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For the isentropic compressible fluids in one-space dimension, we prove that the Navier-Stokes equations with density-dependent
viscosity have neither forward nor backward self-similar strong solutions with finite kinetic energy. Moreover, we obtain the
same result for the nonisentropic compressible gas flow, that is, for the fluid dynamics of the Navier-Stokes equations coupled
with a transport equation of entropy. These results generalize those in Guo and Jiang’s work (2006) where the one-dimensional
compressible fluids with constant viscosity are considered.

1. Introduction

Self-similar solutions have attracted much attention in math-
ematical physics because understanding them is fundamental
and important for investigating the well-posedness, regu-
larity, and asymptotic behavior of differential equations in
physics. Since the pioneering work of Leray [1], self-similar
solutions of the Navier-Stokes equations for incompressible
fluids have been widely studied in different settings (e.g., [2,
page 207]; [3, page 120]; [4–10]; [11, Chapter 23]; [12–20]). On
the contrary, studies on the self-similar solutions of the com-
pressible Navier-Stokes equations have been limited partially
due to the complicated nonlinearities in the equations (see
[21–24]).

In one-space dimension, the isentropic compressible fluid
flow is governed by the Navier-Stokes equations:
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(1)

where 𝜌 = 𝜌(𝑥, 𝑡) and 𝑢 = 𝑢(𝑥, 𝑡) are the density and velocity
of the fluid, 𝜇(𝜌) and 𝑃(𝜌) denote the density-dependent
viscosity and pressure, respectively, and the subscripts mean

partial derivations. Guo and Jiang [21] considered (1) with
constant viscosity, 𝜇(𝜌) ≡ 𝜇 > 0, and linear density-
dependent pressure,𝑃(𝜌) = 𝑎𝜌, where 𝑎 > 0 is a constant, and
proved that there exist neither forward nor backward self-
similar solutions with finite total energy. Their investigation
generalized the results for 3D incompressible fluids in Nečas
et al.’s work [6] to the 1D compressible case with 𝑃(𝜌) =

𝜌
𝛾, where 𝛾 = 1. The problem with 𝛾 > 1, however, is

open. From a physical point of view, one can derive the
compressible Navier-Stokes equations from the Boltzmann
equations by exploiting the Chapman-Enskog expansion up
to the second order and then find that the viscosity depends
on the temperature. If considering an isentropic process, this
dependence can be translated into that on the density, such as
𝜇(𝜌) = 𝜌

𝜃, where 𝜃 > 0 is a constant (see [25]). Okada et al.
[26] pointed out that, because of the hard sphere interaction,
the relation between indices 𝜃 and 𝛾 is 𝜃 = (𝛾 − 1)/2. In the
first part of this paper, we are concerned with (1) where

𝜇 (𝜌) = 𝜌
𝜃
, 𝑃 (𝜌) = 𝜌

𝛾
,

𝛾 − 1
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2
,

𝛾 ≥ 1.

(2)

When considering an ideal compressible gas flow, partic-
ularly in the thermodynamic analysis with exergy loss and
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entropy generation, both the viscosity and pressure rely on
the entropy, so it is necessary to extend the nonisentropic
fluid dynamics to include the transport of entropy (see [13,
27–35]). We consider the following coupled system of the
Navier-Stokes equations with an entropy transport equation
in a pure form:
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where 𝑠 = 𝑠(𝑥, 𝑡) is the entropy of the fluid and 𝜇(𝜌, 𝑠) and
𝑃(𝜌, 𝑠) denote the density-entropy-dependent viscosity and
pressure, respectively. In this system, we assume that

𝜇 (𝜌, 𝑠) = 𝜌
𝜃
𝑒
𝑠
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(6)

Navier-Stokes equations enjoy a scaling property: if (𝜌, 𝑢)
solves (1)-(2), then
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𝑡)) (7)

does so for any 𝜆 > 0, by setting 𝑎 = 1/(𝛾 − 𝜃), 𝑏 = (𝛾 −

1)/2(𝛾 − 𝜃), 𝑐 = (𝛾 + 1 − 2𝜃)/2(𝛾 − 𝜃), and 𝑑 = 1. Note that,
from (2), 𝑎 ≥ 𝑐 > 0 and 𝑏 ≥ 0. Solution (𝜌, 𝑢) is called forward
self-similar if

(𝜌, 𝑢) = (𝜌
(𝜆)
, 𝑢
(𝜆)
) , for every 𝜆 > 0. (8)

In that case, 𝜌(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) are decided by their values at
the instant of 𝑡 = 1/𝜆:
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where 𝑄(𝑦) = 𝜌(𝑦, 1) and 𝑈(𝑦) = 𝑢(𝑦, 1) are defined on R.
In the same manner, the backward self-similar solutions are
of the form:
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(10)

where 𝑄(𝑦) = 𝜌(𝑦, 𝑇 − 1) and 𝑈(𝑦) = 𝑢(𝑦, 𝑇 − 1) for 𝑇 > 1.
Substitution of (9) or (10) into (1) gives
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+ (𝑐 − 𝑎)𝑄 = 0, (11)
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(12)

for forward self-similar solutions, or
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(14)

for backward self-similar solutions, respectively. In compar-
ison with those in Guo and Jiang [21], forward (backward)
self-similar equations above process necessary modifications
and additional difficulties. For instance, (11) and (13) have
solutions with an additional integral term, and thus the
modified blow-up analysis needs an 𝐿

∞ estimate on the
density and a new large-scale argument on the energy. In
addition, conditions on 𝜃 and 𝛾 proposed in (2) are directly
related to the energy estimate.

Mellet and Vasseur [25] obtained the global existence of
strong solutions for the Cauchy problem of (1) with positive
initial density having (possibly different) positive limits at𝑥 =
±∞. Precisely, fix constant positive density𝜌

+
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−
> 0,

and let 𝜌(𝑥) be a smooth monotone function satisfying
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for some constants 𝜅
0
and 𝜅
0
. Assume also that 𝜇(𝜌) and 𝑃(𝜌)

verify (2). Mellet and Vasseur [25] proved that there exists a
global strong solution (𝜌, 𝑢) of (1) on R × R

+
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Moreover, for every 𝑇 > 0, there exist uniform bounds away
from zero with respect to all strong solutions having the same
initial data. Precisely, there exist some constants 𝐶(𝑇), 𝜅(𝑇),
and 𝜅(𝑇) depending only on 𝑇, 𝜌

0
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0
(𝑥) such that

the following bounds hold uniformly for any strong solution
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0 < 𝜅 (𝑇) ≤ 𝜌 (𝑥, 𝑡) ≤ 𝜅 (𝑇) , ∀ (𝑥, 𝑡) ∈ R × [0, 𝑇] . (19)
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as the kinetic energy. Note that, since 𝑝 is strictly convex,
𝑝(𝜌 | 𝜌) is nonnegative for every 𝜌, and 𝑝(𝜌 | 𝜌) = 0 if and
only if 𝜌 = 𝜌. Mellet and Vasseur [25] also showed that, if the
initial total energy is finite, that is, the sum of the kinetic and
potential energy at time 0 satisfies

∫
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𝜌
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2
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0
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then the following global-energy estimate on (−∞,∞) ×

[0, 𝑇] holds uniformly with respect to all strong solutions;
that is, for every 𝑇 > 0, there exists a positive constant 𝐶(𝑇)
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holds for any strong solution (𝜌, 𝑢). Correspondingly, for 𝑅 >
0, 0 < 𝑡

1
< 𝑇, and some constant 𝐶(𝑅, 𝑡
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, 𝑇), we call

sup
𝑡
1
≤𝑡≤𝑇

∫

𝑅

−𝑅

[
1

2
𝜌𝑢
2
+ 𝑝 (𝜌 | 𝜌)] 𝑑𝑥

+ ∫

𝑇

𝑡
1

∫

𝑅

−𝑅

𝜇 (𝜌)
𝑢𝑥


2

𝑑𝑥 𝑑𝑡 ≤ 𝐶 (𝑅, 𝑡
1
, 𝑇)

(24)

the local-energy estimate on [−𝑅, 𝑅] × [𝑡
1
, 𝑇]. Note that the

global-energy estimate implies the local-energy estimate.
The main result for the self-similar solutions of the

isentropic compressible Navier-Stokes equations is as follows.

Theorem 1. Assume that 𝜇(𝜌) and 𝑃(𝜌) in (1) verify (2). Then
the following statements are true.

(1) There is no self-similar strong solution satisfying the
global-energy estimate (23).

(2) If there is a forward (backward) self-similar strong
solution satisfying the local-energy estimate (24), then
its kinetic energy (21) blows up as 𝑡 ↓ 0+(𝑡 ↑ 𝑇−).

For the self-similar solutions of the coupled system of the
nonisentropic compressible Navier-Stokes equations with an
entropy transport equation, the main result is as follows.

Theorem 2. Assume that 𝜇(𝜌, 𝑠) and 𝑃(𝜌, 𝑠) in (3)–(5) verify
(6). Then the following statements are true.

(1) There is no self-similar strong solution satisfying the
global-energy estimate (23).

(2) If there is a forward (backward) self-similar strong
solution satisfying the local-energy estimate (24), then
its kinetic energy (21) blows up as 𝑡 ↓ 0+(𝑡 ↑ 𝑇−).

Theorem 1 is proved in Section 2 andTheorem 2 in Section 3.

2. Proof of Theorem 1

Any self-similar solution of (1) is either forward or backward,
sowefirst proveTheorem 1 for forward and then for backward
self-similar solutions.

2.1. Forward Self-Similar Solutions

Lemma 3. If (𝑄, 𝑈) solves (11)-(12), then the corresponding
strong solution (𝜌, 𝑢) defined by (9) of (1) does not satisfy the
global-energy estimate (23).

Proof. From (11),
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where 𝐶
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is an arbitrary constant. From (19),
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Thus, from (9) and (21), for any 𝑡 > 0,
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(28)

This proves the lemma.

Lemma 4. If (𝑄, 𝑈) solves (11)-(12) and the corresponding
strong solution (𝜌, 𝑢) defined by (9) of (1) satisfies the local-
energy estimate (24), then as 𝑡 ↓ 0, the kinetic energy (21)must
blow up.

Proof. Similar to the proof of Lemma 3, for any 𝑡 > 0 and
𝑅 > 𝑌

0
𝑡
𝑐
> 0,

𝐸 (𝑡) ≥
𝑐
2
𝜅 (1)
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3
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[𝑅
3
− (𝑌
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𝑐
)
3

] → +∞, as 𝑡 ↓ 0.

(29)

This proves the lemma.
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2.2. Backward Self-Similar Solutions

Lemma 5. If (𝑄, 𝑈) solves (13)-(14), then the corresponding
strong solution (𝜌, 𝑢) defined by (10) of (1) does not satisfy the
global-energy estimate (23).

Proof. Fix 𝑇 > 1. From (13),

𝑄 (𝑦)𝑈 (𝑦) = −𝑐𝑦𝑄 (𝑦) − (𝑎 − 𝑐) ∫

𝑦

0

𝑄 (𝑧) 𝑑𝑧 + 𝐶
0
, (30)

where 𝐶
0
is an arbitrary constant. From (19),

0 < 𝜅 (𝑇) ≤ 𝜌 (𝑦, 𝑇 − 1) = 𝑄 (𝑦) ≤ 𝜅 (𝑇) , ∀𝑦 ∈ R. (31)

Since 𝑎 ≥ 𝑐 > 0, (30) and (31) imply that, for 𝑦 ≥ 𝑌
0
> 0

where 𝑌
0
is large enough,

𝑄 (𝑦)𝑈 (𝑦) = −
𝑐

2
𝑦𝑄 (𝑦) − 𝑐

𝑦

2
𝑄 (𝑦) − (𝑎 − 𝑐)

× ∫
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𝑐

2
𝑦𝑄 (𝑦) .

(32)

Thus, from (10) and (21), for any 𝑡 < 𝑇,

𝐸 (𝑡) = ∫
R

1

2
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1

(𝑇 − 𝑡)
𝑎
𝑄(

𝑥
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2
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𝑥
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𝑐
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𝑐
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(33)

This proves the lemma.

Lemma 6. If (𝑄, 𝑈) solves (13)-(14) and the corresponding
strong solution (𝜌, 𝑢) defined by (10) of (1) satisfies the local-
energy estimate (24), then as 𝑡 ↑ 𝑇, the kinetic energy (21)must
blow up.

Proof. Recalling the proofs of Lemmas 4 and 5, for𝑅 > 𝑌
0
(𝑇−

𝑡)
𝑐
> 0,

𝐸 (𝑡) ≥
𝑐
2
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𝑦
2
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𝑐
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3
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3

0
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3𝑐
] → +∞, as 𝑡 ↑ 𝑇.

(34)

This proves the lemma.

Now, Theorem 1 follows from the four lemmas above.

3. Proof of Theorem 2

If (𝜌, 𝑢, 𝑠) solves (3)–(6), then

(𝜌
(𝜆)
, 𝑢
(𝜆)
) = (𝜆

𝑎
𝜌 (𝜆
𝑐
𝑥, 𝜆
𝑑
𝑡) , 𝜆
𝑏
𝑢 (𝜆
𝑐
𝑥, 𝜆
𝑑
𝑡) ,

𝜆
𝑙
𝑠 (𝜆
𝑐
𝑥, 𝜆
𝑑
𝑡))

(35)

does so for any𝜆 > 0, by setting 𝑎 = 1/(𝛾−𝜃), 𝑏 = (𝛾−1)/2(𝛾−
𝜃), 𝑐 = (𝛾 + 1 − 2𝜃)/2(𝛾 − 𝜃), 𝑑 = 1, and 𝑙 = 0. Note that, from
(6), 𝑎 > 0, 𝑏 ≥ 0, and 𝑐 > 0.The forward self-similar solutions
have the following form:

𝜌 (𝑥, 𝑡) =
1

𝑡𝑎
𝑄(

𝑥

𝑡𝑐
) ,

𝑢 (𝑥, 𝑡) =
1

𝑡𝑏
𝑈(

𝑥

𝑡𝑐
) ,

𝑠 (𝑥, 𝑡) = 𝑆 (
𝑥

𝑡𝑐
) ,

𝑡 > 0,

(36)

where𝑄(𝑦) = 𝜌(𝑦, 1),𝑈(𝑦) = 𝑢(𝑦, 1), and 𝑆(𝑦) = 𝑠(𝑦, 1).The
backward self-similar solutions are

𝜌 (𝑥, 𝑡) =
1

(𝑇 − 𝑡)
𝑎
𝑄(

𝑥

(𝑇 − 𝑡)
𝑐
) ,

𝑢 (𝑥, 𝑡) =
1

(𝑇 − 𝑡)
𝑏
𝑄(

𝑥

(𝑇 − 𝑡)
𝑐
) ,

𝑠 (𝑥, 𝑡) = 𝑆 (
𝑥

(𝑇 − 𝑡)
𝑐
) ,

0 < 𝑡 < 𝑇,

(37)

where 𝑄(𝑦) = 𝜌(𝑦, 𝑇 − 1), 𝑈(𝑦) = 𝑢(𝑦, 𝑇 − 1), and 𝑆(𝑦) =
𝑠(𝑦, 𝑇 − 1) for 𝑇 > 1.

Lions [29] investigated the coupled system of the Navier-
Stokes equations with an entropy transport equation in a pure
form and obtained the existence of weak solutions satisfying
(19) and (23).

Proof of Theorem 2. Suppose that (𝜌, 𝑢, 𝑠) is a forward self-
similar solution. Inserting (36) into (3), one gets 𝑈(𝑦) = 𝑐𝑦,
and thus 𝑢(𝑥, 𝑡) = 𝑐𝑥/𝑡. Therefore, for any 𝑡 > 0, (36), (19),
and (21) yield

𝐸 (𝑡) = ∫
R

1

2
⋅
1

𝑡𝑎
𝑄(

𝑥

𝑡𝑐
) ⋅ (

𝑐𝑥

𝑡
)

2

≥
𝑐
2
𝜅 (1)

2𝑡𝑎+2
∫
R

𝑥
2
𝑑𝑥 = +∞.

(38)

Thismeans that the global-energy estimate (23) does not hold
and that the kinetic energy (21) blows up as 𝑡 ↓ 0.

The case of backward self-similar solutions can be proved
similarly, so Theorem 2 is proved.
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