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We study the configuration formed by two squares in two parallel layers separated by a distance. We picture the two layers
horizontally with the 𝑧-axis passing through the centers of the two squares. The masses located on the vertices of each square
are equal, but we do not assume that the masses of the top square are equal to the masses of the bottom square. We prove that the
above configuration of two squares forms a central configuration if and only if the twist angle is equal to 𝑘𝜋/2 or (𝜋/4 + 𝑘𝜋/2)
(𝑘 = 1, 2, 3, 4).

1. Introduction and Main Results

This paper uses the same notations as [1]. The Newtonian𝑁-
body problems [2, 3] concern the motions of𝑁 particles with
masses 𝑚𝑗 ∈ 𝑅

+ and positions 𝑞𝑗 ∈ 𝑅
3
(𝑗 = 1, 2, . . . , 𝑁). The

motion is governed byNewton’s second law and theUniversal
law:

𝑚𝑗 ̈𝑞𝑗 =
𝜕𝑈 (𝑞)

𝜕𝑞𝑗

, (1)

where 𝑞 = (𝑞1, 𝑞2, . . . , 𝑞𝑁) with the Newtonian potential:

𝑈 (𝑞) = ∑

1⩽𝑗<𝑘⩽𝑁

𝑚𝑗𝑚𝑘






𝑞𝑗 − 𝑞𝑘







. (2)

Consider the space

𝑋 =

{

{

{

𝑞 = (𝑞1, 𝑞2, . . . , 𝑞𝑁) ∈ 𝑅
3𝑁

:

𝑁

∑

𝑗=1

𝑚𝑗𝑞𝑗 = 0

}

}

}

; (3)

that is, suppose that the center of mass is fixed at the origin
of the origin of the coordinate axis, because the potential
is singular when two particles have the same position. It is

natural to assume that the configuration avoids the collision
set Δ = {𝑞 : 𝑞𝑗 = 𝑞𝑘 for some 𝑘 ̸= 𝑗}. The set𝑋\Δ is called the
configuration space.

Definition 1 (see [2, 3]). A configuration 𝑞 = (𝑞1, 𝑞2, . . . ,

𝑞𝑁) ∈ 𝑋 \ Δ is called a central configuration if there exists
a constant 𝜆 such that

𝑁

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚𝑗𝑚𝑘






𝑞𝑗 − 𝑞𝑘







3
(𝑞𝑗 − 𝑞𝑘) = −𝜆𝑚𝑘𝑞𝑘, 1 ⩽ 𝑘 ⩽ 𝑁. (4)

The value of constant 𝜆 in (4) is uniquely determined by

𝜆 =

𝑈

𝐼

, (5)

where

𝐼 =

𝑁

∑

𝑘=1

𝑚𝑘




𝑞𝑘





2
. (6)

Consider the configuration in 𝑅3 consisting of two layer
regular 𝑁-gons (𝑁 ⩾ 2) with distance ℎ ⩾ 0. It is
assumed that the lower layer regular𝑁-gons lie in horizontal
plane, and the upper regular 𝑁-gons parallel the lower
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one, and 𝑧-axis passes through both centers of two regular
𝑁-gons. Suppose that the lower layer particles have masses
𝑚1, 𝑚2, . . . , 𝑚𝑁 and the upper layer particles have masses
�̃�1, �̃�2, . . . , �̃�𝑁, respectively; then these assumptions can be
interpreted more precisely by the following. Let 𝜌𝑘 denote for
all𝑁 complex roots of unity, that is,

𝜌𝑘 = exp(2𝜋𝑘
𝑁

𝑖) . (7)

Let

𝜌𝑘 = 𝑎𝜌𝑘𝑒
𝑖𝜑
, (8)

where 𝑎 > 0, 𝑖 = √−1, 0 ⩽ 𝜑 ⩽ 2𝜋, and 𝜑 is called twist
angle. It is assumed that𝑚𝑘 (1 ⩽ 𝑘 ⩽ 𝑁) locates at the vertex
𝑞𝑘 of the lower layer regular𝑁-gons; �̃�𝑘 (1 ⩽ 𝑘 ⩽ 𝑁) locates
on the vertex 𝑞𝑘 of the upper layer regular𝑁-gons:

𝑞𝑘 = (𝜌𝑘, 0) ,

𝑞𝑘 = (𝜌𝑘, ℎ) ,

(9)

where ℎ ≥ 0 is the distance between the two layers. Then the
center of masses is

𝑧0 =

𝑁

∑

𝑗=1

(𝑚𝑗𝑞𝑗 + �̃�𝑗𝑞𝑗)

𝑀

, (10)

where

𝑀 =

𝑁

∑

𝑗=1

(𝑚𝑗 + �̃�𝑗) . (11)

Let

𝑃𝐾 = 𝑞𝑘 − 𝑧0,

�̃�𝐾 = 𝑞𝑘 − 𝑧0.

(12)

If 𝑚1, 𝑚2, . . . , 𝑚𝑁 and �̃�1, �̃�2, . . . , �̃�𝑁 form a central config-
uration, then there is 𝜆 ∈ 𝑅+ such that
𝑁

∑

𝑗 ̸= 𝑘

𝑚𝑗

𝑃𝑗 − 𝑃𝑘






𝑃𝑗 − 𝑃𝑘







3
+

𝑁

∑

𝑗=1

�̃�𝑗

�̃�𝑗 − 𝑃𝑘






�̃�𝑗 − 𝑃𝑘







3
= −𝜆𝑃𝑘, 1 ⩽ 𝑘 ⩽ 𝑁,

𝑁

∑

𝑗=1

𝑚𝑗

𝑃𝑗 − �̃�𝑘






𝑃𝑗 − �̃�𝑘







3
+

𝑁

∑

𝑗 ̸= 𝑘

�̃�𝑗

�̃�𝑗 − �̃�𝑘






�̃�𝑗 − �̃�𝑘







3
= −𝜆�̃�𝑘, 1 ⩽ 𝑘 ⩽ 𝑁.

(13)

Under the case that twist angle 𝜑 = 0, Moeckel-Simo proved.

Theorem 2 (see [4]). If 𝑁 < 473, there is a unique pair
of spatial central configurations of parallel regular 𝑁-gons. If
𝑁 ≥ 473, there is no such central configuration for 𝑏 < 𝑏0(𝑁),
where b is the mass ratio. At a unique pair bifurcates from the
planar central configuration with the smaller masses on the
inner polygon. This remains the unique pair of spatial central
configurations until 𝑏 = 1/𝑏0, where a similar bifurcation
occurs in reverse, so that 𝑏 > 1/𝑏0, and only the planar central
configurations remain.

Xie et al. [5] studied the necessary conditions for the
masses of two layer regular polygon central configurations in
𝑅
3, and they proved the following theorems.

Theorem 3. Under the assumptions of (9), if 𝑚1, 𝑚2, . . . , 𝑚𝑁
and �̃�1, �̃�2, . . . , �̃�𝑁 form a central configuration, then

(i)

𝜆 =

𝑀

𝑁

𝑁

∑

𝑗=1

1






𝑞𝑗 − 𝑞𝑁







3
, (14)

(ii) for𝑁 ⩾ 2 (𝜑 ̸= 𝜋/2, when𝑁 = 2),

𝑚1 = 𝑚2 = ⋅ ⋅ ⋅ = 𝑚𝑁, �̃�1 = �̃�2 = ⋅ ⋅ ⋅ = �̃�𝑁. (15)

Without loss of generality, suppose that �̃�𝑗 = 𝑏𝑚𝑗 and 𝑁 ⩾ 2

(𝜑 ̸= 𝜋/2, when 𝑁 = 2), under the above assumptions, there
are four parameters, and ratio 𝑏 of masses ratio, 𝑎 of radius of
two regular𝑁-gons, the distance ℎ between two layers, and the
phase difference𝜑. As for these parameters, Xie et al. [5] proved.

Theorem 4. Under the assumptions of (9) and �̃�𝑗 = 𝑏𝑚𝑗,
then 𝑚1, 𝑚2, . . . , 𝑚𝑁 and �̃�1, �̃�2, . . . , �̃�𝑁 form a central con-
figuration if and only if the parameters 𝑏, 𝑎, ℎ, and 𝜑 satisfy the
following relationships:

𝜆

𝑀

=

1

𝑁 (1 + 𝑏)

( ∑

𝑗 ̸=𝑁

1 − 𝜌𝑗






𝑞𝑗 − 𝑞𝑁







3
+∑

𝑗

𝑏 (1 − 𝑎𝜌𝑗𝑒
𝑖𝜑
)






𝑞𝑗 − 𝑞𝑁







3
) ,

𝜆

𝑀

=

1

𝑁

𝑁

∑

𝑗=1

1






𝑞𝑗 − 𝑞𝑁







3
,

𝜆

𝑀

=

𝑒
−𝑖𝜑

𝑁𝑎 (1 + 𝑏)

(∑

𝑗

𝑎𝑒
𝑖𝜑
− 𝜌𝑗






𝑞𝑗 − 𝑞𝑁







3
+ ∑

𝑗 ̸=𝑁

𝑏 (𝑎 − 𝑎𝜌𝑗𝑒
𝑖𝜑
)






𝑞𝑗 − 𝑞𝑁







3
) .

(16)

Zhang and Zhu [1] proved the sufficient conditions for special
cases 𝑎 = 1, 𝑏 = 1, and 𝜑 = 𝜋/𝑁.

Theorem 5. Under the assumptions of (9) and (15) and �̃�𝑗 =
𝑏𝑚𝑗 if 𝑎 = 1, 𝑏 = 1, and 𝜑 = 𝜋/𝑁, then for every𝑁 there exists
a unique central configuration.

When ℎ = 0, Bang and Elmabsout [6] study the twist angle.

Theorem 6. Let Π1 (resp., Π2) be a regular 𝑁-gon centred
around a mass 𝑚0 at O, 𝑚1 being at each of its vertices (resp.,
𝑚2). Then𝑚0,Π1, andΠ2 are relative equilibriums if and only
if they are homothetic or cursed with an angle equal to (𝜋/𝑁)
(and suitable ratio of radii).

A natural interesting problem is that whether (9) form a
central configuration for ℎ > 0 if and only if twist angle 𝜑 = 0

or 𝜋/𝑁. In this paper, one will prove the necessary condition of
twisted angle 𝜑 for a special case𝑁 = 4.

Theorem 7. Under the assumptions of (9) and (15) and �̃�𝑗 =
𝑏𝑚𝑗 if 𝑁 = 4, then 𝜑 = 𝜋/4 + (𝜋/2)𝑘 or 𝜑 = (𝜋/2)𝑘, (𝑘 =

0, 1, 2, 3).
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2. The Proof of Theorem 7

2.1. Some Lemmas. We need three lemmas.

Lemma 1 (see [7]). For 𝑁 ≥ 3 and �̃�1 = �̃�2 = ⋅ ⋅ ⋅ = �̃�𝑁,
if �̃�1, �̃�2, . . . , �̃�𝑁 locate on vertices of a regular polygon, then
they form a central configuration.

One has𝑚∗1 = 𝑚
∗
2 = 𝑚

∗
3 = 𝑚

∗
4 . Also𝑚

∗
1 ,𝑚
∗
2 ,𝑚
∗
3 , and𝑚

∗
4

are located on vertices of a square 𝑆; 𝑞∗𝑖 is the position𝑚
∗
𝑖 (𝑖 =

1, 2, 3, 4) and 𝑞∗ is the position of 𝑚∗. Plane 𝑃 contains the
square 𝑆. One has 𝐹∗ = ∑

4
𝑖=1𝑚
∗
𝑖 𝑚
∗
(𝑞
∗
𝑖 − 𝑞
∗
)/|𝑞
∗
𝑖 − 𝑞
∗
|
3.

Lemma 2. 𝐹∗’s projection on 𝑃 is directed toward the center of
the square if and only if the point 𝑚∗ is on a vertical plane of
symmetry.

2.2. The Proof of Lemma 2. Without loss of generality, sup-
pose that 𝑚∗1 = 𝑚

∗
2 = 𝑚

∗
3 = 𝑚

∗
4 = 1, 𝑞∗1 = (1, 0, 0), 𝑞∗2 =

(0, 1, 0), 𝑞∗3 = (−1, 0, 0), 𝑞∗4 = (0, −1, 0), and 𝑞∗ = (𝜌 cos 𝜃,
𝜌 sin 𝜃, ℎ), where 𝜌 > 0. Consider the following:

𝐹∗ =
𝑚
∗
(1 − 𝜌 cos 𝜃, −𝜌 sin 𝜃, −ℎ)





1 + 𝜌
2
+ ℎ
2
− 2𝜌 cos 𝜃



3/2

+

𝑚
∗
(−𝜌 cos 𝜃, 1 − 𝜌 sin 𝜃, −ℎ)





1 + 𝜌
2
+ ℎ
2
− 2𝜌 sin 𝜃



3/2

+

𝑚
∗
(−1 − 𝜌 cos 𝜃, −𝜌 sin 𝜃, −ℎ)




1 + 𝜌
2
+ ℎ
2
+ 2𝜌 cos 𝜃



3/2

+

𝑚
∗
(−𝜌 cos 𝜃, −1 − 𝜌 sin 𝜃, −ℎ)




1 + 𝜌
2
+ ℎ
2
+ 2𝜌 sin 𝜃



3/2
.

(17)

If 𝐹∗’s projection on 𝑃 is directed toward the center of the
square, there exists 𝜆∗ > 0 such that

𝑚
∗
(1 − 𝜌 cos 𝜃)





1 + 𝜌
2
+ ℎ
2
− 2𝜌 cos 𝜃



3/2
+

𝑚
∗
(−𝜌 cos 𝜃)





1 + 𝜌
2
+ ℎ
2
− 2𝜌 sin 𝜃



3/2

+

𝑚
∗
(−1 − 𝜌 cos 𝜃)





1 + 𝜌
2
+ ℎ
2
+ 2𝜌 cos 𝜃



3/2

+

𝑚
∗
(−𝜌 cos 𝜃)





1 + 𝜌
2
+ ℎ
2
+ 2𝜌 sin 𝜃



3/2

= −𝜆
∗
𝜌 cos 𝜃,

(18)

=

𝑚
∗
(−𝜌 sin 𝜃)





1 + 𝜌
2
+ ℎ
2
− 2𝜌 cos 𝜃



3/2

+

𝑚
∗
(1 − 𝜌 sin 𝜃)





1 + 𝜌
2
+ ℎ
2
− 2𝜌 sin 𝜃



3/2

+

𝑚
∗
(−𝜌 sin 𝜃)





1 + 𝜌
2
+ ℎ
2
+ 2𝜌 cos 𝜃



3/2

+

𝑚
∗
(−1 − 𝜌 sin 𝜃)





1 + 𝜌
2
+ ℎ
2
+ 2𝜌 sin 𝜃



3/2

= −𝜆
∗
𝜌 sin 𝜃.

(19)

If 𝜃 = (𝜋/2)𝑘,𝑚∗ is on a vertical plane of symmetry.
When 𝜃 ̸= (𝜋/2)𝑘, multiplying both sides of (18) and (19),

respectively, by sin 𝜃 and cos 𝜃, we have

sin 𝜃 − 𝜌 cos 𝜃 sin 𝜃




1 + 𝜌
2
+ ℎ
2
− 2𝜌 cos 𝜃



3/2
+

−𝜌 cos 𝜃 sin 𝜃




1 + 𝜌
2
+ ℎ
2
− 2𝜌 sin 𝜃



3/2

+

− sin 𝜃 − 𝜌 cos 𝜃 sin 𝜃




1 + 𝜌
2
+ ℎ
2
+ 2𝜌 cos 𝜃



3/2

+

−𝜌 cos 𝜃 sin 𝜃




1 + 𝜌
2
+ ℎ
2
+ 2𝜌 sin 𝜃



3/2

= −𝜆
∗
𝜌 cos 𝜃 sin 𝜃,

−𝜌 cos 𝜃 sin 𝜃




1 + 𝜌
2
+ ℎ
2
− 2𝜌 cos 𝜃



3/2
+

cos 𝜃 − 𝜌 cos 𝜃 sin 𝜃




1 + 𝜌
2
+ ℎ
2
− 2𝜌 sin 𝜃



3/2

+

−𝜌 cos 𝜃 sin 𝜃




1 + 𝜌
2
+ ℎ
2
+ 2𝜌 cos 𝜃



3/2

+

− cos 𝜃 − 𝜌 cos 𝜃 sin 𝜃




1 + 𝜌
2
+ ℎ
2
+ 2𝜌 sin 𝜃



3/2

= −𝜆
∗
𝜌 cos 𝜃 sin 𝜃.

(20)

By (20) we have

sin 𝜃




1 + 𝜌
2
+ ℎ
2
− 2𝜌 cos 𝜃



3/2
+

− cos 𝜃




1 + 𝜌
2
+ ℎ
2
− 2𝜌 sin 𝜃



3/2

+

− sin 𝜃




1 + 𝜌
2
+ ℎ
2
+ 2𝜌 cos 𝜃



3/2

+

cos 𝜃




1 + 𝜌
2
+ ℎ
2
+ 2𝜌 sin 𝜃



3/2
= 0.

(21)

Then

1

sin 𝜃
(

1





1 + 𝜌
2
+ ℎ
2
− 2𝜌 sin 𝜃



3/2

−

1





1 + 𝜌
2
+ ℎ
2
+ 2𝜌 sin 𝜃



3/2
)

=

1

cos 𝜃
(

1





1 + 𝜌
2
+ ℎ
2
− 2𝜌 cos 𝜃



3/2

−

1





1 + 𝜌
2
+ ℎ
2
+ 2𝜌 cos 𝜃



3/2
) .

(22)
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Let

𝑓 (𝑥) =

1

𝑥

(

1





1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥






3/2

−

1





1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥






3/2
) ;

(23)

then the system (22) is equivalent to 𝑓(sin 𝜃) = 𝑓(cos 𝜃). It is
obvious that 𝑓(𝑥) is even and 𝑓(𝑥) > 0 when 𝑥 > 0. We will
prove that 𝑓(𝑥) is a strictly increasing function when 𝑥 > 0.

When 0 < 𝑥 ≤ 1 we compute

𝑑𝑓 (𝑥)

𝑑𝑥

= −

1

𝑥
2
(

1





1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥






3/2

−

1





1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥






3/2
)

+

1

𝑥

(

3𝜌





1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥






5/2

+

3𝜌





1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥






5/2
)

=

(1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥) (1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

5/2

𝑥
2


1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥






5/2



1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥






5/2

−

(1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥) (1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

5/2

𝑥
2


1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥






5/2



1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥






5/2

+

3𝜌𝑥(1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

5/2

𝑥
2


1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥






5/2



1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥






5/2

+

3𝜌𝑥(1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

5/2

𝑥
2


1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥






5/2



1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥






5/2
.

(24)

Let

𝑔 (𝑥) = (1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

× (1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

5/2

− (1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

× (1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

5/2

+ 3𝜌𝑥(1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

5/2

+ 3𝜌𝑥(1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

5/2
.

(25)

Then
𝑑𝑓 (𝑥)

𝑑𝑥

=

𝑔 (𝑥)

𝑥
2


1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥






5/2



1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥






5/2
,

(26)

𝑔 (0) = (1 + 𝜌
2
+ ℎ
2
)

7/2
− (1 + 𝜌

2
+ ℎ
2
)

7/2
= 0, (27)

𝑑𝑔 (𝑥)

𝑑𝑥

= 2𝜌(1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

5/2

− 5𝜌 (1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

× (1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

3/2

+ 2𝜌(1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

5/2

− 5𝜌 (1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

× (1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

3/2

+ 3𝜌(1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

5/2

+ 15𝜌
2
𝑥(1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

3/2

+ 3𝜌(1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

5/2

− 15𝜌
2
𝑥(1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

3/2
,

(28)

𝑑𝑔(𝑥)

𝑑𝑥








𝑥=0

= 10𝜌(1 + 𝜌
2
+ ℎ
2
)

5/2

− 10𝜌(1 + 𝜌
2
+ ℎ
2
)

5/2
= 0,

(29)

𝑑
2
𝑔 (𝑥)

𝑑𝑥
2

= −10𝜌
2
(1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

3/2

− 10𝜌
2
(1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

3/2

+ 15𝜌
2
(1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

× (1 + 𝜌
2
+ ℎ
2
− 2𝜌𝑥)

1/2

+ 10𝜌
2
(1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

3/2

+ 10𝜌
2
(1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

3/2

− 15𝜌
2
(1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

× (1 + 𝜌
2
+ ℎ
2
+ 2𝜌𝑥)

1/2

+ 15𝜌
2
(1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

3/2

+ 15𝜌
2
(1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

3/2

+ 45𝜌
3
𝑥(1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

1/2
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− 15𝜌
2
(1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

3/2

− 15𝜌
2
(1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

3/2

+ 45𝜌
3
𝑥(1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

1/2

≥ 45𝜌
3
𝑥(1 + 𝜌

2
+ ℎ
2
+ 2𝜌𝑥)

1/2

+ 45𝜌
3
𝑥(1 + 𝜌

2
+ ℎ
2
− 2𝜌𝑥)

1/2

> 0, ∀0 < 𝑥 ≤ 1.

(30)

Hence by (26), (27), (29), and (30) we have

𝑔 (𝑥) > 0, ∀0 < 𝑥 ≤ 1. (31)

Hence 𝑑𝑓(𝑥)/𝑑𝑥 > 0, when 0 < 𝑥 ≤ 1. From 𝑓(sin 𝜃) =
𝑓(cos 𝜃) we obtain | sin 𝜃| = | cos 𝜃|; that is, 𝜃 = (𝜋/4) +

(𝜋/2)𝑘, so𝑚∗ is on a vertical plane of symmetry.
It is obvious that if the point 𝑚∗ is on a vertical plane of

symmetry, 𝐹∗’s projection on 𝑃 is directed toward the center
of the square.

The proof of Lemma 2 is completed.

2.3. The Proof of Theorem 7. Without loss of generality,
suppose that �̃�1 = �̃�2 = �̃�3 = �̃�4 = 𝑚, 𝑚1 = 𝑚2 = 𝑚3 =

𝑚4 = 1. We can let

𝑞1 = (1, 0, 0) , 𝑞2 = (0, 1, 0) ,

𝑞3 = (−1, 0, 0) , 𝑞4 = (0, −1, 0) ,

𝑞1 = (𝜌 cos𝜑, 𝜌 sin𝜑, ℎ) ,

𝑞2 = (𝜌 cos(
2𝜋

4

+ 𝜑) , 𝜌 sin(2𝜋
4

+ 𝜑) , ℎ) ,

𝑞3 = (𝜌 cos(
2𝜋

4

× 2 + 𝜑) , 𝜌 sin(2𝜋
4

× 2 + 𝜑) , ℎ) ,

𝑞4 = (𝜌 cos(
2𝜋

4

× 3 + 𝜑) , 𝜌 sin(2𝜋
4

× 3 + 𝜑) , ℎ) ,

(32)

where 𝜌ℎ > 0. It is obvious that 𝑧0 = ∑
4
𝑗=1(𝑚𝑗𝑞𝑗 + �̃�𝑗 +

𝑞𝑗)/𝑀 = (0, 0, 4𝑚ℎ/(4 + 4𝑚)) = (0, 0, 𝑚ℎ/(1 + 𝑚)). By
Lemma 1, since �̃�1, �̃�2, �̃�3, and �̃�4 locate on vertices of a
regular polygon, so they form a central configuration; then
there exists a constant ̃𝜆 (notice that it can be different from
𝜆 in(16)), such that

4

∑

𝑗 ̸= 𝑘

�̃�𝑗

𝑞𝑗 − 𝑞𝑘






𝑞𝑗 − 𝑞𝑘







= −
̃
𝜆 (𝑞𝑘 − �̃�0) , (33)

where �̃�0 = (∑
4
𝑗=1 𝑞𝑗�̃�𝑗)/4𝑚 = (0, 0, ℎ).

By (1) and (33) we have

−𝜆𝑚�̃�𝑘 =

4

∑

𝑗=1

𝑚

𝑞𝑗 − 𝑞𝑘






𝑞𝑗 − 𝑞𝑘







3
+

4

∑

𝑗 ̸= 𝑘

𝑚𝑚

𝑞𝑗 − 𝑞𝑘






𝑞𝑗 − 𝑞𝑘







3

=

4

∑

𝑗=1

𝑚

𝑃𝑗 − �̃�𝑘






𝑃𝑗 − �̃�𝑘







3
+

4

∑

𝑗 ̸= 𝑘

𝑚𝑚

�̃�𝑗 − �̃�𝑘






�̃�𝑗 − �̃�𝑘







3

=

4

∑

𝑗=1

𝑚

𝑞𝑗 − 𝑞𝑘






𝑞𝑗 − 𝑞𝑘







3
−
̃
𝜆𝑚 (𝑞𝑘 − �̃�0) (𝑘 = 1, 2, 3, 4) .

(34)

Then
4

∑

𝑗=1

𝑚(𝑞𝑗 − 𝑞𝑘)






𝑞𝑗 − 𝑞𝑘







3

= −𝜆𝑚 (𝑞𝑘 − 𝑧0) +
̃
𝜆𝑚 (𝑞𝑘 − �̃�0)

= 𝑚 (
̃
𝜆 − 𝜆) 𝑞𝑘 + 𝑚(0, 0,

𝜆𝑚ℎ

1 + 𝑚

) − 𝑚(0, 0,
̃
𝜆ℎ) .

(35)

Letting 𝐹1 = ∑
4
𝑗=1𝑚(𝑞𝑗 − 𝑞1)/|𝑞𝑗 − 𝑞1|

3, 𝐹1 is the force
generated by the𝑚1,𝑚2,𝑚3, and𝑚4.

By (19), 𝐹1’s projection on the plane 𝑃1 is (
̃
𝜆 −

𝜆)(𝜌 cos𝜑, 𝜌 sin𝜑, 0), where 𝑃1 is the plane containing 𝑚1,
𝑚2, 𝑚3, and 𝑚4. It is obvious that the projection is directed
toward the center of the lower layer regular 4-gons. By
Lemma 2, we have 𝜑 = 𝜋/4 + (𝜋/2)𝑘 or 𝜑 = (𝜋/2)𝑘 (𝑘 =

0, 1, 2, 3).
The proof of Theorem 7 is completed.
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