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We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying
asset are governed by a jump diffusion equation. We obtain the Radon-Nikodym derivative in the minimal martingale measure
and a partial integrodifferential equation (PIDE) of European call option. In a special case, we get the exact solution for European
call option by Fourier transformation methods. Finally, we employ the pricing kernel to calculate the optimal portfolio selection
by martingale methods.

1. Introduction

Option pricing problem is one of the predominant concerns
in the financial market. Since the advent of the justly cele-
brated Black-Scholes option pricing formula in [1], there has
been an increasing amount of literature describing the theory
and its practice. Due to drawbacks of the Black-Scholes
model which cannot explain numerous empirical facts: large,
suddenmovements in prices, heavy tails, and the incomplete-
ness of markets, the concentration of losses in a few large
downward moves, many option valuation models have been
proposed and tested to fit those empirical facts.The jump dif-
fusion models which have well computational and statistical
features are successful to solve those drawbacks of the Black-
Scholes model in [2–9]. Therefore, in this paper, with those
nice properties, we choose this jump diffusion model.

Different from theBlack-Scholes framework,we use jump
diffusion to describe the price dynamics of underlying assets
and let the market of our model be incomplete; that is,
it is not possible to replicate the payoff of every contin-
gent claim by a portfolio, and there are several equivalent
martingale measures. How to choose a consistent pricing
measure from the set of equivalent martingale measures
becomes an important problem. That means we need to find
some criteria to determine one from the set of equivalent

martingale measures in some economically or mathemati-
cally motivated fashion. Föllmer and Leukert (2000), Kallsen
(1999), Cvitanić et al. (2001), and Bielecki and Jeanblanc
(2008) in [10–13] identified a unique equivalent martingale
measure by utility maximization. Then the option valuation
under the minimal martingale measure was further devel-
oped by several researchers. Schweizer (1991), and Föllmer
and Schweizer (1991) in [14, 15] found that in the minimal
martingale measure, a unique risk-minimizing (or optimal)
strategy hedging of contingent claims in incomplete market
exists. In our paper, we name the criterion in the minimal
martingale measure as risk-minimization criterion. Thus,
in the incomplete market, option pricing is approximately
possible with risk-minimization criterion. As presented in
this paper, our work is based on the task of Föllmer and
Schweizer in [14, 15], and the purpose of this paper is to
find theminimalmartingalemeasure and themeasure switch
of asset prices processes with jump diffusion. By using the
minimalmartingalemeasure, we obtain the Radon-Nikodym
derivative which links the physical and risk-neutral densities
and a PIDE of the European option. In a special case, we
get the exact solution for European call option by Fourier
transformation methods. Recently, Ruan et al. (2013) in
[16] studied option pricing with risk-minimization criterion
in an incomplete market when the dynamics of the risky
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underlying asset are governed by a jump diffusion equation
with stochastic volatility.

General equilibrium framework is also a popular method
to deal with the option pricing in an incomplete market.
Pan (2002), Liu and Pan (2003), and Liu et al. (2005) in
[17–19] derived the pricing kernel with some restrictions of
jump sizes in a general equilibrium setting. Recently, Zhang
et al. (2012) in [9] presented an analytical form for the
pricing kernel without any distributional assumption on the
jumps, the moments in physical and risk-neutral measure,
respectively. In this paper, we get pricing kernel and the
physical moments in and the risk-neutral physical moments
without any distributional assumption on the jumps which
are similar to the results of Zhang et al. (2012) [9].

Anther contribution of our paper is finding the opti-
mal portfolio selection and terminal wealth by martingale
methods.The popular methods to solve the optimal portfolio
problem are stochastic control methods, which derive some
complex partial differential equations (PDE). For example,
see [20–23]. However, martingale methods, built around the
ideas of equivalent martingale measure in complete markets,
began with Harrison and Kreps (1979) in [24] and were
further developed by Harrison and Pliska (1983) in [25].They
claimed that an optimal terminal wealth was first identified
by solving a static optimization problem and then an efficient
portfolio was obtained by replicating the optimal terminal
wealth. Karatzas et al. (1991) in [26] andHe andPearson (1991)
in [27] considered a Brownian model in which the number
of stocks was strictly less than the dimension of the driving
Brownian motion. In all these papers, it was assumed that
the underlying assets satisfy just diffusion processes. In this
paper, considering a jump diffusion model, we employ the
pricing kernel in minimal martingale measure to degenerate
a stochastic optimal terminal wealth problem into a static
optimization problem.

The rest of the paper is organized as follows. In Section 2,
we present the model for the underlying market and Doob-
Meyer decomposition of the risky asset. In Section 3, we
investigate an explicit representation of the density process
of the minimal martingale measure. In Section 4, we derive
a PIDE with respect to the European option and present an
exact solution of European call option by Fourier transforma-
tionmethods in a special case.The optimal portfolio selection
problem by martingale methods is studied in Section 5 and
conclusions are given in Section 6.

2. The Model

In this paper, we consider the financial market with the
following two basic assets:

(i) a bond whose price 𝐵
𝑡
at time 𝑡 is given by

𝑑𝐵
𝑡
= 𝑟𝐵
𝑡
𝑑𝑡, 𝐵

0
= 1; (1)

(ii) a stock whose price 𝑆
𝑡
at time 𝑡 is given by

𝑑𝑆
𝑡

𝑆
𝑡
−

= 𝜇𝑑𝑡 + 𝜎𝑑𝑊
𝑡
+ ∫
𝑅
0

(𝑒
𝑥
− 1)𝑁 (𝑑𝑡, 𝑑𝑥) , 𝑆

0
> 0.

(2)

Here 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝑅
0
⊂ 𝑅, constants 𝜇 > 𝑟 > 0, 𝜎 > 0,

and 𝑇 > 0; on the filtered complete space (Ω, 𝐹, {𝐹
𝑡
}
𝑡≥0
, 𝑃),

there are 𝑊
𝑡
which is 1-dimensional Brownian motion and

𝑁(𝑑𝑡, 𝑑𝑥) = 𝑁(𝑑𝑡, 𝑑𝑥) − 𝜐(𝑑𝑥)𝑑𝑡 which is the compensated
Poisson random measure. 𝑁(𝑑𝑡, 𝑑𝑥) is a Poisson random
measure with compensator 𝜐(𝑑𝑥). Additionally, ∫

𝑅
0

(𝑒
𝑥
− 1)
2

𝜐(𝑑𝑥) < ∞.
In this model, the jump process 𝜂(𝑡) = ∫𝑡

0
∫
𝑅
0

(𝑒
𝑥
− 1)𝑁

(𝑑𝑢, 𝑑𝑥) built from a compensated Poisson random measure
𝑁(𝑑𝑡, 𝑑𝑥) is the sum of its i.i.d. jumps, where the jumps
occur according to a Poisson process𝑁(𝑑𝑡, 𝑑𝑥). In particular,
if we denote 𝑅

0
= (−∞, +∞), 𝑁(𝑑𝑡, 𝑑𝑥) = 𝑑𝑁(𝑡) −

𝜐(𝑑𝑥)𝑑𝑡, 𝜐(𝑑𝑥) = 𝜆𝑓(𝑥)𝑑𝑥 where 𝜆 is the jump intensity and
𝑓(𝑥) is distribution of the jump size 𝑥, then the compensated
Poisson integral 𝜂(𝑡) can be rewritten as 𝜂(𝑡) = ∑𝑁(𝑡)

𝑖=1
(𝑒
𝑥
𝑖 −

1) − 𝑡 ∫
+∞

−∞
(𝑒
𝑥
− 1)𝑓(𝑥)𝑑𝑥.

Now,wewant to find a unique optimal strategy hedging of
contingent claims under risk-minimization criterion. Based
on [15], it is equivalent to find the minimal martingale
measure from the set of equivalent martingale measures and
then obtain approximate prices of contingent claims.

With the Doob-Meyer decomposition, the discounted
risky asset price process, 𝑆

𝑡
= 𝑒
−𝑟𝑡
𝑆
𝑡
, is a special semimartin-

gale and can be written as

𝑆
𝑡
= 𝑆
0
+𝑀
𝑡
+ 𝐴
𝑡

(3)

with

𝑀
𝑡
= ∫

𝑡

0

𝑆
𝑢
−𝜎𝑑𝑊

𝑆

𝑢
+ ∫

𝑡

0

∫
𝑅
0

𝑆
𝑢
− (𝑒
𝑥
− 1)𝑁 (𝑑𝑢, 𝑑𝑥) ,

(4)

𝐴
𝑡
= ∫

𝑡

0

𝑆
𝑢
− (𝜇 − 𝑟) 𝑑𝑢, (5)

where𝑀
𝑡
is themartingale part of 𝑆

𝑡
and𝐴

𝑡
is the predictable

process of finite variation.

3. Minimal Martingale Measure

We introduce the notions of minimal martingale measure in
this section. Föllmer and Schweizer (1991) [15] noticed that
the optimal hedging strategy can be computed in terms of
the minimal martingale measure. Furthermore, it is uniquely
determined. Hence, in the minimal martingale measure, the
Radon-Nikodym derivative can be found and computed.
Before that, we define the minimal martingale measure.

Definition 1 (see [15]). A local martingale measure 𝑄, equiv-
alent to the original measure 𝑃, is called minimal if 𝑄 = 𝑃
on 𝐹
𝑡
and if any square-integrable 𝑃-martingale 𝐿 which is 𝑃

orthogonal to𝑀 remains a local martingale under 𝑄.

Theorem 2 (see [15]). (i) The minimal martingale measure 𝑄
is uniquely determined.
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(ii) �̃� exists if and only if there exists a predictable process
𝛽
𝑡
that satisfies

𝑍
𝑡
=
𝑑𝑄

𝑑𝑃
= 1 + ∫

𝑡

0

𝛽
𝑡
𝑑𝑀
𝑡
. (6)

Using Theorem 2, we obtain the following theorem for
computing the Radon-Nikodym derivative.

Theorem 3. The Radon-Nikodym derivative in the minimal
martingale measure 𝑄 is

𝑍
𝑡
= exp{ − 𝜃𝜎𝑊

𝑡
−
1

2
𝜃
2
𝜎
2
𝑡

+ ∫

𝑡

0

∫
𝑅
0

ln (1 − 𝜃 (𝑒𝑥 − 1))𝑁 (𝑑𝑢, 𝑑𝑥)

+𝑡 ∫
𝑅
0

𝜃 (𝑒
𝑥
− 1) V (𝑑𝑥)} ,

(7)

where

𝜃 =
𝜇 − 𝑟

𝜎2 + ∫
𝑅
0

(𝑒
𝑥 − 1)

2V (𝑑𝑥)
. (8)

Proof. The theory of the Girsanov transformation shows that
the predictable process of bounded variation can also be
computed in terms of 𝑍

𝑡
:

−𝑑𝐴
𝑡
=
1

𝑍
𝑡
−

𝑑⟨𝑀,𝑍⟩
𝑡
. (9)

Throughout this paper, we make use of the notations that
⟨𝐴, 𝐵⟩

𝑡
defined quadratic variation process between 𝐴 and 𝐵

and denote ⟨𝐴⟩
𝑡
=̇⟨𝐴, 𝐴⟩

𝑡
. Under 𝑄, the predictable process

of bounded variation in the Doob-Meyer decomposition of
𝑀 is given by

1

𝑍
𝑡
−

𝑑⟨𝑀,𝑍⟩
𝑡
=
𝛽
𝑡

𝑍
𝑡
−

𝑑⟨𝑀⟩
𝑡
= −𝑑𝐴

𝑡
. (10)

UsingTheorem 2 and (10), we have

𝑍
𝑡
= 1 − ∫

𝑡

0

𝑍
𝑢
−

𝑑𝐴
𝑢

𝑑⟨𝑀⟩
𝑢

𝑑𝑀
𝑢
. (11)

Denote 𝑑𝑌
𝑢
= −(𝑑𝐴

𝑢
/𝑑⟨𝑀⟩

𝑢
)𝑑𝑀
𝑢
; then (11) can be written

as

𝑍
𝑡
= 1 + ∫

𝑡

0

𝑍
𝑢−
𝑑𝑌
𝑢
. (12)

From (4), we get

⟨𝑀⟩
𝑡
= ⟨∫

𝑡

0

𝑆
𝑢
−𝜎𝑑𝑊

𝑆

𝑢
+ ∫

𝑡

0

∫
𝑅
0

𝑆
𝑢
− (𝑒
𝑥
− 1)𝑁 (𝑑𝑢, 𝑑𝑥)⟩

= ∫

𝑡

0

𝑆
2

𝑢
−

𝜎
2
𝑑𝑢 + ∫

𝑡

0

∫
𝑅
0

𝑆
2

𝑢
−

(𝑒
𝑥
− 1)
2

V (𝑑𝑥) 𝑑𝑢

= ∫

𝑡

0

𝑆
2

𝑢
−

(𝜎
2
+ ∫
𝑅
0

(𝑒
𝑥
− 1)
2

V (𝑑𝑥)) 𝑑𝑢.

(13)

Hence

𝑑𝑌
𝑢
= −

𝑑𝐴
𝑢

𝑑⟨𝑀⟩
𝑢

𝑑𝑀
𝑢

= −
𝑆
𝑢
− (𝜇 − 𝑟) 𝑑𝑢

𝑆
2

𝑢
−

(𝜎2 + ∫
𝑅
0

(𝑒
𝑥 − 1)

2V (𝑑𝑥)) 𝑑𝑢

× [𝑆
𝑢
− (𝜎𝑑𝑊

𝑢
+ ∫
𝑅
0

(𝑒
𝑥
− 1)𝑁 (𝑑𝑢, 𝑑𝑥))]

= −

(𝜇 − 𝑟) (𝜎𝑑𝑊
𝑢
+ ∫
𝑅
0

(𝑒
𝑥
− 1)𝑁 (𝑑𝑢, 𝑑𝑥))

𝜎2 + ∫
𝑅
0

(𝑒
𝑥 − 1)

2V (𝑑𝑥)
.

(14)

From (12), we know that 𝑍
𝑡
is the Doleans-Dade expo-

nential. Thus, we obtain

𝑍
𝑡
= 1 + ∫

𝑡

0

𝑍
𝑢−
𝑑𝑌
𝑢
, 𝑍
0
= 1,

𝑑𝑌
𝑡
= −𝜃(𝜎𝑑𝑊

𝑡
+ ∫
𝑅
0

(𝑒
𝑥
− 1)𝑁 (𝑑𝑡, 𝑑𝑥)) ,

(15)

where

𝜃 =
𝜇 − 𝑟

𝜎2 + ∫
𝑅
0

(𝑒
𝑥 − 1)

2V (𝑑𝑥)
. (16)

Solving (15), we obtain 𝑍
𝑡
in Theorem 3.

Remark 4. In the minimal martingale measure 𝑄, we obtain
unique Radon-Nikodym derivative which links the physi-
cal and minimal martingale measure. The Radon-Nikodym
derivative is very important to get the PDE with respect to
option price and to determine a pricing kernel which enables
the portfolio selection problem to be solved by martingale
methods. More details are presented in Section 5.

Remark 5. From the Girsanov theorem, the Brownmotion in
the minimal martingale measure 𝑄 is

�̃�
𝑡
= 𝑊
𝑡
+ 𝜃𝜎𝑡, (17)

and the compensatory of𝑁(𝑑𝑢, 𝑑𝑦) is

Ṽ (𝑑𝑥) 𝑑𝑡 = (1 − 𝜃 (𝑒𝑥 − 1)) V (𝑑𝑥) 𝑑𝑡,

�̃� (𝑑𝑡, 𝑑𝑥) = 𝑁 (𝑑𝑡, 𝑑𝑥) − Ṽ (𝑑𝑥) 𝑑𝑡.
(18)

Then (2) under the minimal martingale measure �̃� is
written as

𝑑𝑆
𝑡

𝑆
𝑡
−

= 𝜇𝑑𝑡 + 𝜎𝑑�̃�
𝑆

𝑡
+ ∫
𝑅
0

(𝑒
𝑥
− 1) �̃� (𝑑𝑡, 𝑑𝑥)

− 𝜃𝜎
2
𝑑𝑡 − ∫

𝑅
0

𝜃(𝑒
𝑥
− 1)
2

V (𝑑𝑥) 𝑑𝑡, 𝑆
0
> 0.

(19)

To guarantee that 𝑆
𝑡
is a martingale under the minimal

martingale measure 𝑄, the following corollary is necessary.
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Corollary 6. In the minimal martingale measure 𝑄, 𝑆
𝑡
is a

martingale if and only if

𝜇 − 𝑟 − 𝜃𝜎
2
− ∫
𝑅
0

𝜃(𝑒
𝑥
− 1)
2

V (𝑑𝑥) = 0. (20)

Proof. Substituting 𝑆
𝑡
= 𝑒
−𝑟𝑡
𝑆
𝑡
into (19), since 𝑆

𝑡
is a

martingale, the drift term must be identical to zero. Then we
can get (20).

Remark 7. Using (20), (19) in the minimal martingale mea-
sure 𝑄 is written as
𝑑𝑆
𝑡

𝑆
𝑡
−

= 𝑟
𝑡
𝑑𝑡 + 𝜎𝑑�̃�

𝑆

𝑡
+ ∫
𝑅
0

(𝑒
𝑥
− 1) �̃� (𝑑𝑡, 𝑑𝑥) , 𝑆

0
> 0.

(21)

Theminimalmartingalemeasure𝑄 is a risk-neutralmeasure.

4. The Pricing Formula for European
Call Option

In the minimal martingale measure 𝑄, the price of the
European call option𝐶(𝑡, 𝑆

𝑡
) at time 𝑡with strike price𝐾 and

maturity date 𝑇 is given by

𝐶 (𝑡, 𝑆
𝑡
) = 𝐸
𝑄
[𝑒
−𝑟(𝑇−𝑡)

(𝑆
𝑇
− 𝐾)
+

| 𝐹
𝑡
] , (22)

and 𝐶(𝑇, 𝑆
𝑇
) = (𝑆

𝑇
− 𝐾)
+.

By the fact that the discounted price of the European call
option is a martingale under 𝑄, we can obtain the following
theorem.

Theorem 8. In the minimal martingale measure 𝑄, the price
of the European call option satisfies the following PIDE:

0 = − 𝑟𝐶 (𝑡, 𝑆
𝑡
) +
𝜕𝐶

𝜕𝑡
+
𝜕𝐶

𝜕𝑆
𝑟𝑆
𝑡
− +
1

2

𝜕
2
𝐶

𝜕𝑆2
𝜎
2
𝑆
2

𝑡
−

+ ∫
𝑅
0

(𝐶 (𝑡, 𝑆
𝑡
−𝑒
𝑥
) − 𝐶 (𝑡, 𝑆

𝑡
−) − (𝑒

𝑥
− 1)
𝜕𝐶

𝜕𝑆
𝑆
𝑡
−) Ṽ (𝑑𝑥)

(23)

and 𝐶(𝑇, 𝑆
𝑇
) = (𝑆

𝑇
− 𝐾)
+.

Proof. The total derivative of the discounted option price is

𝑑 (𝑒
−𝑟𝑡
𝐶 (𝑡, 𝑆

𝑡
))

= −𝑟
𝑡
𝑒
−𝑟𝑡
𝐶 (𝑡, 𝑆

𝑡
) 𝑑𝑡 + 𝑒

−𝑟𝑡 𝜕𝐶

𝜕𝑡
𝑑𝑡

+ 𝑒
−𝑟𝑡 𝜕𝐶

𝜕𝑆
𝑑𝑆
𝐶
+
1

2
𝑒
−𝑟𝑡 𝜕
2
𝐶

𝜕𝑆2
𝑑𝑆
𝐶
𝑑𝑆
𝐶

+ 𝑒
−𝑟𝑡
∫
𝑅
0

(𝐶 (𝑡, 𝑆
𝑡
−𝑦) − 𝐶 (𝑡, 𝑆

𝑡
−))𝑁 (𝑑𝑡, 𝑑𝑥)

= 𝑒
−𝑟𝑡
{−𝑟
𝑡
𝐶 (𝑡, 𝑆

𝑡
) 𝑑𝑡 +

𝜕𝐶

𝜕𝑡
𝑑𝑡 +

𝜕𝐶

𝜕𝑆
𝑆
𝑡
−

× (𝑟𝑑𝑡 + 𝜎𝑑�̃�
𝑡
− ∫
𝑅
0

(𝑒
𝑥
− 1) Ṽ (𝑑𝑥) 𝑑𝑡)

+
1

2

𝜕
2
𝐶

𝜕𝑆2
𝜎
2
𝑆
2

𝑡
−

𝑑𝑡

+ ∫
𝑅
0

(𝐶 (𝑡, 𝑆
𝑡
−𝑒
𝑥
) − 𝐶 (𝑡, 𝑆

𝑡
−)) �̃� (𝑑𝑡, 𝑑𝑥)

+∫
𝑅
0

(𝐶 (𝑡, 𝑆
𝑡
−𝑒
𝑥
) − 𝐶 (𝑡, 𝑆

𝑡
−)) Ṽ (𝑑𝑥) 𝑑𝑡}

= 𝑒
−𝑟𝑡
{−𝑟𝐶 (𝑡, 𝑆

𝑡
) +
𝜕𝐶

𝜕𝑡
+
𝜕𝐶

𝜕𝑆
𝑟
𝑡
𝑆
𝑡
− +
1

2

𝜕
2
𝐶

𝜕𝑆2
𝜎
2

𝑡
𝑆
2

𝑡
−

+ ∫
𝑅
0

(𝐶 (𝑡, 𝑆
𝑡
−𝑒
𝑥
) − 𝐶 (𝑡, 𝑆

𝑡
−)

− (𝑒
𝑥
− 1)
𝜕𝐶

𝜕𝑆
𝑆
𝑡
−) Ṽ (𝑑𝑥)} 𝑑𝑡

+ 𝑒
−𝑟𝑡
{
𝜕𝐶

𝜕𝑆
𝑆
𝑡
−𝜎𝑑�̃�

𝑆

𝑡

+∫
𝑅
0

(𝐶 (𝑡, 𝑆
𝑡
−𝑒
𝑥
) − 𝐶 (𝑡, 𝑆

𝑡
−)) �̃� (𝑑𝑡, 𝑑𝑥)} .

(24)

Wemake the drift termbe zero, since the discounted price
of the European put option is a martingale. Then we obtain
the equation inTheorem 8.

It is difficult to get the solution of European call option
𝐶(𝑡, 𝑆
𝑡
) from (23). Therefore, we degenerate the model (2)

into a special case with following assumption to get an exact
solution of the option price.

Assumption 9. (i) In physical measure 𝑃, we denote 𝑅
0
=

(−∞, +∞), 𝑁(𝑑𝑡, 𝑑𝑥) = 𝑑𝑁(𝑡) − 𝜆𝑓(𝑥)𝑑𝑥, where 𝜆 is the
jump intensity and 𝑓(𝑥) is distribution of the jump size 𝑥.
Moreover, we denote 𝐸[⋅] as expectation operator in physical
measure 𝑃.

(ii) In the minimal martingale measure 𝑄, using
Remark 4, we have �̃�(𝑑𝑡, 𝑑𝑥) = 𝑑𝑁(𝑡) − 𝜆𝑓(𝑥)𝑑𝑥, where
𝑓(𝑥) = (1 − 𝜃(𝑒

𝑥
− 1))𝑓(𝑥) and denote 𝐸𝑄[⋅] as expectation

operator in this measure.

Then the stock price process (1) in physical measure can
be written as

𝑑𝑆
𝑡

𝑆
𝑡
−

= 𝜇𝑑𝑡 − 𝜆𝐸 [(𝑒
𝑥
− 1)] 𝑑𝑡 + 𝜎𝑑𝑊

𝑡

+ (𝑒
𝑥
− 1) 𝑑𝑁 (𝑡) , 𝑆

0
> 0,

(25)

and the Radon-Nikodym derivative can be written as

𝑍
𝑡
= exp{ − 𝜃𝜎𝑊

𝑡
+ 𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑡

−
1

2
𝜃
2
𝜎
2
𝑡 +

𝑁(𝑡)

∑

𝑖=1

ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))} ,

(26)

where 𝜃 = (𝜇 − 𝑟)/(𝜎2 + 𝜆𝐸[(𝑒𝑥 − 1)2]).
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The stock price process (21) in the minimal martingale
measure 𝑄 can be written as

𝑑𝑆
𝑡

𝑆
𝑡
−

= 𝑟
𝑡
𝑑𝑡 − 𝜆𝐸

𝑄
[(𝑒
𝑥
− 1)] 𝑑𝑡 + 𝜎𝑑�̃�

𝑡

+ (𝑒
𝑥
− 1) 𝑑𝑁 (𝑡) , 𝑆

0
> 0,

(27)

and the price of the European call option satisfies the
following equation:

0 = − 𝑟𝐶 (𝑡, 𝑆) +
𝜕𝐶

𝜕𝑡
+ (𝑟 − 𝜆𝐸

𝑄
[(𝑒
𝑥
− 1)])

𝜕𝐶

𝜕𝑆
𝑆

+
1

2

𝜕
2
𝐶

𝜕𝑆2
𝜎
2
𝑆
2
+ 𝜆 {𝐸

𝑄
[(𝐶 (𝑡, 𝑆𝑒

𝑥
) ] − 𝐶 (𝑡, 𝑆)}

(28)

and 𝐶(𝑇, 𝑆
𝑇
) = (𝑆

𝑇
− 𝐾)
+.

Using Fourier transformationmethods, it is easy to obtain
the solution of (28). The solution is shown in the following
theorem.

Theorem 10. The pricing formula of European call option
under Assumption 9 is given by

𝐶 (𝑆, 𝜏) = −
1

2𝜋
∫

𝑖𝑘
𝑖

+∞

𝑖𝑘
𝑖

−∞

𝑒
−𝑖𝑘 ln 𝑆 𝐾

𝑖𝑘+1

𝑘2 − 𝑖𝑘
𝑒
𝐴𝜏
𝑑𝑘, (29)

where

𝐴 = − (1 + 𝑖𝑘) 𝑟 + 𝑖𝑘𝜆𝐸
𝑄
(𝑒
𝑥
− 1) −

1

2
𝜎
2
(𝑘
2
− 𝑖𝑘)

+ 𝜆𝐸
𝑄
[𝑒
−𝑖𝑘𝑥
− 1] , 𝜏 = 𝑇 − 𝑡.

(30)

Proof. First, we denote 𝑋 = ln 𝑆 and 𝑔(𝑋, 𝑡) := 𝑐(𝑒𝑋, 𝑡) =
𝐶(𝑆, 𝑡); then, the PDE (28) can be rewritten as

− 𝑔
𝑡
= −𝑟𝑔 +

1

2
𝜎
2
𝑔
𝑋𝑋
+ [𝑟 − 𝜆𝐸

𝑄
(𝑒
𝑥
− 1) −

1

2
𝜎
2
] 𝑔
𝑋

+ 𝜆 {𝐸
𝑄
[𝑔 (𝑋 + 𝑥, 𝑡)] − 𝑔 (𝑋, 𝑡)} ,

𝑔 (𝑋, 𝑇) = (𝑒
𝑋
− 𝐾)
+

.

(31)

Let 𝐺(𝑘, 𝑉, 𝑡) be Fourier transform of 𝑔(𝑋,𝑉, 𝑡),

𝐺 (𝑘, 𝑡) = ∫

+∞

−∞

𝑒
𝑖𝑘𝑋
𝑔 (𝑋, 𝑡) 𝑑𝑋 (32)

and 𝐺(𝑘, 𝑇) = −𝐾𝑖𝑘+1/(𝑘2 − 𝑖𝑘).
Denote 𝑘 = 𝑘

𝑟
+ 𝑖𝑘
𝑖
, 𝜏 = 𝑇 − 𝑡; the inverse Fourier

transform is given by

𝑔 (𝑋, 𝑡) =
1

2𝜋
∫

𝑖𝑘
𝑖

+∞

𝑖𝑘
𝑖

−∞

𝑒
−𝑖𝑘𝑋
𝐺 (𝑘, 𝑡) 𝑑𝑘. (33)

Then, the PDE (31) can be rewritten as

𝐺
𝜏
= − (1 + 𝑖𝑘) 𝑟𝐺 + 𝑖𝑘𝜆𝐸

𝑄
(𝑒
𝑥
− 1)𝐺

−
1

2
𝜎
2
(𝑘
2
− 𝑖𝑘)𝐺 + 𝜆𝐸

𝑄
[𝑒
−𝑖𝑘𝑥
− 1]𝐺,

𝐺 (𝑘, 0) = −
𝐾
𝑖𝑘+1

𝑘2 − 𝑖𝑘
.

(34)

The solution of (34) is given by

𝐺 (𝑘, 𝜏) = −
𝐾
𝑖𝑘+1

𝑘2 − 𝑖𝑘
𝑒
𝐴𝜏
, (35)

where 𝐴 = −(1 + 𝑖𝑘)𝑟 + 𝑖𝑘𝜆𝐸𝑄(𝑒𝑥 − 1) − (1/2)𝜎2(𝑘2 − 𝑖𝑘) +
𝜆𝐸
𝑄
[𝑒
−𝑖𝑘𝑥
− 1].

Hence,

𝑔 (𝑋, 𝜏) = −
1

2𝜋
∫

𝑖𝑘
𝑖

+∞

𝑖𝑘
𝑖

−∞

𝑒
−𝑖𝑘𝑋 𝐾

𝑖𝑘+1

𝑘2 − 𝑖𝑘
𝑒
𝐴𝜏
𝑑𝑘. (36)

Then

𝐶 (𝑆, 𝜏) = −
1

2𝜋
∫

𝑖𝑘
𝑖

+∞

𝑖𝑘
𝑖

−∞

𝑒
−𝑖𝑘 ln 𝑆 𝐾

𝑖𝑘+1

𝑘2 − 𝑖𝑘
𝑒
𝐴𝜏
𝑑𝑘. (37)

Note 1. Although the pricing formula (29) contains a complex
integral, the result is real.

Then, we try to find the relationship of central moments
between the physical measure and risk-neutral measure
which can help us to study the negative variance risk
premium, the implied volatility smirk, and the prediction of
realized skewness.The typical literature is Bakshi et al. (2003)
in [28], Carr andWu (2009) in [29], and Neuberger (2012) in
[30].

However, to the best of our knowledge, except Zhang et al.
(2012) in [9], there is no literature that studies this relation-
ship. First we present a lemma from Zhang et al. (2012) in
[9] to prove Proposition 12 which presents the relationship
of central moments between the physical measure and risk-
neutral measure 𝑄.

Lemma 11. The first moment, and the second, third, and
fourth centralmoments of the continuously compounded return
within 𝜏,𝑅

𝜏
= ln 𝑆

𝑇
/𝑆
𝑡
, in the risk-neutralmeasure𝑄 are given

by

𝐸
𝑄

𝑡
(𝑅
𝜏
) = [𝜇 −

1

2
𝜎
2
− 𝜆
𝑄
𝐸
𝑄
(𝑒
𝑥
− 1 − 𝑥)] 𝜏,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
2

= 𝜏𝜎
2
+ 𝜆
𝑄
𝜏 [(𝜇
𝑄

𝑥
)
2

+ Var 𝑄 (𝑥)] ,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
3

= 𝜆
𝑄
𝜏 [(𝜇
𝑄

𝑥
)
3

+ 3𝜇
𝑄

𝑥
Var 𝑄 (𝑥) + 3𝑟𝑑𝑄 (𝑥)] ,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
4

= 3(𝜆
𝑄
𝜏 [(𝜇
𝑄

𝑥
)
2

+ Var 𝑄 (𝑥)] + 𝜏𝜎2)
2

+ 𝜆
𝑄
𝜏 [(𝜇
𝑄

𝑥
)
4

+ 6(𝜇
𝑄

𝑥
)
2

Var 𝑄 (𝑥)

+4𝜇
𝑄

𝑥
3𝑟𝑑

Q
(𝑥) + 4𝑡ℎ

𝑄
(𝑥) ] ,

(38)
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where 𝜇𝑄
𝑥
= 𝐸
𝑄
(𝑥) is the first moment and Var𝑄(𝑥) = 𝐸𝑄[(𝑥 −

𝜇
𝑄

𝑥
)
2
], 3𝑟𝑑𝑄(𝑥) = 𝐸𝑄[(𝑥−𝜇𝑄

𝑥
)
3
], and 4𝑡ℎ𝑄(𝑥) = 𝐸𝑄[(𝑥−𝜇𝑄

𝑥
)
4
]

are the second, third, and fourth central moments in the risk-
neutral measure of random number 𝑥. 𝜆𝑄 is the jump intensity
in the risk-neutral measure.

The first moment and the second, third, and fourth central
moments of the continuously compounded return in the physi-
cal measure are given by

𝐸
𝑡
(𝑅
𝜏
) = [𝜇 −

1

2
𝜎
2
− 𝜆𝐸 (𝑒

𝑥
− 1 − 𝑥)] 𝜏,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
2

= 𝜏𝜎
2
+ 𝜆𝜏 [𝜇

2

𝑥
+ Var (𝑥)] ,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
3

= 𝜆𝜏 [𝜇
3

𝑥
+ 3𝜇
𝑥
Var (𝑥) + 3𝑟𝑑 (𝑥)] ,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
4

= 3(𝜆𝜏 [𝜇
2

𝑥
+ Var (𝑥)] + 𝜏𝜎2)

2

+ 𝜆𝜏 [𝜇
4

𝑥
+ 6𝜇
2

𝑥
Var (𝑥) + 4𝜇

𝑥
3𝑟𝑑 (𝑥) + 4𝑡ℎ (𝑥)] ,

(39)

where 𝜇
𝑥
= 𝐸(𝑥) is the first moment and Var(𝑥) = 𝐸[(𝑥 −

𝜇
𝑥
)
2
], 3𝑟𝑑(𝑥) = 𝐸[(𝑥 − 𝜇

𝑥
)
3
], and 4𝑡ℎ(𝑥) = 𝐸[(𝑥 − 𝜇

𝑥
)
4
]

are second, third, and fourth central moments in the physical
measure of random number 𝑥. 𝜆 is the jump intensity in the
physical measure.

Proof. See Zhang et al. (2012) in [9].

Proposition 12. The first moment and the second, third, and
fourth centralmoments of the continuously compounded return
within 𝜏, 𝑅

𝜏
= ln 𝑆

𝑇
/𝑆
𝑡
, in the physical measure are given by

𝐸
𝑡
(𝑅
𝜏
) = 𝜇 −

1

2
𝜎
2
− 𝜆𝐸 [(𝑒

𝑥
− 1 − 𝑥)] ,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
2

= 𝜎
2
𝜏 + 𝜆𝜏𝐸 [𝑥

2
] ,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
3

= 𝜆𝜏𝐸 [𝑥
3
] ,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
4

= 𝜆𝜏𝐸 [𝑥
4
] + 3(𝜆𝜏𝐸 [𝑥

2
] + 𝜏𝜎

2
)
2

.

(40)

The first moment and the second, third, and fourth central
moments of the continuously compounded return in the min-
imal martingale measure 𝑄 are given by

𝐸
𝑄

𝑡
(𝑅
𝜏
) = 𝜇 −

1

2
𝜎
2
− 𝜆𝐸 [(1 − 𝜃 (𝑒

𝑥
− 1)) (𝑒

𝑥
− 1 − 𝑥)] ,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
2

= 𝜎
2
𝜏 + 𝜆𝜏𝐸 [(1 − 𝜃 (𝑒

𝑥
− 1)) 𝑥

2
] ,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
3

= 𝜆𝜏𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

3
] ,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
4

= 𝜆𝜏𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

4
]

+ 3(𝜏𝜎
2
+ 𝜆𝜏𝐸 [(1 − 𝜃 (𝑒

𝑥
− 1)) 𝑥

2
])
2

.

(41)

Proof. To compute central moments in the physical measure,
we have

𝜇
𝑥
= 𝐸 (𝑥) ,

Var (𝑥) = 𝐸 [(𝑥 − 𝜇
𝑥
)
2

] = 𝐸 [𝑥
2
] − 𝜇
2

𝑥
,

3𝑟𝑑 (𝑥) = 𝐸 [(𝑥 − 𝜇
𝑥
)
3

]

= 𝐸 [𝑥
3
− 3𝑥
2
𝜇
𝑥
+ 3𝑥𝜇

2

𝑥
− 𝜇
3

𝑥
]

= 𝐸 [𝑥
3
] − 3𝜇

2

𝑥
𝐸 [𝑥
2
] + 2𝜇

3

𝑥
,

4𝑡ℎ (𝑥) = 𝐸 [(𝑥 − 𝜇
𝑥
)
4

]

= 𝐸 [𝑥
4
− 4𝑥
3
𝜇
𝑥
+ 6𝑥
2
𝜇
2

𝑥
− 4𝑥𝜇

3

𝑥
+ 𝜇
4

𝑥
]

= 𝐸 [𝑥
4
] − 4𝜇

𝑥
𝐸 [𝑥
3
] + 6𝜇

2

𝑥
𝐸 [𝑥
2
] − 3𝜇

4

𝑥
.

(42)

Then, from Lemma 11, we have

𝐸
𝑡
(𝑅
𝜏
) = 𝜇 −

1

2
𝜎
2
− 𝜆𝐸 [(𝑒

𝑥
− 1 − 𝑥)] ,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
2

= 𝜎
2
𝜏 + 𝜆𝜏 [𝜇

2

𝑥
+ Var (𝑥)]

= 𝜎
2
𝜏 + 𝜆𝜏𝐸 [𝑥

2
] ,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
3

= 𝜆𝜏 [𝜇
3

𝑥
+ 3𝜇
𝑥
Var (𝑥) + 3𝑟𝑑 (𝑥)]

= 𝜆𝜏𝐸 [𝑥
3
] ,

𝐸
𝑡
[𝑅
𝜏
− 𝐸
𝑡
(𝑅
𝜏
)]
4

= 3(𝜆𝜏 [𝜇
2

𝑥
+ Var (𝑥)] + 𝜏𝜎2)

2

+ 𝜆𝜏 [𝜇
4

𝑥
+ 6𝜇
2

𝑥
Var (𝑥)

+4𝜇
𝑥
3𝑟𝑑 (𝑥) + 4𝑡ℎ (𝑥) ]

= 𝜆𝜏𝐸 [𝑥
4
] + 3(𝜆𝜏𝐸 [𝑥

2
] + 𝜏𝜎

2
)
2

.

(43)

To compute central moments in the physical measure, we get

𝜇
𝑄

𝑥
= 𝐸
𝑄
(𝑥) = 𝐸 [(1 − 𝜃 (𝑒

𝑥
− 1)) 𝑥] ,

Var𝑄 (𝑥) = 𝐸𝑄 [(𝑥 − 𝜇𝑄
𝑥
)
2

]

= 𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) (𝑥 − 𝜇

𝑄

𝑥
)
2

]

=

𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) (𝑥

2
− 2𝜇
𝑄

𝑥
𝑥 + (𝜇

𝑄

𝑥
)
2

)]

𝐸 (𝑒
−𝛾𝑥
)

= 𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

2
] − (𝜇

𝑄

𝑥
)
2

,
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3𝑟𝑑
𝑄
(𝑥) = 𝐸

𝑄
[(𝑥 − 𝜇

𝑄

𝑥
)
3

]

= 𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) (𝑥 − 𝜇

𝑄

𝑥
)
3

]

= 𝐸 [ (1 − 𝜃 (𝑒
𝑥
− 1))

× (𝑥
3
− 3𝑥
2
𝜇
𝑄

𝑥
+ 3𝑥(𝜇

𝑄

𝑥
)
2

− (𝜇
𝑄

𝑥
)
3

)]

= 𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

3
] − 3𝜇

𝑄

𝑥
𝐸

× [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

2
] + 2(𝜇

𝑄

𝑥
)
3

,

4𝑡ℎ
𝑄
(𝑥) = 𝐸

𝑄
[(𝑥 − 𝜇

𝑄

𝑥
)
4

]

= 𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) (𝑥 − 𝜇

𝑄

𝑥
)
4

]

= 𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) (𝑥

4
− 4𝑥
3
𝜇
𝑄

𝑥
+ 6𝑥
2
(𝜇
𝑄

𝑥
)
2

−4𝑥(𝜇
𝑄

𝑥
)
3

+ (𝜇
𝑄

𝑥
)
4

)]

= 𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

4
]

− 4𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

3
] 𝜇
𝑄

𝑥

+ 6𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

2
] (𝜇
𝑄

𝑥
)
2

− 3(𝜇
𝑄

𝑥
)
4

.

(44)

Then, from (25), we have

𝐸
𝑄

𝑡
(𝑅
𝜏
) = 𝜇 −

1

2
𝜎
2
− 𝜆𝐸

× [(1 − 𝜃 (𝑒
𝑥
− 1)) (𝑒

𝑥
− 1 − 𝑥)] ,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
2

= 𝜎
2
𝜏 + 𝜆
𝑄
𝜏 [(𝜇
𝑄

𝑥
)
2

+ Var𝑄 (𝑥)]

= 𝜎
2
𝜏 + 𝜆𝜏𝐸 [(1 − 𝜃 (𝑒

𝑥
− 1)) 𝑥

2
] ,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
3

= 𝜆
𝑄
𝜏 [(𝜇
𝑄

𝑥
)
3

+ 3𝜇
𝑄

𝑥
Var𝑄 (𝑥) + 3𝑟𝑑𝑄 (𝑥)]

= 𝜆𝜏 {(𝜇
𝑄

𝑥
)
3

+ 3𝜇
𝑄

𝑥

× [𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

2
] − (𝜇

𝑄

𝑥
)
2

]

+ [𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

3
] − 3𝜇

𝑄

𝑥
𝐸

× [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

2
] + 2(𝜇

𝑄

𝑥
)
3

]}

= 𝜆𝜏𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

3
] ,

𝐸
𝑄

𝑡
[𝑅
𝜏
− 𝐸
𝑄

𝑡
(𝑅
𝜏
)]
4

= 3(𝜆𝜏 [(𝜇
𝑄

𝑥
)
2

+ Var𝑄 (𝑥)] + 𝜎2𝜏)
2

+ 𝜆
𝑄
𝜏 [(𝜇
𝑄

𝑥
)
4

+ 6(𝜇
𝑄

𝑥
)
2

Var𝑄 (𝑥)

+4𝜇
𝑄

𝑥
3𝑟𝑑
𝑄
(𝑥) + 4𝑡ℎ

𝑄
(𝑥) ]

= 𝜆𝜏𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

4
]

+ 3(𝜆𝜏𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1)) 𝑥

2
] + 𝜎
2
𝜏)
2

.

(45)

5. Portfolio Selection

Under Assumption 9, we study the portfolio selection prob-
lem by martingale methods in this section. We first suppose
that the portfolio (𝜋(𝑡), 1 − 𝜋(𝑡)) which is the proportion
of money invested in the stock market and bond market,
respectively, the wealth process 𝑦(𝑡) = 𝑦𝜔(𝑡), and the initial
wealth 𝑦(0) = 𝑦

0
> 0 satisfy the equation as follows:

𝑑𝑦 (𝑡)

𝑦 (𝑡)
= 𝑟𝑑𝑡 + 𝜋 (𝑡) [(𝜇 − 𝑟) 𝑑𝑡 − 𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑑𝑡

+𝜎𝑑𝑊
𝑡
+ (𝑒
𝑥
− 1) 𝑑𝑁 (𝑡)]

𝑦 (0) = 𝑦
0
.

(46)

The investor maximizes his/her expected utility,

max
𝜋(𝑡)

𝐸 [𝑈 (𝑦 (𝑇))] . (47)

We suppose 𝑈(𝑦(𝑇)) = 𝛾−1𝑦(𝑇)𝛾, 𝛾 < 1, 𝛾 ̸= 0; then the
problem which is to find portfolio to maximize the expected
utility is given by the following.

Problem 13. Consider

max 𝐸 [𝛾
−1
𝑦(𝑇)
𝛾
]

subject to (𝑦 (⋅) , 𝜋 (⋅)) satisfies (46) ,

𝜋 (⋅) is admissible and tame.

(48)

We define the pricing kernel as follows:

𝐻(𝑡) = 𝑒
−𝑟𝑡
𝑍
𝑡

= exp{ − 𝜃𝜎𝑊
𝑡
− 𝑟𝑡 −

1

2
𝜃
2
𝜎
2
𝑡

+𝜃𝜆𝐸 [(𝑒
𝑥
− 1)] 𝑡 +

𝑁(𝑡)

∑

𝑖=1

ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))} .

(49)
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Then
𝑑𝐻 (𝑡) = − 𝐻 (𝑡) [𝜃𝜎𝑑𝑊

𝑡
+ 𝑟𝑑𝑡 − 𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑑𝑡

+𝜃 (𝑒
𝑥
− 1) 𝑑𝑁 (𝑡)] .

(50)

Using 𝜇 − 𝑟 = 𝜃𝜎2 + 𝜃𝜆𝐸[(𝑒𝑥 − 1)2] and (46), we have

𝑑 (𝑦 (𝑡)𝐻 (𝑡))

= 𝑦 (𝑡) 𝑑𝐻 (𝑡) + 𝐻 (𝑡) 𝑑𝑦 (𝑡) + 𝑑𝑦 (𝑡) 𝑑𝐻 (𝑡)

= −𝑦 (𝑡)𝐻 (𝑡) (𝜃𝜎𝑑𝑊
𝑡
+ 𝑟𝑑𝑡 − 𝜃𝜆𝐸

× [(𝑒
𝑥
− 1)] 𝑑𝑡

+𝜃 (𝑒
𝑥
− 1) 𝑑𝑁 (𝑡))

+ 𝑟𝐻 (𝑡) 𝑦 (𝑡) 𝑑𝑡 + 𝐻 (𝑡) 𝜋 (𝑡) 𝑦 (𝑡)

× ((𝜇 − 𝑟) 𝑑𝑡 − 𝜆𝐸 [(𝑒
𝑥
− 1)] 𝑑𝑡 + 𝜎𝑑𝑊

𝑡

+ (𝑒
𝑥
− 1) 𝑑𝑁 (𝑡))

− 𝐻 (𝑡) 𝑦 (𝑡) 𝜃𝜎
2
𝑑𝑡 − 𝜋 (𝑡) 𝑦 (𝑡)

× 𝐻 (𝑡) 𝜃𝜆𝐸 [(𝑒
𝑥
− 1)
2

]

= 𝑦 (𝑡)𝐻 (𝑡) (𝜎𝜋 (𝑡) − 𝜎𝜃) 𝑑𝑊
𝑡
− 𝑦 (𝑡)𝐻 (𝑡)

× (−𝜃𝜆𝐸 [(𝑒
𝑥
− 1)] 𝑑𝑡 + 𝜃 (𝑒

𝑥
− 1) 𝑑𝑁 (𝑡))

+ 𝐻 (𝑡) 𝜋 (𝑡) 𝑦 (𝑡)

× (−𝜆𝐸 [(𝑒
𝑥
− 1)] 𝑑𝑡 + (𝑒

𝑥
− 1) 𝑑𝑁 (𝑡)) .

(51)

It suggests that 𝑦(𝑡)𝐻(𝑡) is a martingale in physical measure.
In order to solve Problem 13 one needs only first to solve

the following optimization problem in the terminal wealth.𝑌
is predictable stochastic process.

Problem 14. Consider
max 𝐸 [𝛾

−1
𝑌
𝛾
]

subject to 𝐸 [𝐻 (𝑇) 𝑌] = 𝑦
0
.

(52)

Solving Problem 14, we obtain the following theorem.

Theorem 15. If 𝑌∗ is optimal for Problem 14, then 𝑌∗ is also
optimal for Problem 13, where

𝑌
∗
= 𝑦
0
exp{− 1

𝛾 − 1
𝜃𝜎𝑊
𝑇
+ 𝑟𝑇 −

(2𝛾 − 1) 𝜃
2
𝜎
2

2(𝛾 − 1)
2
𝑇

− 𝜃𝜆𝐸 [(𝑒
𝑥
− 1)] 𝑇

−𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1]𝑇}

⋅ exp{
𝑁(𝑇)

∑

𝑖=1

1

𝛾 − 1
ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))}

(53)

and 𝜋∗(𝑡) = (1/(1 − 𝛾))((𝜇 − 𝑟)/(𝜎2 + 𝜆𝐸[(𝑒𝑥 − 1)2])).

Proof. The Lagrangian function of Problem 14 is given by

𝐿 (𝑌, 𝜆) = 𝐸 [𝛾
−1
𝑌
𝛾
+ 𝜆 (𝑦

0
− 𝐻 (𝑇)𝑌)] , (54)

where 𝜆 is the Lagrangianmultiplier. Equating the derivatives
of the 𝐿(𝑌, 𝜆)with respect to𝑌 and 𝜆, respectively, to zero, we
have

𝜕𝐿 (𝑌, 𝜆)

𝜕𝑌
= 𝐸 [𝑌

𝛾−1
− 𝜆𝐻 (𝑇)] = 0, (55)

𝐿 (𝑌, 𝜆) = 𝑦
0
− 𝐸 [𝐻 (𝑇) 𝑌] = 0. (56)

From (55), we get

𝑌
∗
= 𝜆
1/(𝛾−1)

𝐻(𝑇)
1/(𝛾−1)

. (57)

Substituting (57) into (56), we obtain

𝜆
1/(𝛾−1)

=
𝑦
0

𝐸 [𝐻(𝑇)
𝛾/(𝛾−1)

]

, (58)

since

𝐸 [𝐻(𝑇)
𝛾/(𝛾−1)

]

= 𝐸 exp{ −
𝛾

𝛾 − 1
𝜃𝜎𝑊
𝑇
−
𝛾

𝛾 − 1
𝑟𝑇

−
1

2

𝛾

𝛾 − 1
𝜃
2
𝜎
2
𝑇 +

𝛾

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑇

+

𝑁(𝑇)

∑

𝑖=1

𝛾

𝛾 − 1
ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))}

= 𝐸 exp{
𝛾𝜃
2
𝜎
2

2(𝛾 − 1)
2
𝑇 −

𝛾𝑟𝑇

𝛾 − 1
+
𝛾

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑇}

⋅ 𝐸 exp{
𝑁(𝑇)

∑

𝑖=1

𝛾

𝛾 − 1
ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))}

= exp{
𝛾𝜃
2
𝜎
2

2(𝛾 − 1)
2
𝑇 −

𝛾𝑟𝑇

𝛾 − 1
+
𝛾

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑇}

⋅ exp {𝜆𝐸 [(1 − 𝜃 (𝑒𝑥 − 1))𝛾/(𝛾−1) − 1]𝑇}

= exp{
𝛾𝜃
2
𝜎
2

2(𝛾 − 1)
2
𝑇 −

𝛾𝑟

𝛾 − 1
𝑇 +

𝛾

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑇

+𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1]𝑇} .

(59)



Journal of Applied Mathematics 9

From (58), we have

𝜆
1/(𝛾−1)

= 𝑦
0
exp{−

𝛾𝜃
2
𝜎
2

2(𝛾 − 1)
2
𝑇 +

𝛾𝑟

𝛾 − 1
𝑇 −

𝛾

𝛾 − 1

× 𝜃𝜆𝐸 [(𝑒
𝑥
− 1)] 𝑇

−𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1]𝑇} .

(60)

Then

𝑌
∗
= 𝜆
1/(𝛾−1)

𝐻(𝑇)
1/(𝛾−1)

= 𝑦
0
exp{−

𝛾𝜃
2
𝜎
2

2(𝛾 − 1)
2
𝑇 +

𝛾𝑟

𝛾 − 1
𝑇

−
𝛾

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑇

−𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1]𝑇}

⋅ exp{ − 1

𝛾 − 1
𝜃𝜎𝑊
𝑇
−
1

𝛾 − 1
𝑟𝑇 −

1

2

1

𝛾 − 1

× 𝜃
2
𝜎
2
𝑇 +

1

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑇

+

𝑁(𝑇)

∑

𝑖=1

1

𝛾 − 1
ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))}

= 𝑦
0
exp{− 1

𝛾 − 1
𝜃𝜎𝑊
𝑇
+ 𝑟𝑇

−
(2𝛾 − 1) 𝜃

2
𝜎
2

2(𝛾 − 1)
2
𝑇 − 𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑇

−𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1]𝑇}

⋅ exp{
𝑁(𝑇)

∑

𝑖=1

1

𝛾 − 1
ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))} .

(61)

In order to calculate the 𝜋∗(𝑡), from (57) and (58), we have

𝑌
∗
= 𝑦
0

𝐻(𝑇)
1/(𝛾−1)

𝐸 [𝐻(𝑇)
𝛾/(𝛾−1)

]

. (62)

Thanks to the facts 𝑌∗ = 𝑦∗(𝑇) and 𝐸
𝑡
[𝑦
∗
(𝑇)𝐻(𝑇)] = 𝐸

𝑡
[𝑌
∗

𝐻(𝑇)], then

𝑦
∗
(𝑡)𝐻 (𝑡) = 𝐸

𝑡
[𝑌
∗
𝐻(𝑇)] = 𝑦

0

𝐸
𝑡
[𝐻(𝑇)

𝛾/(𝛾−1)
]

𝐸 [𝐻(𝑇)
𝛾/(𝛾−1)

]

. (63)

From (51), we have

𝐻(𝑡)
𝛾/(𝛾−1)

= exp{ −
𝛾

𝛾 − 1
𝜃𝜎𝑊
𝑡
−
𝛾

𝛾 − 1
𝑟𝑡

−
1

2

𝛾

𝛾 − 1
𝜃
2
𝜎
2
𝑡 +

𝛾

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑡

+

𝑁(𝑡)

∑

𝑖=1

𝛾

𝛾 − 1
ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))}

= exp{ −
𝛾

𝛾 − 1
𝜃𝜎𝑊
𝑡
−

𝛾
2

2(𝛾 − 1)
2
𝜃
2
𝜎
2
𝑡

− 𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1] 𝑡

+

𝑁(𝑡)

∑

𝑖=1

𝛾

𝛾 − 1
ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))}

⋅ exp{
𝛾𝜃
2
𝜎
2

2(𝛾 − 1)
2
𝑡 −

𝛾𝑟

𝛾 − 1
𝑡

+
𝛾

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑡

+𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1] 𝑡} .

(64)

By denoting the martingale

𝑧 (𝑡) := exp{ −
𝛾

𝛾 − 1
𝜃𝜎𝑊
𝑡
−

𝛾
2

2(𝛾 − 1)
2
𝜃
2
𝜎
2
𝑡

− 𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1] 𝑡

+

𝑁(𝑡)

∑

𝑖=1

𝛾

𝛾 − 1
ln (1 − 𝜃 (𝑒𝑥𝑖 − 1))} ,

(65)

and function

𝑓 (𝑥) := exp{
𝛾𝜃
2
𝜎
2

2(𝛾 − 1)
2
𝑡 −

𝛾𝑟

𝛾 − 1
𝑡

+
𝛾

𝛾 − 1
𝜃𝜆𝐸 [(𝑒

𝑥
− 1)] 𝑡

+𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1] 𝑡} .

(66)

Then𝐻(𝑡)𝛾/(𝛾−1) can be written as

𝐻(𝑡)
𝛾/(𝛾−1)

= 𝑧 (𝑡) ⋅ 𝑓 (𝑡) . (67)
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From (63) and (67), we obtain

𝑦
∗
(𝑡)𝐻 (𝑡) = 𝐸

𝑡
[𝑌
∗
𝐻(𝑇)]

= 𝑦
0

𝐸
𝑡
[𝑧 (𝑇) 𝑓 (𝑇)]

𝐸 [𝑧 (𝑇) 𝑓 (𝑇)]
= 𝑦
0

𝑓 (𝑇) 𝐸
𝑡
[𝑧 (𝑇)]

𝑓 (𝑇) 𝐸 [𝑧 (𝑇)]

= 𝑦
0

𝐸
𝑡
[𝑧 (𝑇)]

𝐸 [𝑧 (𝑇)]
= 𝑦
0

𝑧 (𝑡)

𝑧 (0)
= 𝑦
0
𝑧 (𝑡) .

(68)

Hence,
𝑑 (𝑦
∗
(𝑡)𝐻 (𝑡))

= 𝑦
0
𝑑𝑧 (𝑡)

= 𝑦
0
𝑧 (𝑡) {−

𝛾

𝛾 − 1
𝜃𝜎𝑑𝑊

𝑡

− 𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1] 𝑑𝑡

+ [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1] 𝑑𝑁 (𝑡) }

= −𝑦
∗
(𝑡)𝐻 (𝑡) {

𝛾

𝛾 − 1
𝜃𝜎𝑑𝑊

𝑡

+ 𝜆𝐸 [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1] 𝑑𝑡

− [(1 − 𝜃 (𝑒
𝑥
− 1))
𝛾/(𝛾−1)

− 1]𝑑𝑁(𝑡)} .

(69)

Comparing the diffusion of (69) and (51), we have

𝜋 (𝑡) =
𝜃

1 − 𝛾
. (70)

6. Conclusions

With risk-minimization criterion, we employ the minimal
martingalemeasure to solve the pricing problem in an incom-
plete market.Then we obtain the Radon-Nikodym derivative
in the minimal martingale measure and a PIDE with respect
to the European option. In a special case, we get the exact
solution of European call option by Fourier transformation
methods. Finally, we employ the pricing kernel to calculate
the optimal portfolio selection by martingale methods.
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