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We propose a three-dimensional stage-structured predatory-prey model with discrete and distributed delays. By use of a new
variable, the original three-dimensional system transforms into an equivalent four-dimensional system. Firstly, we study the
existence and local stability of positive equilibrium of the new system. And, by choosing the time delay 𝜏 as a bifurcation parameter,
we show that Hopf bifurcation may occur as the time delay 𝜏 passes through some critical values. Secondly, by use of normal form
theory and central manifold argument, we establish the direction and stability of Hopf bifurcation. At last, some simple discussion
is presented.

1. Introduction

Since the pioneering theoretical works by Lotka [1] and
Volterra [2], there were a lot of authors who studied all kinds
of predator-prey models modeled by ordinary differential
equations (ODEs) [3–5]. To reflect that the dynamical behav-
ior of the models depends on the past history of the system, it
is often necessary to incorporate time delays into the models.
Therefore, a more realistic predator-prey model should be
described by delayed differential equations (DDEs) [6–26].
Some of them investigated discrete delays [6–20]; others
were about distributed delays [21–24]; and both discrete and
distributed delays were studied in [25]. In general, delay
differential equations exhibit more complicated dynamics on
stability, periodic structure, bifurcation, and so on [26].

In the natural world, many individuals have a life story
that takes them through two stages, immature and mature.
The predator only catches the mature prey, as the imma-
ture preys are protected by their eggshells or refuge. Some
predator-prey models with stage structure were investigated
in [27–33]. Motivated by [25, 27, 31] and the references cited
therein, in the present paper, we will consider the following

stage-structured predator-prey model with discrete and dis-
tributed delay:

𝑥


1
(𝑡) = 𝑟𝑥

2
(𝑡) − 𝑑

1
𝑥
1
(𝑡) − 𝑟𝑒

−𝑑
1
𝜏
𝑥
2
(𝑡 − 𝜏) ,

𝑥


2
(𝑡) = 𝑟𝑒

−𝑑
1
𝜏
𝑥
2
(𝑡 − 𝜏) − 𝑑

2
𝑥
2
(𝑡) − 𝑏

1
𝑥
2
(𝑡) 𝑦 (𝑡) ,

𝑦


(𝑡) = 𝑦 (𝑡) [−𝑑
3
+ 𝑏
2
∫

𝑡

−∞

𝐹 (𝑡 − 𝑠) 𝑥
2
(𝑠) d𝑠 − 𝛼𝑦 (𝑡)] ,

(1)

where 𝑥
1
(𝑡), 𝑥

2
(𝑡), and 𝑦(𝑡) can be interpreted as the pop-

ulation densities of the immature prey, mature prey, and
predator at time 𝑡, respectively. 𝑟 denotes the birth rate of
the prey population; 𝑑

1
, 𝑑
2
, and 𝑑

3
denote the death rate of

the immature prey, mature prey, and the predator; 𝛼 is the
density-depended death rate of the predator; 𝑏

1
denotes the

per capita per unit time predation rate of the predator; the
term 𝑏

2
∫

𝑡

−∞
𝐹(𝑡 − 𝑠)𝑥

2
(𝑠)d𝑠 is the conversion rate from prey

to predator, and the distributed delay may interpret as digest
delay. The function 𝐹(𝑠) is called the delayed kernel that is a
nonnegative bounded function defined on [0,∞). Following
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the ideas of Cushing et al. [34], we define𝐹(𝑡) as the following
weak kernel function:

𝐹 (𝑡) = 𝛽𝑒
−𝛽𝑡
, 𝛽 > 0. (2)

Next, we define a new variable:

𝑢 (𝑡) = ∫

𝑡

−∞

𝛽𝑒
−𝛽(𝑡−𝑠)

𝑥
2
(𝑠) d𝑠. (3)

Then by use of linear chain trick technique, system (1) can be
transformed into the following equivalent system:

𝑥


1
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(𝑡) − 𝑑
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𝜏
𝑥
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(𝑡) 𝑦 (𝑡) ,

𝑢


(𝑡) = 𝛽𝑥
2
(𝑡) − 𝛽𝑢 (𝑡) ,

𝑦


(𝑡) = 𝑦 (𝑡) [−𝑑
3
+ 𝑏
2
𝑢 (𝑡) − 𝛼𝑦 (𝑡)] .

(4)

The organization of this paper is as follows: In Section 2,
we will get the conditions for the existence and stability of
positive equilibrium of system (4). The occurring condition
for Hopf bifurcation is also obtained. In Section 3, by use
of normal form theory and central manifold argument, we
illustrate the direction and stability of Hopf bifurcation. In
Section 4, we give some brief discussion.

2. Stability of Positive Equilibrium and
Existence of Hopf Bifurcation

In this section, we will firstly investigate the existence and
stability of positive equilibrium of system (4) then study the
effect of time delay on the system (4); that is, we will choose
𝜏 as bifurcating parameter to analyze Hopf bifurcation.

Theorem 1. There exists a unique positive equilibrium 𝐸
∗ for

system (4), if assumption

(H1) 𝑟𝑒−𝑑2𝜏 − 𝑑
2
> 0 holds. And 𝐸∗ = (𝑥∗

1
, 𝑥
∗

2
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∗
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∗
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𝑏
3
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= 𝑢
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− 𝑑
2
) + 𝑏
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𝑏
2
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𝑦
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− 𝑑
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𝑏
1

.

(5)

Linearizing system (4) at 𝐸∗, we get

𝑥
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𝑥
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(6)

and the characteristic equation for system (6) takes the form

𝜆
4
+ ℎ
1
𝜆
3
+ ℎ
2
𝜆
2
+ ℎ
3
𝜆 + ℎ

4
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5
𝜆
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𝜆
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+ ℎ
7
𝜆 + ℎ

8
] 𝑒
−𝜆𝜏

= 0,

(7)

where

ℎ
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1
𝑦
∗
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∗
) ,

ℎ
2
= 𝑑

1
(𝑑
2
+ 𝑏
1
𝑦
∗
) + (𝛽 + 𝛼𝑦

∗
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+ 𝑏
1
𝑦
∗
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∗
,

ℎ
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= 𝑑
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(𝑑
2
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∗
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∗
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+ 𝑏
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= 𝛼𝛽𝑑

1
𝑦
∗
(𝑑
2
+ 𝑏
1
𝑦
∗
) + 𝛽𝑏

1
𝑏
2
𝑥
∗

2
𝑦
∗
,

ℎ
5
= − 𝑟𝑒
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∗
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1
𝑦
∗
𝑟𝑒
−𝑑
1
𝜏
.

(8)

Note that when 𝜏 = 0, (7) becomes

𝜆
4
+ (ℎ

1
+ ℎ
5
) 𝜆
3
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2
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6
) 𝜆
2
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3
+ ℎ
7
) 𝜆 + ℎ

4
+ ℎ
8
= 0.

(9)

It is easy to confirm that

ℎ
1
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= 𝑑

1
+ 𝛽 + 𝛼𝑦

∗
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∗
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∗
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∗
𝑑
1
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ℎ
4
+ ℎ
8
= 𝛼𝛽𝑏

1
𝑏
2
𝑥
∗

2
𝑦
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(ℎ
1
+ ℎ
5
) (ℎ

2
+ ℎ
6
) − (ℎ

3
+ ℎ
7
) > 0,

(ℎ
1
+ ℎ
5
) [(ℎ

2
+ ℎ
6
) (ℎ

3
+ ℎ
7
) − (ℎ

1
+ ℎ
5
) (ℎ

4
+ ℎ
8
)]

− (ℎ
3
+ ℎ
7
)
2

> 0.

(10)

Thus, by the Routh-Hurwitz criterion we know that all the
roots of (9) have negative real parts, which means that the
positive equilibrium𝐸

∗ is locally asymptotically stable for 𝜏 =
0.

Next, we will consider the case for 𝜏 > 0. Suppose that
there is a pure imaginary root 𝜆 = 𝑖𝜔, 𝜔 > 0. Then we get

𝜔
4
− ℎ
1
𝑖𝜔
3
− ℎ
2
𝜔
2
+ ℎ
3
𝑖𝜔 + ℎ

4

+ (−ℎ
5
𝑖𝜔
3
− ℎ
6
𝜔
2
+ ℎ
7
𝑖𝜔 + ℎ

8
) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0.

(11)

Separating the real and imaginary parts, we have

(ℎ
6
𝜔
2
− ℎ
8
) cos𝜔𝜏 + (ℎ

5
𝜔
3
− ℎ
7
𝜔) sin𝜔𝜏 = 𝜔4 − ℎ

2
𝜔
2
+ ℎ
4
,

(ℎ
6
𝜔
2
− ℎ
8
) sin𝜔𝜏 + (−ℎ

5
𝜔
3
+ ℎ
7
𝜔) cos𝜔𝜏 = ℎ

1
𝜔
3
− ℎ
3
𝜔.

(12)
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Incorporating sin2𝜔𝜏 + cos2𝜔𝜏 = 1, we have

𝜔
8
+ 𝑓
1
𝜔
6
+ 𝑓
2
𝜔
4
+ 𝑓
3
𝜔
2
+ 𝑓
4
= 0, (13)

where

𝑓
1
= ℎ

2

1
− 2ℎ

2
− ℎ
2

5
,

𝑓
2
= 2ℎ

4
+ ℎ
2

2
− 2ℎ

1
ℎ
3
− ℎ
2

6
+ 2ℎ

5
ℎ
7
,

𝑓
3
= ℎ

2

3
− 2ℎ

2
ℎ
4
+ 2ℎ

6
ℎ
8
− ℎ
2

7
,

𝑓
4
= ℎ

2

4
− ℎ
2

8
.

(14)

Denote 𝑧 = 𝜔2. Then (13) becomes

𝑧
4
+ 𝑓
1
𝑧
3
+ 𝑓
2
𝑧
2
+ 𝑓
3
𝑧 + 𝑓

4
= 0. (15)

Let

𝐺 (𝑧) = 𝑧
4
+ 𝑓
1
𝑧
3
+ 𝑓
2
𝑧
2
+ 𝑓
3
𝑧 + 𝑓

4
. (16)

Then the following assumption holds true.

(H2) Equation (15) has at least one positive real root.

In fact, if all the parameters of system (4) are given, it is
easy to calculate the root of (15). Since lim

𝑧→∞
𝐺(𝑧) = +∞,

we conclude that if 𝑓
4
< 0, then (15) has at least one positive

real root. Without loss of generality, we assume that (15) has
four positive root, defined by 𝑧

1
, 𝑧
2
, 𝑧
3
, 𝑧
4
, respectively. Then

(13) has four positive roots as

𝜔
1
= √𝑧

1
, 𝜔

2
= √𝑧

2
,

𝜔
3
= √𝑧

3
, 𝜔

4
= √𝑧

4
.

(17)

From (12), we obtain

sin𝜔𝜏 = (ℎ
5
𝜔
7
+ (ℎ

1
ℎ
6
− ℎ
7
− ℎ
2
ℎ
5
) 𝜔
5

+ (ℎ
2
ℎ
7
+ ℎ
4
ℎ
5
− ℎ
1
ℎ
8
− ℎ
3
ℎ
6
) 𝜔
3

+ (ℎ
3
ℎ
8
− ℎ
4
ℎ
7
) 𝜔)

× (ℎ
2

5
𝜔
6
+ (ℎ

2

6
− 2ℎ

5
ℎ
7
) 𝜔
4

+ (ℎ
2

7
− 2ℎ

6
ℎ
8
) 𝜔
2
+ ℎ
2

8
)

−1

,

(18)

cos𝜔𝜏 = ((ℎ
6
− ℎ
1
ℎ
5
) 𝜔
6
+ (ℎ

1
ℎ
7
+ ℎ
3
ℎ
5
− ℎ
2
ℎ
6
− ℎ
8
) 𝜔
4

+ (ℎ
4
ℎ
6
+ ℎ
2
ℎ
8
− ℎ
3
ℎ
7
) 𝜔
2
+ ℎ
4
ℎ
8
)

× (ℎ
2

5
𝜔
6
+ (ℎ

2

6
− 2ℎ

5
ℎ
7
) 𝜔
4

+ (ℎ
2

7
− 2ℎ

6
ℎ
8
) 𝜔
2
+ ℎ
2

8
)

−1

.

(19)

Denote

𝑒
1
= ℎ

2

5
, 𝑒

2
= ℎ
2

6
− 2ℎ

5
ℎ
7
,

𝑒
3
= ℎ

2

7
− 2ℎ

6
ℎ
8
, 𝑒

4
= ℎ
2

8
,

𝑒
5
= ℎ

5
, 𝑒

6
= ℎ
1
ℎ
6
− ℎ
7
− ℎ
2
ℎ
5
,

𝑒
7
= ℎ

2
ℎ
7
+ ℎ
4
ℎ
5
− ℎ
1
ℎ
8
− ℎ
3
ℎ
6
,

𝑒
8
= ℎ

3
ℎ
8
− ℎ
4
ℎ
7
,

𝑒
9
= ℎ

6
− ℎ
1
ℎ
5
,

𝑒
10
= ℎ

1
ℎ
7
+ ℎ
3
ℎ
5
− ℎ
2
ℎ
6
− ℎ
8
,

𝑒
11
= ℎ

4
ℎ
6
+ ℎ
2
ℎ
8
− ℎ
3
ℎ
7
, 𝑒

12
= −ℎ

4
ℎ
8
.

(20)

Then cos𝜔𝜏 can be written as

cos𝜔𝜏 =
𝑒
9
𝜔
6
+ 𝑒
10
𝜔
4
+ 𝑒
11
𝜔
2
+ 𝑒
12

𝑒
1
𝜔
6
+ 𝑒
2
𝜔
4
+ 𝑒
3
𝜔
2
+ 𝑒
4

, (21)

from which we can get

𝜏
(𝑗)

𝑘
=

1

𝜔
𝑘

{arc cos(
𝑒
9
𝜔
6

𝑘
+ 𝑒
10
𝜔
4

𝑘
+ 𝑒
11
𝜔
2

𝑘
+ 𝑒
12

𝑒
1
𝜔
6

𝑘
+ 𝑒
2
𝜔
4

𝑘
+ 𝑒
3
𝜔
2

𝑘
+ 𝑒
4

) + 2𝑗𝜋} ,

𝑘 = 1, 2, 3, 4; 𝑗 = 0, 1, 2, . . . .

(22)

Thus,±𝑖𝜔
𝑘
is a pair of purely imaginary root of (7). Define

𝜏
0
= 𝜏
(0)

𝑘
0

= min
𝑘∈{1,2,3,4}

{𝜏
(0)

𝑘
} , 𝜔

0
= 𝜔, (23)

In order to obtain the main result, it is necessary to make
the following assumption:

(H3) Re(𝑑𝜆/𝑑𝜏)|
𝜏=𝜏
0

̸= 0.

Taking the derivative of 𝜆with respect to 𝜏 in (7), it is easy
to obtain

(4𝜆
3
+ 3ℎ

1
𝜆
2
+ 2ℎ

2
𝜆 + ℎ

3
)

𝑑𝜆

𝑑𝜏

+ (3ℎ
5
𝜆
2
+ 2ℎ

6
𝜆 + ℎ

7
) 𝑒
−𝜆𝜏 𝑑𝜆

𝑑𝜏

− (ℎ
5
𝜆
3
+ ℎ
6
𝜆
2
+ ℎ
7
𝜆 + ℎ

8
) 𝑒
−𝜆𝜏

(𝜆 + 𝜏

𝑑𝜆

𝑑𝜏

) = 0,

(24)

and it may be rewritten as

𝑑𝜆

𝑑𝜏

= ((ℎ
5
𝜆
4
+ ℎ
6
𝜆
3
+ ℎ
7
𝜆
2
+ ℎ
8
𝜆) 𝑒

−𝜆𝜏
)

× (4𝜆
3
+ 3ℎ

1
𝜆
2
+ 2ℎ

2
𝜆 + ℎ

3

+ (3ℎ
5
𝜆
2
+ 2ℎ

6
𝜆 + ℎ

7
) 𝑒
−𝜆𝜏

− (ℎ
5
𝜆
3
+ ℎ
6
𝜆
2
+ ℎ
7
𝜆 + ℎ

8
) 𝜏𝑒

−𝜆𝜏
)

−1

,

(25)
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or equivalently, we have

(

𝑑𝜆

𝑑𝜏

)

−1

= (4𝜆
3
+ 3ℎ

1
𝜆
2
+ 2ℎ

2
𝜆 + ℎ

3

+ (3ℎ
5
𝜆
2
+ 2ℎ

6
𝜆 + ℎ

7
) 𝑒
−𝜆𝜏

− (ℎ
5
𝜆
3
+ ℎ
6
𝜆
2
+ ℎ
7
𝜆 + ℎ

8
) 𝜏𝑒

−𝜆𝜏
)

× ((ℎ
5
𝜆
4
+ ℎ
6
𝜆
3
+ ℎ
7
𝜆
2
+ ℎ
8
𝜆) 𝑒

−𝜆𝜏
)

−1

= (4𝜆
3
+ 3ℎ

1
𝜆
2
+ 2ℎ

2
𝜆 + ℎ

3

+ (3ℎ
5
𝜆
2
+ 2ℎ

6
𝜆 + ℎ

7
) 𝑒
−𝜆𝜏
)

× (ℎ
5
𝜆
4
+ ℎ
6
𝜆
3
+ ℎ
7
𝜆
2
+ ℎ
8
𝜆)

−1

−

𝜏

𝜆

.

(26)

Taking 𝜆 = 𝑖𝜔 into the above equation, we get

(

𝑑𝜆

𝑑𝜏

)

−1

= (−4𝑖𝜔
3
− 3ℎ

1
𝜔
2
+ 2ℎ

2
𝑖𝜔 + ℎ

3

+ (−3ℎ
5
𝜔
2
+ 2ℎ

6
𝑖𝜔 + ℎ

7
) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏))

× (ℎ
5
𝜔
4
− ℎ
6
𝑖𝜔
3
− ℎ
7
𝜔
2
+ ℎ
8
𝑖𝜔)

−1

−

𝜏

𝑖𝜔

= (−3ℎ
1
𝜔
2
+ ℎ
3
− (3ℎ

5
𝜔
2
− ℎ
7
) cos𝜔𝜏 + 2ℎ

6
sin𝜔𝜏)

× (ℎ
5
𝜔
4
− ℎ
7
𝜔
2
+ 𝑖 (ℎ

8
𝜔 − ℎ

6
𝜔
3
))

−1

+ (𝑖 [−4𝜔
3
+ 2ℎ

2
𝜔 + 2ℎ

6
𝜔 cos𝜔𝜏

+ (3ℎ
5
𝜔
2
− ℎ
7
) sin𝜔𝜏])

× (ℎ
5
𝜔
4
− ℎ
7
𝜔
2
+ 𝑖 (ℎ

8
𝜔 − ℎ

6
𝜔
3
))

−1

−

𝜏

𝑖𝜔

.

(27)

Denote

𝑄 = (ℎ
5
𝜔
4
− ℎ
7
𝜔
2
)

2

+ (ℎ
8
𝜔 − ℎ

6
𝜔
3
)

2

> 0. (28)

Then we have

𝑄Re(𝑑𝜆
𝑑𝜏

)

−1

= [−3ℎ
1
𝜔
2
+ ℎ
3
− (3ℎ

5
𝜔
2
− ℎ
7
) cos𝜔𝜏 + 2ℎ

6
sin𝜔𝜏]

× (ℎ
5
𝜔
4
− ℎ
7
𝜔
2
)

+ [−4𝜔
3
+ 2ℎ

2
𝜔 + 2ℎ

6
𝜔 cos𝜔𝜏 + (3ℎ

5
𝜔
2
− ℎ
7
) sin𝜔𝜏]

× (ℎ
8
𝜔 − ℎ

6
𝜔
3
) .

(29)

Note that

Sign{Re(𝑑𝜆
𝑑𝜏

) |
𝜏=𝜏
0

} = Sign{Re(𝑑𝜆
𝑑𝜏

)

−1

|
𝜏=𝜏
0

} . (30)

Now, we can employ a result from [35] to analyze (7).

Lemma 2 (see [35]). Consider the exponential polynomial

𝑃 (𝜆, 𝑒
−𝜆𝜏
1
, 𝑒
−𝜆𝜏
2
, . . . , 𝑒

−𝜆𝜏
𝑚
)

= 𝜆
𝑛
+ 𝑝

(0)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(0)

𝑛−1
𝜆 + 𝑝

(0)

𝑛

+ [𝑝
(1)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(1)

𝑛−1
𝜆 + 𝑝

(1)

𝑛
] 𝑒
−𝜆𝜏
1

+ ⋅ ⋅ ⋅ + [𝑝
(𝑚)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(𝑚)

𝑛−1
𝜆 + 𝑝

(𝑚)

𝑛
] 𝑒
−𝜆𝜏
𝑚
,

(31)

where 𝜏
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝(𝑖)

𝑗
(𝑖 = 0, 1, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
) vary, the sum of

the order of the zeros of𝑃 (𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚) on the open right
half-plane can change only if a zero appears on or crosses the
imaginary axis.

FromLemma 2, it is easy to obtain the following theorem.

Theorem 3. Suppose that (H1), (H2), and (H3) hold. Then the
following results hold true.

(i) The positive equilibrium 𝐸
∗ of system (4) (𝑥∗

1
, 𝑥
∗

2
,

𝑢
∗
, 𝑦
∗
) is asymptotically stable for 𝜏 ∈ [0, 𝜏

0
).

(ii) The positive equilibrium 𝐸
∗ of system (4) undergoes

a Hopf bifurcation when 𝜏 = 𝜏
0
. That is system (4)

has a periodic solution bifurcating from the positive
equilibrium 𝐸

∗ near 𝜏 = 𝜏
0
.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we will derive the explicit formulae for
determining the properties of the Hopf bifurcation at critical
value of 𝜏

0
by using the normal form and the center manifold

theory [35]. Throughout this section, we always assume
that system (4) undergoes Hopf bifurcation at the positive
equilibrium 𝐸

∗ for 𝜏 = 𝜏
0
, and then ±𝜔

0
is the corresponding

purely imaginary roots of the characteristic equation at the
positive equilibrium 𝐸

∗.
Let 𝑢

1
= 𝑥

1
− 𝑥

∗

1
, 𝑢
2
= 𝑥

2
− 𝑥

∗

2
, 𝑢
3
= 𝑢 − 𝑢

∗, 𝑢
4
= 𝑦 −

𝑦
∗, 𝑢

𝑖
(𝑡) = 𝑢

𝑖
(𝜏𝑡), and 𝜏 = 𝜏

0
+ 𝜇, and dropping the bars

for simplification of notations, then system (4) is transformed
into FDE defined in 𝐶 = 𝐶([−1, 0], 𝑅4) as

𝑢


(𝑡) = 𝐿
𝜇
(𝑢
𝑡
) + 𝑔 (𝜇, 𝑥

𝑡
) , (32)
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where 𝑢
𝑡
= (𝑢

1
(𝑡), 𝑢

2
(𝑡), 𝑢

3
(𝑡), 𝑢

4
(𝑡))
𝑇
∈ 𝑅

4, 𝐿
𝜇
: 𝐶 → 𝑅, 𝑔 :

𝑅 × 𝐶 → 𝑅, and

𝐿
𝜇
(𝜙)

= (𝜏
0
+ 𝜇)(

−𝑑
1

𝑟 0 0

0 −𝑑
2
− 𝑏
1
𝑦
∗

0 −𝑏
1
𝑥
∗

2

0 𝛽 −𝛽 0

0 0 𝑏
2
𝑦
∗

−𝛼𝑦
∗

)

×(

𝜙
1
(0)

𝜙
2
(0)

𝜙
3
(0)

𝜙
4
(0)

)

+ (𝜏
0
+ 𝜇)(

0 −𝑟𝑒
−𝑑
1
𝜏
0 0

0 𝑟𝑒
−𝑑
1
𝜏

0 0

0 0 0 0

0 0 0 0

)(

𝜙
1
(−1)

𝜙
2
(−1)

𝜙
3
(−1)

𝜙
4
(−1)

) ,

(33)

𝑔 (𝜇, 𝜙) = (𝜏
0
+ 𝜇)(

0

−𝑏
1
𝜙
2
(0) 𝜙

4
(0)

0

𝑏
2
𝜙
4
(0) 𝜙

3
(0) − 𝛼𝜙

4
(0)
2

), (34)

where 𝜙(𝜃) = (𝜙
1
(𝜃), 𝜙

2
(𝜃), 𝜙

3
(𝜃), 𝜙

4
(𝜃))

𝑇
∈ 𝐶. By the Riesz

representation theorem, there exists a function 𝜂(𝜃, 𝜇) of
bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿
𝜇
𝜙 = ∫

0

−1

d𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , for 𝜙 ∈ 𝐶. (35)

In fact, we can choose

𝜂 (𝜃, 𝜇)

= (𝜏
0
+ 𝜇)

×(

−𝑑
1

𝑟 0 0

0 −𝑑
2
− 𝑏
1
𝑦
∗

0 −𝑏
1
𝑥
∗

2

0 𝛽 −𝛽 0

0 0 𝑏
2
𝑦
∗

−𝛼𝑦
∗

)𝛿(𝜃)

+ (𝜏
0
+ 𝜇)(

0 −𝑟𝑒
−𝑑
1
(𝜏
0
+𝜇)

0 0

0 𝑟𝑒
−𝑑
1
(𝜏
0
+𝜇)

0 0

0 0 0 0

0 0 0 0

)𝛿 (𝜃 + 1) ,

(36)

where 𝛿 is the Dirac delta function. For 𝜙 ∈ 𝐶1([−1, 0], 𝑅4),
define

𝐴 (𝜇) 𝜙 =

{
{
{
{

{
{
{
{

{

d𝜙 (𝜃)
d𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

d𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 =

{

{

{

0, 𝜃 ∈ [−1, 0) ,

𝑔 (𝜇, 𝜙) , 𝜃 = 0.

(37)

Then system (32) is equivalent to

𝑢


(𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (38)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃), 𝜃 ∈ [−1, 0]. For 𝜓 ∈ 𝐶

1
([0, 1], V(𝑅4)∗),

define

𝐴
∗
𝜓 (𝑠) =

{
{
{
{

{
{
{
{

{

−

d𝜓 (𝑠)
d𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1

d𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(39)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉,
(40)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then 𝐴(0) and 𝐴
∗ are adjoint

operators. By the discussion in Section 2, we know that
±𝑖𝜔

0
𝜏
0
are eigenvalues of𝐴(0).Thus, they are also eigenvalues

of 𝐴∗. We need to compute the eigenvector of 𝐴(0) and 𝐴∗
corresponding to 𝑖𝜔

0
𝜏
0
and −𝑖𝜔

0
𝜏
0
, respectively.

Suppose that 𝑞(𝜃) = (1, 𝑞
1
, 𝑞
2
, 𝑞
3
)
𝑇
𝑒
𝑖𝜃𝜔
0
𝜏
0 is the eigen-

vectors of 𝐴(0) corresponding to 𝑖𝜔
0
𝜏
0
. Then 𝐴(0)𝑞(𝜃) =

𝑖𝜔
0
𝜏
0
𝑞(𝜃). It follows from the definition of 𝐴(0) and 𝜂(𝜃, 𝜇)

that

𝜏
0
(

−𝑑
1

𝑟 0 0

0 −𝑑
2
− 𝑏
1
𝑦
∗

0 −𝑏
1
𝑥
∗

2

0 𝛽 −𝛽 0

0 0 𝑏
2
𝑦
∗
−𝛼𝑦

∗

)𝑞(0)

+ 𝜏
0
(

0 −𝑟𝑒
−𝑑
1
𝜏
0
0 0

0 𝑟𝑒
−𝑑
1
𝜏
0
0 0

0 0 0 0

0 0 0 0

)𝑞 (−1) = 𝑖𝜔
0
𝜏
0
𝑞 (0) .

(41)

Because of 𝑞(−1) = 𝑞(0)𝑒−𝑖𝜔0𝜏0 , then we get

(

𝑖𝜔
0
+ 𝑑
1

−𝑟+𝑟𝑒
−𝑑1𝜏0

𝑒
−𝑖𝜔0𝜏0

0 0

0 𝑖𝜔
0
+ 𝑑
2
+𝑏
1
𝑦
∗
− 𝑟𝑒
−𝑑1𝜏0

𝑒
−𝑖𝜔0𝜏0

0 𝑏
1
𝑥
∗

2

0 −𝛽 𝑖𝜔
0
+𝛽 0

0 0 −𝑏
2
𝑦
∗
𝑖𝜔
0
+ 𝛼𝑦
∗

)

×(

1

𝑞
1

𝑞
2

𝑞
3

) = (

0

0

0

0

) ,

(42)

from which we obtain

𝑞
1
=

𝑖𝜔
0
− 𝑑
1

𝑟 (1 − 𝑒
−𝑑
1
𝜏
0𝑒
−𝑖𝜔
0
𝜏
0)

,

𝑞
2
=

𝛽 (𝑑
1
− 𝑖𝜔

0
)

𝑟 (𝑖𝜔
0
+ 𝛽) (1 − 𝑒

−𝑑
1
𝜏
0𝑒
−𝑖𝜔
0
𝜏
0)

,

𝑞
3
=

𝑏
2
𝑦
∗
𝛽 (𝑖𝜔

0
+ 𝑑
1
)

𝑟 (𝑖𝜔
0
+ 𝛽) (𝑖𝜔

0
+ 𝛼𝑦

∗
) (1 − 𝑒

−𝑑
1
𝜏
0𝑒
−𝑖𝜔
0
𝜏
0)

.

(43)
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Similarly, let 𝑞∗(𝜃) = 𝐷(1, 𝑞
∗

1
, 𝑞
∗

2
, 𝑞
∗

3
)𝑒
𝑖𝜃𝜔
0
𝜏
0 be the

eigenvectors of 𝐴∗ corresponding to −𝑖𝜔
0
𝜏
0
, and according

to the definition of 𝐴∗ we have

𝜏
0
(

−𝑑
1

0 0 0

𝑟 −𝑑
2
− 𝑏
1
𝑦
∗

𝛽 0

0 0 −𝛽 𝑏
2
𝑦
∗

0 −𝑏
1
𝑥
∗

2
0 −𝛼𝑦

∗

)𝑞
∗

(0)

+ 𝜏
0
(

0 0 0 0

−𝑟𝑒
−𝑑
1
𝜏
0
𝑟𝑒
−𝑑
1
𝜏
0
0 0

0 0 0 0

0 0 0 0

)𝑞
∗

(−1)

= −𝑖𝜔
0
𝜏
0
𝑞
∗

(0) .

(44)

Note that 𝑞∗(−1) = 𝑞∗(0)𝑒𝑖𝜔0𝜏0 . Then we get

(

−𝑖𝜔
0
+𝑑
1

0 0 0

𝑟𝑒
−𝑑1𝜏0𝑒

𝑖𝜔0𝜏0−𝑟 𝑑
2
−𝑖𝜔

0
+𝑏
1
𝑦
∗
− 𝑟𝑒

−𝑑1𝜏0𝑒
𝑖𝜔0𝜏0 −𝛽 0

0 0 𝛽−𝑖𝜔
0
−𝑏
2
𝑦
∗

0 𝑏
1
𝑥
∗

2
0 𝛼𝑦

∗
−𝑖𝜔

0

)

×(

1

𝑞
∗

1

𝑞
∗

2

𝑞
∗

3

) = (

0

0

0

0

) ,

(45)
from which we can obtain

𝑞
∗

1
= ((𝑖𝜔

0
− 𝛼𝑦

∗
) (𝑖𝜔

0
+ 𝛽) (1 − 𝑒

−𝑑
1
𝜏
0
𝑒
𝑖𝜔
0
𝜏
0
))

× ((𝑖𝜔
0
+ 𝛽) (𝑖𝜔

0
− 𝛼𝑦

∗
)

× (−𝑖𝜔
0
+ 𝑑
2
+ 𝑏
1
𝑦
∗
− 𝑟𝑒

−𝑑
1
𝜏
0
𝑒
−𝑖𝜔
0
𝜏
0
)

− 𝛽𝑏
1
𝑥
∗

2
𝑏
2
𝑦
∗
)
−1

,

𝑞
∗

2
= (𝑟𝑏

1
𝑥
∗

2
𝑏
2
𝑦
∗
(𝑖𝜔
0
+ 𝛽) (1 − 𝑒

−𝑑
1
𝜏
0
𝑒
𝑖𝜔
0
𝜏
0
))

× ((𝜔
2

0
+ 𝛽

2
) (𝑖𝜔

0
− 𝛼𝑦

∗
)

× (−𝑖𝜔
0
+ 𝑑
2
+ 𝑏
1
𝑦
∗
− 𝑟𝑒

−𝑑
1
𝜏
0
𝑒
−𝑖𝜔
0
𝜏
0
)

− (𝛽 − 𝑖𝜔
0
) 𝛽𝑏

1
𝑥
∗

2
𝑏
2
𝑦
∗
)
−1

,

𝑞
∗

3
= (𝑟𝑏

1
𝑥
∗

2
(𝑖𝜔
0
+ 𝛽) (1 − 𝑒

−𝑑
1
𝜏
0
𝑒
𝑖𝜔
0
𝜏
0
))

× ((𝑖𝜔
0
+ 𝛽) (𝑖𝜔

0
− 𝛼𝑦

∗
)

× (−𝑖𝜔
0
+ 𝑑
2
+ 𝑏
1
𝑦
∗
− 𝑟𝑒

−𝑑
1
𝜏
0
𝑒
−𝑖𝜔
0
𝜏
0
)

− 𝛽𝑏
1
𝑥
∗

2
𝑏
2
𝑦
∗
)
−1

.

(46)

By (40), we get

⟨𝑞
∗

(𝑠) , 𝑞 (𝜃)⟩

= 𝐷 (1, 𝑞
∗

1
, 𝑞
∗

2
, 𝑞
∗

3
) (1, 𝑞

1
, 𝑞
2
, 𝑞
3
)
𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐷(1, 𝑞
∗

1
, 𝑞
∗

2
, 𝑞
∗

3
)

× 𝑒
−𝑖𝜔
0
𝜏
0
(𝜉−𝜃)d𝜂 (𝜃) (1, 𝑞

1
, 𝑞
2
, 𝑞
3
)
𝑇

𝑒
𝑖𝜔
0
𝜏
0
𝜉d𝜉

= 𝐷{1 + 𝑞
1
𝑞
∗

1
+ 𝑞
2
𝑞
∗

2
+ 𝑞
3
𝑞
∗

3

−∫

0

−1

(1, 𝑞
∗

1
, 𝑞
∗

2
, 𝑞
∗

3
) 𝜃𝑒

𝑖𝜔
0
𝜏
0
𝜃
𝑑𝜂 (𝜃) (1, 𝑞

1
, 𝑞
2
, 𝑞
3
)
𝑇

}

= 𝐷 [1 + 𝑞
1
𝑞
∗

1
+ 𝑞
2
𝑞
∗

2
+ 𝑞
3
𝑞
∗

3

+𝜏
0
𝑟𝑞
1
(𝑞
∗

1
− 1) 𝑒

−𝑑
2
𝜏
0
𝑒
−𝑖𝜔
0
𝜏
0
] .

(47)

Then we can choose 𝐷 such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠),
𝑞(𝜃)⟩ = 0.

Nest, we will use the ideas in [35] to compute the
coordinates describing center manifold 𝐶

0
at 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢
𝑡
⟩ ,

𝑊 (𝑡, 𝜃) = 𝑢
𝑡
(𝜃) − 2Re {𝑧 (𝑡) , 𝑞 (𝜃)} .

(48)

On the center manifold 𝐶
0
, we have 𝑊(𝑡, 𝜃) = 𝑊(𝑧(𝑡),

𝑧(𝑡), 𝜃), and

𝑊(𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) = 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02

𝑧
2

2

+ . . . ,

(49)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in

the direction of 𝑞∗(𝑠) and 𝑞(𝜃). Note that𝑊 is real if 𝑢
𝑡
is real,

and we only consider real solutions. For the solution 𝑢
𝑡
∈ 𝐶

0

of (38), since 𝜇 = 0 and (38), we have

𝑧


(𝑡) = 𝑖𝜔
0
𝜏
0
𝑧 + 𝑞

∗

(0) 𝑔 (0,𝑊 (𝑧, 𝑧, 0)) + 2Re {𝑧𝑞 (0)}

= 𝑖𝜔
0
𝜏
0
𝑧 + 𝑞

∗

(0) 𝑔
0
(𝑧, 𝑧) .

(50)

Then, the above equation can be denoted as

𝑧


(𝑡) = 𝑖𝜔
0
𝜏
0
𝑧 (𝑡) + 𝑓 (𝑧, 𝑧) , (51)

where

𝑓 (𝑧, 𝑧) = 𝑞
∗

(0) 𝑔
0
(𝑧, 𝑧) = 𝑓

20

𝑧
2

2

+ 𝑓
11
𝑧𝑧

+ 𝑓
02

𝑧
2

2

+ 𝑓
21

𝑧
2
𝑧

2

+ ⋅ ⋅ ⋅ .

(52)

From (48) and (49), we have

𝑢
𝑡
= (𝑢

1𝑡
(𝜃) , 𝑢

2𝑡
(𝜃) , 𝑢

3𝑡
(𝜃) , 𝑢

4𝑡
(𝜃))

= 𝑊 (𝑡, 𝜃) + 2Re {𝑧 (𝑡) , 𝑞 (𝜃)}

= 𝑊 (𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃),

(53)
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and then we can obtain

𝑢
2𝑡
(0) = 𝑊

(2)

20
(0)

𝑧
2

2

+𝑊
(2)

11
(0) 𝑧𝑧

+𝑊
(2)

02
(0)

𝑧
2

2

+ 𝑞
1
𝑧 + 𝑞

1
𝑧 + 𝑂 (






𝑧, 𝑧

3



) ,

𝑢
3𝑡
(0) = 𝑊

(3)

20
(0)

𝑧
2

2

+𝑊
(3)

11
(0) 𝑧𝑧

+𝑊
(3)

02
(0)

𝑧
2

2

+ 𝑞
2
𝑧 + 𝑞

2
𝑧 + 𝑂 (|𝑧, 𝑧|

3
) ,

𝑢
4𝑡
(0) = 𝑊

(4)

20
(0)

𝑧
2

2

+𝑊
(4)

11
(0) 𝑧𝑧

+𝑊
(4)

02
(0)

𝑧
2

2

+ 𝑞
3
𝑧 + 𝑞

3
𝑧 + 𝑂 (|(𝑧, 𝑧)|

3
) .

(54)

From the definition of 𝑔(𝜇, 𝑢
𝑡
), we have

𝑓 (𝑧, 𝑧) = 𝑞
∗

(0) 𝑔
0
(𝑧, 𝑧)

= 𝜏
0
𝐷(1, 𝑞

∗

1
, 𝑞
∗

2
, 𝑞
∗

3
)

×(

0

−2𝑏
1
𝑢
2𝑡
(0) 𝑢

4𝑡
(0)

0

𝑏
2
𝑢
3𝑡
(0) 𝑢

4𝑡
(0) − 𝛼𝑢

2

4𝑡
(0)

)

(55)

= 𝜏
0
𝐷{𝑧

2
[−2𝑏

1
𝑞
∗

1
𝑞
1
𝑞
3
+ 𝑏
2
𝑞
∗

3
𝑞
2
𝑞
3
− 𝛼𝑞

∗

3
𝑞
2

3
]

+ 2𝑧𝑧 [−2𝑏
1
𝑞
∗

1
Re {𝑞

1
𝑞
3
} + 𝑏

2
𝑞
∗

3
Re {𝑞

2
𝑞
3
}

−𝛼𝑞
∗

3
Re {𝑞

3
𝑞
3
}]

+ 𝑧
2
[−𝑏
1
𝑞
∗

1
𝑞
1
𝑞
3
+ 𝑏
2
𝑞
∗

3
𝑞
2
𝑞
3
− 𝛼𝑞

∗

3
𝑞
3
𝑞
3
]

+

1

2

𝑧
2
𝑧 [−𝑏

1
𝑞
∗

1
(𝑊

(2)

20
(0) 𝑞

3
+ 2𝑊

(2)

11
(0) 𝑞

3

+2𝑊
(4)

11
(0) 𝑞

1
+𝑊

(4)

20
(0) 𝑞

1
)

+ 𝑏
2
𝑞
∗

3
(𝑊

(3)

20
(0) 𝑞

3
+ 2𝑊

(3)

11
(0) 𝑞

3

+2𝑊
(4)

11
(0) 𝑞

2
+𝑊

(4)

20
(0) 𝑞

2
)

− 𝛼𝑞
∗

3
(2𝑊

(4)

20
(0) 𝑞

3
+ 4𝑊

(4)

11
(0) 𝑞

3
)]

+ ⋅ ⋅ ⋅ } .

(56)

Comparing the coefficients with those of (52), we obtain

𝑓
20
= 2𝜏

0
𝐷[−𝑏

1
𝑞
∗

1
𝑞
1
𝑞
3
+ 𝑏
2
𝑞
∗

3
𝑞
2
𝑞
3
− 𝛼𝑞

∗

3
𝑞
2

3
] ,

𝑓
11
= 2𝜏

0
𝐷[−𝑏

1
𝑞
∗

1
Re {𝑞

1
𝑞
3
}

+ 𝑏
2
𝑞
∗

3
Re {𝑞

2
𝑞
3
} − 𝛼𝑞

∗

3
Re {𝑞

3
𝑞
3
}] ,

𝑓
02
= 2𝜏

0
𝐷[−𝑏

1
𝑞
∗

1
𝑞
1
𝑞
3
+ 𝑏
2
𝑞
∗

3
𝑞
2
𝑞
3
− 𝛼𝑞

∗

3
𝑞
2

3
] ,

𝑓
21
= 𝜏
0
𝐷[−𝑏

1
𝑞
∗

1
(𝑊

(2)

20
(0) 𝑞

3

+ 2𝑊
(2)

11
(0) 𝑞

3
+ 2𝑊

(4)

11
(0) 𝑞

1

+𝑊
(4)

20
(0) 𝑞

1
)

+ 𝑏
2
𝑞
∗

3
(𝑊

(3)

20
(0) 𝑞

3

+ 2𝑊
(3)

11
(0) 𝑞

3
+ 2𝑊

(4)

11
(0) 𝑞

2

+𝑊
(4)

20
(0) 𝑞

2
)

− 𝛼𝑞
∗

3
(2𝑊

(4)

20
(0) 𝑞

3
+ 4𝑊

(4)

11
(0) 𝑞

3
)] .

(57)

In order to determine𝑓
21
we need to compute𝑊

20
(𝜃) and

𝑊
11
(𝜃). From (38) and (48), we have

�̇� = �̇�
𝑡
− �̇�𝑞 −

̇
𝑧𝑞

= {

𝐴 (0)𝑊 − 2Re {𝑞∗ (0) 𝑔
0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0) ,

𝐴 (0)𝑊 − 2Re {𝑞∗ (0) 𝑔
0
𝑞 (𝜃)} + 𝑔

0
, 𝜃 = 0,

= 𝐴 (0)𝑊 − 𝐻 (𝑧, 𝑧, 𝜃) ,

(58)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2

+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02

𝑧
2

2

+ ⋅ ⋅ ⋅ . (59)

Note that on the center manifold 𝐶
0
near the origin

�̇� = 𝑊
𝑧
�̇� + 𝑊

𝑧

̇
𝑧, (60)

and thus we obtain
(𝐴 (0) − 2𝑖𝜔

0
𝜏
0
)𝑊
20
(𝜃) = − 𝐻

20
(𝜃) ,

𝐴 (0)𝑊
11
(𝜃) = − 𝐻

11
(𝜃) .

(61)

By (58), we know that, for 𝜃 ∈ [−1, 0),

𝐻(𝑧, 𝑧, 𝜃) = −𝑞
∗

(0) 𝑔
0
𝑞 (𝜃) − 𝑞

∗

0
𝑔
0
𝑞 (𝜃) = −𝑓𝑞 (𝜃) − 𝑓 𝑞 (𝜃).

(62)

Comparing the coefficients with those in (59), we get

𝐻
20
(𝜃) = −𝑓

20
𝑞 (𝜃) − 𝑓

02
𝑞 (𝜃) ,

𝐻
11
(𝜃) = −𝑓

11
𝑞 (𝜃) − 𝑓

11
𝑞 (𝜃) .

(63)

From (61), (63), and the definition of 𝐴, we have

�̇�
20
(𝜃) = 2𝑖𝜔

0
𝜏
0
𝑊
20
(𝜃) + 𝑓

20
𝑞 (𝜃) + 𝑓

02
𝑞 (𝜃) . (64)

Noting that 𝑞(𝜃) = 𝑞(0)𝑒𝑖𝜔0𝜏0𝜃, we get

𝑊
20
(𝜃) =

𝑖𝑓
20

𝜔
0
𝜏
0

𝑞 (0) 𝑒
𝑖𝜔
0
𝜏
0
𝜃

+

𝑖𝑓
02

3𝜔
0
𝜏
0

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜏
0
𝜃
+ 𝐸

1
𝑒
2𝑖𝜔
0
𝜏
0
𝜃
,

(65)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸
(2)

1
, 𝐸
(3)

1
, 𝐸
(4)

1
) ∈ 𝑅

4 is a constant vector.



8 Journal of Applied Mathematics

Similarly, from (61) and (62), we can get

𝑊
11
(𝜃) =

𝑖𝑓
11

𝜔
0
𝜏
0

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜏
0
𝜃
+ 𝐸

2
, (66)

where 𝐸
2
= (𝐸

(1)

2
, 𝐸
(2)

2
, 𝐸
(3)

2
, 𝐸
(4)

2
) ∈ 𝑅

4 is a constant vector.
Next, we will find out 𝐸

1
and 𝐸

2
. In fact, from the

definition of 𝐴 and (61), we can obtain

∫

0

−1

d𝜂 (𝜃)𝑊
20
(𝜃) = 2𝑖𝜔

0
𝜏
0
𝑊
20
(0) − 𝐻

20
(0) , (67)

∫

0

−1

d𝜂 (𝜃)𝑊
11
(𝜃) = −𝐻

11
(0) , (68)

where 𝜂(𝜃) = 𝜂(0, 𝜃). From (59) and (61), when 𝜃 = 0we have

𝐻(𝑧, 𝑧, 0) = −2Re {𝑞∗ (0) 𝑔
0
𝑞 (0)} + 𝑔

0

= −𝑞
∗

(0) 𝑔
0
𝑞 (0) − 𝑞

∗

(0) 𝑔
0
𝑞 (0) + 𝑔

0

= −𝑔 (𝑧, 𝑧) 𝑞 (0) − 𝑔 (𝑧, 𝑧) 𝑞 (0) + 𝑔
0
.

(69)

That is,

𝐻
20
(0)

𝑧
2

2

+ 𝐻
11
(0) 𝑧𝑧 + 𝐻

02
(0)

𝑧
2

2

= −𝑞 (0) (𝑓
20

𝑧
2

2

+ 𝑓
11
𝑧𝑧 + 𝑓

02

𝑧
2

2

+ ⋅ ⋅ ⋅ )

− 𝑞 (0) (𝑓
20

𝑧
2

2

+ 𝑓
11
𝑧𝑧 + 𝑓

02

𝑧
2

2

+ ⋅ ⋅ ⋅ ) + 𝑔
0
.

(70)

By (34), we have

𝑔
0
= 𝜏
0
(

0

−𝑏
1
𝑢
2𝑡
(0) 𝑢

4𝑡
(0)

0

𝑏
2
𝑢
3𝑡
(0) 𝑢

4𝑡
(0) − 𝛼𝑢

2

4𝑡
(0)

) . (71)

By (48) and (49), we have

𝑢
𝑡
(𝜃) = 𝑊 (𝑡, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)}

= 𝑊 (𝑡, 𝜃) + 𝑧 (𝑡) 𝑞 (𝜃) + 𝑧 (𝑡) 𝑞 (𝜃)

= 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 + 𝑧 (𝑡) 𝑞 (𝜃)

+ 𝑧 (𝑡) 𝑞 (𝜃) + ⋅ ⋅ ⋅ .

(72)

Thus, we obtain

𝐻
20
(0) = −𝑓

20
𝑞 (0) − 𝑓

02
𝑞 (0) + 2𝜏

0
(

0

−𝑏
1
𝑞
1
𝑞
3

0

𝑏
2
𝑞
2
𝑞
3
− 𝛼𝑞

2

3

),

(73)

𝐻
11
(0) = −𝑓

11
𝑞 (0) − 𝑓

11
𝑞 (0) + 2𝜏

0

×(

0

−𝑏
1
Re {𝑞

1
𝑞
3
}

0

𝑏
2
Re {𝑞

2
𝑞
3
} − 𝛼𝑞

∗

3





𝑞
3






2

).

(74)

Note that

(𝑖𝜔
0
𝜏
0
𝐼 − ∫

0

−1

𝑒
𝑖𝜔
0
𝜏
0
𝜃
𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔
0
𝜏
0
𝐼 − ∫

0

−1

𝑒
−𝑖𝜔
0
𝜏
0
𝜃
𝑑𝜂 (𝜃)) 𝑞 (0) = 0.

(75)

Then, by substituting (65) and (73) into (67), we will get

(2𝑖𝜔
0
𝜏
0
𝐼 − ∫

0

−1

𝑒
2𝑖𝜔
0
𝜏
0
𝜃
𝑑𝜂 (𝜃))𝐸

1
= 2𝜏

0
(

0

−𝑏
1
𝑞
1
𝑞
3

0

𝑏
2
𝑞
2
𝑞
3
− 𝛼𝑞

2

3

),

(76)

or equivalently,

(

2𝑖𝜔
0
+𝑑
1

−𝑟+𝑟𝑒
−𝑑1𝜏0𝑒

−2𝑖𝜔0𝜏0 0 0

0 2𝑖𝜔
0
+𝑑
2
+𝑏
1
𝑦
∗
−𝑟𝑒

−𝑑1𝜏0𝑒
−2𝑖𝜔0𝜏0 0 𝑏

1
𝑥
∗

2

0 −𝛽 2𝑖𝜔
0
+𝛽 0

0 0 −𝑏
2
𝑦
∗
2𝑖𝜔
0
−𝛼𝑦

∗

)𝐸
1

= 2(

0

−𝑏
1
𝑞
1
𝑞
3

0

𝑏
2
𝑞
2
𝑞
3
− 𝛼𝑞

2

3

) ,

(77)

from which we can get
𝐸
1

=2(

2𝑖𝜔
0
+𝑑
1

−𝑟+𝑟𝑒
−𝑑1𝜏0𝑒

−2𝑖𝜔0𝜏0 0 0

0 2𝑖𝜔
0
+𝑑
2
+𝑏
1
𝑦
∗
−𝑟𝑒

−𝑑1𝜏0𝑒
−2𝑖𝜔0𝜏0 0 𝑏

1
𝑥
∗

2

0 −𝛽 2𝑖𝜔
0
+𝛽 0

0 0 −𝑏
2
𝑦
∗
2𝑖𝜔
0
−𝛼𝑦

∗

)

−1

×(

0

−𝑏
1
𝑞
1
𝑞
3

0

𝑏
2
𝑞
2
𝑞
3
− 𝛼𝑞

2

3

) .

(78)

Similarly, by substituting (66) and (74) into (68), we will
get

(

𝑑
1

−𝑟 + 𝑟𝑒
−𝑑
1
𝜏
0

0 0

0 𝑑
2
+ 𝑏
1
𝑦
∗
− 𝑟𝑒

−𝑑
1
𝜏
0

0 𝑏
1
𝑥
∗

2

0 −𝛽 𝛽 0

0 0 −𝑏
2
𝑦
∗
−𝛼𝑦

∗

)𝐸
2

= 2(

0

−𝑏
1
Re {𝑞

1
𝑞
3
}

0

𝑏
2
Re {𝑞

2
𝑞
3
} − 𝛼Re {𝑞

3
𝑞
3
}

) ,

𝐸
2
= 2(

𝑑
1

−𝑟 + 𝑟𝑒
−𝑑
1
𝜏
0

0 0

0 𝑑
2
+ 𝑏
1
𝑦
∗
− 𝑟𝑒

−𝑑
1
𝜏
0

0 𝑏
1
𝑥
∗

2

0 −𝛽 𝛽 0

0 0 −𝑏
2
𝑦
∗
−𝛼𝑦

∗

)

−1

×(

0

−𝑏
1
Re {𝑞

1
𝑞
3
}

0

𝑏
2
Re {𝑞

2
𝑞
3
} − 𝛼Re {𝑞

3
𝑞
3
}

)

(79)
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Thus, we can determine𝑊
20
(𝜃) and𝑊

11
(𝜃) from (65) and

(66). Furthermore, 𝑓
21

can be expressed by the parameters
and delay. Thus, we can compute the following values:

𝑐
1
(0) =

𝑖

2𝜔
0
𝜏
0

(𝑓
20
𝑓
11
− 2





𝑓
11






2

−





𝑓
02






2

3

) +

𝑓
21

2

, 𝜇
2

= −

Re {𝑐
1
(0)}

Re {𝜆 (𝜏
0
)}

, 𝛽
2

= 2Re {𝑐
1
(0)} , 𝑇

2

= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆


(𝜏
0
)}

𝜔𝜏
0

,

(80)

which determine the qualities of bifurcating periodic solution
in the center manifold at critical value 𝜏

0
; that is, 𝜇

2
deter-

mines the direction of the Hopf bifurcation: if 𝜇
2
> 0 (𝜇

2
<

0), then the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic solution exists for 𝜏 > 𝜏

0
(𝜏 < 𝜏

0
); 𝛽
2

determines the stability of the bifurcating periodic solution:
the bifurcating periodic solution is stable (unstable) if 𝛽

2
<

0 (𝛽
2
> 0); and 𝑇

2
determines period of the bifurcating

periodic solution: the period increases (decreases) if 𝑇
2
>

0 (< 0).

4. Discussion

In this paper, we propose a three-dimensional stage-
structured predatory-prey model with discrete and dis-
tributed delay. Then, by introducing a new variable, the
original system is transformed into an equivalent four-
dimensional system (4). In Section 2, we analyze the existence
and local stability of the positive equilibrium of the system
(4). In fact, by use of the Routh-Hurwitz criterion, we know
that the positive equilibrium 𝐸

∗ is locally asymptotically
stable for 𝜏 = 0. Then, by some computation, we get a
threshold 𝜏 = 𝜏

0
in Theorem 3. The results indicate that

if 𝜏 < 𝜏
0
, the positive equilibrium 𝐸

∗ of system (4) is
asymptotically stable; if 𝜏 = 𝜏

0
, the positive equilibrium 𝐸

∗ of
system (4) will undergo a Hopf bifurcation. In Section 3, by
use of normal form theory and central manifold argument,
we establish the formulae for the direction and the stability of
the Hopf bifurcation. Our theoretical results show that stage
structure and delay play an important role in the dynamics
of the system, and delay may lead to complicated dynamic
behaviors, such as Hopf bifurcation.

Acknowledgments

Thefirst author is supported by Postdoctoral Science Founda-
tion of China (no. 2011M501428) and Young Science Funds of
Shanxi (no. 2013021002-2). The third author is supported by
National Natural Science Foundation of China (no. 11171199).
The authors would like to thank the referees of this paper for
their helpful comments.

References

[1] A. J. Lotka, Elements of Physical Biology, Williams & Wilkins,
Baltimore, Md, USA, 1925.

[2] V. Volterra, “Variazioni e fluttuazioni del numero d’individui in
specie animali conviventi,” Memorie dell’accademia dei Lincei,
vol. 2, pp. 31–113, 1926.

[3] B. Liu, Z. Teng, and L. Chen, “Analysis of a predator-preymodel
with Holling II functional response concerning impulsive
control strategy,” Journal of Computational and Applied Math-
ematics, vol. 193, no. 1, pp. 347–362, 2006.

[4] G. Jiang and Q. Lu, “Impulsive state feedback control of a
predator-prey model,” Journal of Computational and Applied
Mathematics, vol. 200, no. 1, pp. 193–207, 2007.

[5] S. Zhang, D. Tan, and L. Chen, “Chaotic behavior of a chemostat
model with Beddington-DeAngelis functional response and
periodically impulsive invasion,” Chaos, Solitons and Fractals,
vol. 29, no. 2, pp. 474–482, 2006.

[6] A. Leung, “Periodic solutions for a prey-predator differential
delay equation,” Journal of Differential Equations, vol. 26, no. 3,
pp. 391–403, 1977.

[7] K. Gopalsamy, “Time lags and global stability in two-species
competition,” Bulletin of Mathematical Biology, vol. 42, no. 5,
pp. 729–737, 1980.

[8] X. Wen and Z. Wang, “The existence of periodic solutions
for some models with delay,” Nonlinear Analysis: Real World
Applications, vol. 3, no. 4, pp. 567–581, 2002.

[9] X. Chen, “Periodicity in a nonlinear discrete predator-prey
system with state dependent delays,” Nonlinear Analysis: Real
World Applications, vol. 8, no. 2, pp. 435–446, 2007.

[10] X.-P. Yan and C.-H. Zhang, “Hopf bifurcation in a delayed
Lokta-Volterra predator-prey system,” Nonlinear Analysis: Real
World Applications, vol. 9, no. 1, pp. 114–127, 2008.

[11] S. Ruan, “Absolute stability, conditional stability and bifurca-
tion in Kolmogorov-type predator-prey systems with discrete
delays,”Quarterly of AppliedMathematics, vol. 59, no. 1, pp. 159–
173, 2001.

[12] L.-L. Wang and W.-T. Li, “Existence and global stability of
positive periodic solutions of a predator-prey system with
delays,” Applied Mathematics and Computation, vol. 146, no. 1,
pp. 167–185, 2003.

[13] X.-P. Yan and Y.-D. Chu, “Stability and bifurcation analysis
for a delayed Lotka-Volterra predator-prey system,” Journal of
Computational andAppliedMathematics, vol. 196, no. 1, pp. 198–
210, 2006.

[14] L. Zhou, Y. Tang, and S.Hussein, “Stability andHopf bifurcation
for a delay competition diffusion system,” Chaos, Solitons &
Fractals, vol. 14, no. 8, pp. 1201–1225, 2002.

[15] Z. Liu and R. Yuan, “Stability and bifurcation in a harvested
one-predator–two-prey model with delays,” Chaos, Solitons and
Fractals, vol. 27, no. 5, pp. 1395–1407, 2006.

[16] X. Liu and D. Xiao, “Complex dynamic behaviors of a discrete-
time predator-prey system,” Chaos, Solitons & Fractals, vol. 32,
no. 1, pp. 80–94, 2007.

[17] F. Wang and G. Zeng, “Chaos in a Lotka-Volterra predator-prey
system with periodically impulsive ratio-harvesting the prey
and time delays,” Chaos, Solitons and Fractals, vol. 32, no. 4, pp.
1499–1512, 2007.

[18] C. Sun, M. Han, Y. Lin, and Y. Chen, “Global qualitative
analysis for a predator-prey system with delay,” Chaos, Solitons
& Fractals, vol. 32, no. 4, pp. 1582–1596, 2007.



10 Journal of Applied Mathematics
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