝜌
𝑑
)

× [(𝜌
0
+ 𝜌
1/2

1
)
1/3

−
1

81𝜌2
𝑠

× [(1 + 𝜌
𝑑
)
2

− 9𝜌
𝑠
(2𝜌
𝑑
− 3𝜌
𝑠
)]

× (𝜌
0
+ 𝜌
1/2

1
)
−1/3

] ,

(76)
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Figure 4: (a) The optimum cone angle that maximizes the rate of change of eccentricity when taking the positive sign in the numerator. (b)
The optimum cone angle that maximizes the rate of change of eccentricity when taking the negative sign in the numerator.
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Figure 5: The optimum change in the longitude in the ascending
node ΔΩ versus the inclination sin 𝑖 and sail lightness number 𝛽.

where

𝜌
0
=

1

45𝜌2
𝑠

(1 + 𝜌
𝑑
) (2𝜌
𝑑
− 3𝜌
𝑠
)

−
1

6𝜌
𝑠

(1 − 𝜌
𝑑
) +

1

27 × 27𝜌3
𝑠

(1 + 𝜌
𝑑
)
3

,

𝜌
1
=

1

729𝜌4
𝑠

(1 + 𝜌
𝑑
)
3

(9 − 9𝜌
𝑑
)

−
1

162
𝜌
𝑠
(1 − 𝜌

2

𝑑
) (2𝜌
𝑑
− 3𝜌
𝑠
)

+
1

729𝜌3
𝑠

(2𝜌
𝑑
− 3𝜌
𝑠
)
3

+
1

36𝜌2
𝑠

(2𝜌
𝑑
− 3𝜌
𝑠
)
2

−
1

8748
(1 + 𝜌
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(77)

As a special casewhen ignoring the diffusive part of radiation,
we obtain

3𝜌
𝑠
[1 − 2tan2𝛼] = 0,

⇒ (tan𝛼
∗

)
𝑖
=

1

√2

⇒ 𝛼
∗

𝑖
= 35.26

∘

.

(78)

This result is in agreement with the previous results. If we
substitute the control law into the inclination equation in
Lagrange planetary equations and integrate over one orbit,
we can obtain the change in inclination per orbit. We find
that the change in inclination per orbit is independent of
orbit radius and only depends on the sail lightness number
(straight number relation) as follows:

Δ𝑖 = 88.2𝛽 (degrees per orbit) . (79)

However, closer orbits to the Sun have shorter orbit periods,
and so the time to achieve an overall inclination change is
shorter. This optimal angle is 35.26∘, which enables us to
maximize angular momentum.
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Figure 6: (a) The optimum cone angle that maximizes the rate of change of argument of perihelion when taking the positive sign in the
numerator. (b) The optimum cone angle that maximizes the rate of change of argument of perihelion when taking the negative sign in the
numerator.

7.6. Optimal Control Law for the Rate of Change of Ascending
Node. Theprocedure is the same as in optimal control law for
inclination

𝜕

𝜕𝛼
(
𝑑Ω

𝑑𝑓
) =

𝑟
3

𝜇𝑝 sin 𝑖
sign [sin (𝑓 + 𝜔)]

𝜕

𝜕𝛼
𝑊 = 0

⇒ 3
𝜌
𝑠

𝜌
𝑑

[1 − 2tan2𝛼]

=
1

cos𝛼
[tan2𝛼 − 1] ,

(80)

which has the same solutions as those maximizing the
inclination and is in good agreement with the previous
results. If we substitute this control law into the ascending
node in Lagrange planetary equations and integrate over
one orbit, we can obtain the change in ascending node per
orbit. We find that the change in ascending node per orbit
is independent of orbit radius and only depends on the sail
lightness number as follows:

ΔΩ = (
88.2𝛽

sin 𝑖
) (degrees per orbit) . (81)

However, closer orbits to the Sun have shorter orbit periods,
and so the time to achieve an overall inclination change is
shorter (Figure 5).

7.7. Optimal Control Law for the Rate of Change of Argument
of Perihelion. When comparing (70) and (69), we observe
that the required direction to maximize a certain variable is
given by tan �̃� = (1 + 𝑒 cos𝑓)/𝑒 sin𝑓 = (𝑝/𝑟)/𝑒 sin𝑓, which
represents the transverse component divided by the radial

component of the primer vector. Thus, in case of argument
of perihelion (Figure 6), we obtain

tan �̃� =
Ξ
𝜔

𝑡

Ξ𝜔
𝑠

=
(1 + (𝑟/𝑝)) sin𝑓

cos𝑓

= (1 + (
𝑟

𝑝
)) tan𝑓

= (
2 + 𝑒 cos𝑓
1 + 𝑒 cos𝑓

) tan𝑓,

(tan𝛼
∗

)
𝜔

=

−3 ± √9 + 8(((2 + 𝑒 cos𝑓) / (1 + 𝑒 cos𝑓)) tan𝑓)
2cos2𝛿

4 (((2 + 𝑒 cos𝑓) / (1 + 𝑒 cos𝑓)) tan𝑓) cos 𝛿
.

(82)

8. Conclusion

We can conclude the new contributions of the present work
as follows. The force model on the sailcraft configurations
is amended with the solar wind and coronal mass ejection
forces. The solar radiation pressure model is modified so
as to include the absorbed, the specularly reflected, and the
diffusely reflected into the model. Some analytical control
laws with some mentioned input constraints for optimizing
sailcraft dynamics in Heliocentric orbit using Lagrange’s
planetary equations are mathematically explored. Optimum
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force vector in a required direction is maximized by deriving
optimal sail cone angle. Ignoring the absorbed and diffusely
reflected parts of the radiation, some special cases are
obtained. New control laws that maximize thrust to obtain
certain required maximization in some particular orbital
element are obtained.
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