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By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for
natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed
moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and
we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity of the natural
enemy-extinction periodic solution and permanence of the system are obtained. Numerical simulations are presented to confirm
our theoretical results.

1. Introduction

Nowadays, the problem of the world’s environmental pollu-
tion is serious, which has a frustrating effect on the ecosystem
damage in the direct or indirect ways. Pollution leads to the
living environmental change and gene mutation. It results in
not only birth defects and deformities but also population
variability, which decreases the number of the population in
the nature and evenmakes them extinct. In order to assess the
risk of the populations exposed to a polluted environment,
in recent years, mathematical models concerning this topic
have been studied extensively including continuous pollution
input and impulsive pollution input [1–11].

As we all know, the predator-prey system can be used to
model the process of controlling the pests by spraying pesti-
cides, as well as relying on their natural enemies. However,
in a polluted environment, some natural enemies are affected
by pollution seriously and pests almost are not affected. For
example, frogs are the natural enemies of beetles, locusts,
and mole cricket, but some chemical plants discard waste
products into rivers for their convenience, which cause severe
water contamination, seriously injures frog’s reproductive
system, and significantly decreases their fertility. Moreover,
water pollution also causes large quantities of the fertilized

eggs and tadpoles to die, resulting in the decrease of frogs.
It is shown in a Sweden’s new study that male tadpoles can
eventually grow into female frogs only in the environment
similar to the nature but full of pollutants with estrogen.
However, some male frogs have ovaries but no fallopian
tubes, and they finally turn into lifelong infertile frogs,
which are called “Yin and Yang frog”, and nearly one-third
of the world’s frog species may be extinct because of the
environmental pollution. People must control the period and
quantity of emission of pollution to prevent natural enemy
from extinction. In addition, toomuch pesticide sprayingwill
reduce pests significantly; meanwhile, it also causes serious
environmental pollution. Therefore, when controlling pests,
we had better choose the method to kill the pests without
polluting the environment and harming natural enemies at
regular intervals.

The predator-prey models with stage structure for the
predator were introduced or investigated by Hastings and
Wang [12–14]. Since the immature predator takes 𝜏 (which
is called maturation time delay) units of time to mature, the
death toll during the juvenile period should be considered,
and time delays have important biological meanings in stage
structured models. Recently, many models with time delay
were extensively studied [15–22].
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According to the above biological background, in this
paper, we suggest an impulsive predator-prey pollution
model with stage structured for predator by introducing a
constant periodic pollutant input and proportional killing
pest at different fixed moments to model the process of pest
control and polluted environment. Recently, there has been
quite a lot of literatures on the applications of impulsive dif-
ferential equations on population [1, 2, 8, 10, 11, 20–31]. To
our knowledge, there have been no results on this topic in the
literature.The questions that arise here are as follows: how do
we control the emission of pollution to prevent the extinction
of natural enemies? Under what condition can the system be
permanent? How can we control pests effectively?

The organization of this paper is as follows. In the next
section, we formulate our model and give several lemmas
which are useful for our main results. In Section 3 and
Section 4, the sufficient conditions for the global attrac-
tivity of the “natural enemy-extinction” periodic solution
and permanence of the system are obtained. We give a brief
discussion of our results in Section 5. Numerical simulations
are presented to illustrate our theoretical results.

2. Model Formulation and Preliminaries

In this paper, we assume only that the natural enemies are
affected by pollution and we choose the method to kill the
pest without harming natural enemies. Then a pest control
model with stage structure for natural enemy in a polluted
environment by introducing a constant periodic pollutant
input and killing pests at different fixedmoment is formulated
as follows:
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(1)

where 0 ≤ 𝑙 ≤ 1, Δ𝑥(𝑡) = 𝑥(𝑡
+
) − 𝑥(𝑡), Δ𝑦

𝑖
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+
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𝑐
𝑒
(𝑡). 𝑥(𝑡), 𝑦

1
(𝑡), and 𝑦

2
(𝑡) represent the densities of prey

(pest), immature, and mature predator (natural enemy) at
time 𝑡, respectively; 𝑐

𝑒
(𝑡), 𝑐
0
(𝑡) represent the concentration

of pollution in the environment and organism at time 𝑡,
respectively; 𝛽 is intrinsic growth rate of the pests in the
absence of natural enemies; 𝐾 > 0 is the pest capacity of
environment; 𝑞 is the predation rate of natural enemy and
𝜆 represents the conversion rate at which ingested pest in
excess of what is needed for maintenance is translated into
natural enemy increase; 𝛼 is the saturation which represents
that a certain amount of natural enemies can prey on a limited
amount of pests, though the pests are numerous; 𝑑 and 𝛾

are the death rate of immature and mature natural enemies,
respectively; in addition, we assume that juveniles suffer a
mortality rate of 𝑑 (the through-stage death rate) and take
𝜏 units of time to mature. 𝑓

1
and 𝑓

2
are the dose-response

parameters of species to the pollution in the immature and
mature natural enemies, respectively; the exogenous quantity
of impulsive input of pollutant into the environment at time
𝑡 = (𝑛 + 𝑙 − 1)𝑇 is represented by 𝑏; 𝛿 (0 ≤ 𝛿 < 1) represents
a proportional decrease of pest because of being harvested at
time 𝑡 = 𝑛𝑇. The other parameters can be seen in [1].

The initial conditions for (2) are
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(2)

Note that the variable 𝑦
1
(𝑡) does not appear in the first,

third, forth, and fifth equations of system (2); hence, we only
need to consider the subsystem of (2) as follows:
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Δ𝑥 (𝑡) = 0, Δ𝑦
2
(𝑡) = 0,

Δ𝑐
0
(𝑡) = 0, Δ𝑐

𝑒
(𝑡) = 𝑏,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇
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0
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(3)

Lemma 1 (see [32]). Consider the following delay differential
equation:
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𝑑𝑡

= 𝑟
1
𝑥 (𝑡 − 𝜏) − 𝑟

2
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1
, 𝑟
2
, and 𝜏 are all positive constants and 𝑥(𝑡) > 0 for
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1
< 𝑟
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2
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𝑡→+∞
𝑥(𝑡) = +∞.

Lemma 2 (see [1]). Consider the following subsystem of (2):
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𝑐
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𝑒
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𝑏
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−ℎ𝑇

,

(6)

and 𝑡 ∈ ((𝑛 + 𝑙 − 1)𝑇, (𝑛 + 𝑙)𝑇].

Lemma 3. There exists a constant 𝐿 > 0 such that 𝑥(𝑡) ≤ 𝐾,
𝑦
1
(𝑡) ≤ 𝐿, 𝑦

2
(𝑡) ≤ 𝐿, 𝑐

0
(𝑡) ≤ 𝐿, and 𝑐

𝑒
(𝑡) ≤ 𝐿.

Proof. Define 𝑉(𝑡) = 𝜆𝑥(𝑡) + 𝑦
1
(𝑡) + 𝑦

2
(𝑡) + 𝑐

0
(𝑡) + 𝑐

𝑒
(𝑡).

Since 𝑑𝑥(𝑡)/𝑑𝑡 ≤ 𝛽𝑥(𝑡)(1 − (𝑥/𝐾)), �̇�|
𝑥=𝐾

≤ 0, in addition,
0 ≤ 𝛿 < 1, 𝑥(𝑛𝑇+) ≤ 𝑥(𝑛𝑇), thus 𝑥(𝑡) ≤ 𝐾 for 𝑡 large enough.

Define 𝑑
∗
= min{𝑑, 𝛾, 𝑔 + 𝑚, ℎ − 𝑘}; then, for 𝑡 ̸= (𝑛 + 𝑙 − 1)𝑇,

𝑡 ̸= 𝑛𝑇; we have

𝑑𝑉 (𝑡)

𝑑𝑡

< 𝐿
0
− 𝑑
∗
𝑉 (𝑡) , (7)

where 𝐿
0
= 𝜆𝐾(𝛽+𝑑

∗
)
2
/4𝛽. Consider the following impulse

differential inequalities:

𝑑𝑉 (𝑡)

𝑑𝑡

≤ −𝑑
∗
𝑉 (𝑡) + 𝐿

0
, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑉 ((𝑛 + 𝑙 − 1) 𝑇
+
) = 𝑉 ((𝑛 + 𝑙 − 1) 𝑇) + 𝑏,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑉 (𝑛𝑇
+
) ≤ 𝑉 (𝑛𝑇) , 𝑡 = 𝑛𝑇.

(8)

We have

𝑉 (𝑡) ≤ 𝑉 (0
+
) 𝑒
−𝑑
∗

𝑡
+ ∫

𝑡

0

𝐿
0
𝑒
−𝑑
∗

(𝑡−𝑠)
𝑑𝑠

+ ∑

0<(𝑛+𝑙−1)𝑇<𝑙

𝑏𝑒
−𝑑
∗

(𝑡−(𝑛+𝑙−1)𝑇)
.

(9)

Hence

lim
𝑡→+∞

𝑉 (𝑡) ≤

𝐿
0

𝑑
∗

+

𝑏𝑒
𝑑
∗

𝑙𝑇

𝑒
𝑑
∗
𝑇
− 1

= 𝐿, (10)

so 𝑉(𝑡) is uniformly ultimately bounded. Therefore, by
the definition of 𝑉(𝑡), system (2) is uniformly ultimately
bounded. The proof is completed.

Lemma 4 (see [29]). If 𝛿 < 1 − 𝑒
−𝛽𝑇 holds, system

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝛽𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) , 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡
+
) = (1 − 𝛿) 𝑥 (𝑡) , 𝑡 = 𝑛𝑇

(11)

has a unique positive globally asymptotically stable periodic
solution 𝑥

∗
(𝑡) = 𝐾(1 − 𝛿 − 𝑒

−𝛽𝑇
)/(1 − 𝛿 − 𝑒

−𝛽𝑇
+ 𝛿𝑒
−𝛽(𝑡−𝑛𝑇)

),
𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇].

Therefore, if 𝛿 < 1−𝑒
−𝛽𝑇 holds, the system (2) has a natu-

ral enemy-extinction periodic solution (𝑥
∗
(𝑡), 0, 𝑐

∗

0
(𝑡), 𝑐
∗

𝑒
(𝑡)).

In this paper, we assume that 𝛿 < 1 − 𝑒
−𝛽𝑇 always holds.

Remark 5 (see [1]). 𝑐
0
(𝑡) and 𝑐

𝑒
(𝑡) are the concentration of

pollution. To assure 0 ≤ 𝑐
0
(𝑡) ≤ 1 and 0 ≤ 𝑐

𝑒
(𝑡) ≤ 1, it is

necessary that 𝑔 ≤ 𝑘 ≤ 𝑔 + 𝑚, 𝑏 ≤ 1 − 𝑒
−ℎ𝑇.

Remark 6 (see [1]). According to the biological significance,
we assume 𝑘 < ℎ.

3. Global Attractivity of
the ‘‘Natural Enemy-Extinction’’
Periodic Solution

In this section, we discuss under what condition the natural
enemies will go extinct.
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Denote

𝑅
1
=

𝜆𝑞𝐾𝑒
−𝑑𝜏

(𝛾 + 𝑓
2
𝜌) (𝛼𝐾 + 𝑔

1
(𝛿, 𝑇))

, (12)

where

𝜌 =

𝑘𝑏 (𝑒
−(𝑔+𝑚)𝑇

− 𝑒
−ℎ𝑇

) 𝑒
−(𝑔+𝑚)𝑇

(ℎ − 𝑔 − 𝑚) (1 − 𝑒
−(𝑔+𝑚)𝑇

) (1 − 𝑒
−ℎ𝑇

)

,

𝑔
1
(𝛿, 𝑇) =

(1 − 𝛿) (1 − 𝑒
−𝛽𝑇

)

1 − 𝛿 − 𝑒
−𝛽𝑇

.

(13)

Theorem 7. If 𝑅
1

< 1, then the “mature natural enemy-
extinction” periodic solution (𝑥

∗
(𝑡), 0, 𝑐

∗

0
(𝑡), 𝑐
∗

𝑒
(𝑡)) of system (2)

is globally attractive.

Proof. Since 𝑅
1
< 1, we have

𝑒
−𝑑𝜏

𝜆𝑞𝐾 (1 − 𝛿 − 𝑒
−𝛽𝑇

)

(1 − 𝑒
−𝛽𝑇

) (1 − 𝛿) + 𝛼𝐾 (1 − 𝛿 − 𝑒
−𝛽𝑇

)

< 𝛾 + 𝑓
2
𝜌.

(14)

By Lemma 2, for sufficiently small enough 𝜀
1

> 0, there
exists a positive constant 𝑁

1
such that

𝑐
0
(𝑡) > 𝑐

∗

0
(𝑡) − 𝜀

1
> 𝜌 − 𝜀

1
> 0. (15)

holds for 𝑡 ≥ 𝑁
1
𝑇.

Note that

𝑑𝑥 (𝑡)

𝑑𝑡

≤ 𝛽𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+
,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(16)

Then we consider the following comparison system:

𝑑𝑧 (𝑡)

𝑑𝑡

= 𝛽𝑧 (𝑡) (1 −

𝑧 (𝑡)

𝐾

) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+
,

Δ𝑧 (𝑡) = −𝛿𝑧 (𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(17)

According to Lemma 4, we know that

𝑧
∗
(𝑡) = 𝑥

∗
(𝑡) =

𝐾 (1 − 𝛿 − 𝑒
−𝛽𝑇

)

1 − 𝛿 − 𝑒
−𝛽𝑇

+ 𝛿𝑒
−𝛽(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇]

(18)

is a unique globally asymptotically stable positive 𝑇-periodic
solution of system (17).

By using comparison theorem of impulsive differential
equation, there exist a positive integer 𝑁

2
and a sufficiently

small positive constant 𝜀
2
such that for all 𝑛𝑇 < 𝑡 ≤ (𝑛 +

1)𝑇, 𝑛 > 𝑁
2
,

𝑥 (𝑡) ≤ 𝑥
∗
(𝑡) + 𝜀

2

≤

𝐾 (1 − 𝛿 − 𝑒
−𝛽𝑇

)

(1 − 𝑒
−𝛽𝑇

) (1 − 𝛿)

+ 𝜀
2
= 𝜂

(19)

holds. From (15), (19), and the second equation of (2), we
obtain that for 𝑡 > 𝑁𝑇 + 𝜏,

𝑑𝑦
2
(𝑡)

𝑑𝑡

≤ 𝜆𝑒
−𝑑𝜏 𝑞𝜂

1 + 𝛼𝜂

𝑦
2
(𝑡 − 𝜏)

− (𝛾 + 𝑓
2
(𝜌 − 𝜀

1
)) 𝑦
2
(𝑡)

(20)

holds.
Consider the following comparison equation:

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝜆𝑒
−𝑑𝜏 𝑞𝜂

1 + 𝛼𝜂

𝑢 (𝑡 − 𝜏)

− (𝛾 + 𝑓
2
(𝜌 − 𝜀

1
)) 𝑢 (𝑡) .

(21)

By inequality (14), we have that 𝜆𝑒−𝑑𝜏𝑞𝜂/(1 + 𝛼𝜂) < 𝛾 +

𝑓
2
(𝜌 − 𝜀

1
) holds; then, according to Lemma 1, we obtain that

lim
𝑡→+∞

𝑢 (𝑡) = 0. (22)

By the comparison theorem of delay differential equation,
we have lim

𝑡→+∞
𝑦
2
(𝑡) = 0.

Without loss of generality, we may assume that 0 <

𝑦
2
(𝑡) < 𝜀

3
(𝜀
3
is sufficiently small positive constant such that

𝛿 < 1 − 𝑒
−(𝛽−𝑞𝜀

3
)𝑇) for all 𝑡 ≥ 0; by the first equation of system

(2), we have

𝑑𝑥 (𝑡)

𝑑𝑡

≥ 𝛽𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) −

𝑞𝑥 (𝑡) 𝜀
3

1 + 𝛼𝑥 (𝑡)

≥ 𝛽𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) − 𝑞𝑥 (𝑡) 𝜀
3
.

(23)

Consider the following comparison equation:

𝑑𝑧
1
(𝑡)

𝑑𝑡

= 𝛽𝑧
1
(𝑡) (1 −

𝑧
1
(𝑡)

𝐾

) − 𝑞𝑧
1
(𝑡) 𝜀
3

= (𝛽 − 𝑞𝜀
3
) 𝑧
1
(𝑡) (1 −

𝑧
1
(𝑡)

𝐾 (𝛽 − 𝑞𝜀
3
) /𝛽

) ,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+
,

Δ𝑧
1
(𝑡) = −𝛿𝑧

1
(𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍

+
.

(24)

By Lemma 4,

𝑧
∗

1
(𝑡) =

(𝐾 (𝛽 − 𝑞𝜀
3
) /𝛽) (1 − 𝛿 − 𝑒

−(𝛽−𝑞𝜀
3
)𝑇
)

1 − 𝛿 − 𝑒
−(𝛽−𝑞𝜀

3
)𝑇

+ 𝛿𝑒
−(𝛽−𝑞𝜀

3
)(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇]

(25)

is a unique globally asymptotically stable positive 𝑇-periodic
solution of system (24). By using comparison theorem of
impulsive differential equation, for above 𝜀

2
and 𝑡 large

enough, we have

𝑥 (𝑡) > 𝑧
∗

1
(𝑡) − 𝜀

2
. (26)
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It follows from (19) and (26) that

𝑧
∗

1
(𝑡) − 𝜀

2
< 𝑥 (𝑡) < 𝑥

∗
(𝑡) + 𝜀

2
, (27)

holds for 𝑡 large enough. Let 𝜀
3

→ 0; we can get 𝑧∗
1
(𝑡) →

𝑥
∗
(𝑡), so

𝑥
∗
(𝑡) − 𝜀

2
< 𝑥 (𝑡) < 𝑥

∗
(𝑡) + 𝜀

2 (28)

holds for 𝑡 large enough, which implies 𝑥(𝑡) → 𝑥
∗
(𝑡) as 𝑡 →

+∞. According to Lemma 2, 𝑐
0
(𝑡) → 𝑐

∗

0
(𝑡), 𝑐
𝑒
(𝑡) → 𝑐

∗

𝑒
(𝑡) as

𝑡 → +∞. This completes the proof.

4. Permanence

Definition 8. System (2) is said to be permanent if there are
positive constants 𝑚, 𝑀, and a finite time 𝑇

0
such that for all

solutions (𝑥(𝑡), 𝑦
1
(𝑡), 𝑦
2
(𝑡), 𝑐
0
(𝑡), 𝑐
𝑒
(𝑡)) with initial conditions

(2), 𝑚 ≤ 𝑥(𝑡) ≤ 𝑀, 𝑚 ≤ 𝑦
𝑖
(𝑡) ≤ 𝑀, 𝑚 ≤ 𝑐

0
(𝑡) ≤ 𝑀, 𝑚 ≤

𝑐
𝑒
(𝑡) ≤ 𝑀 holds for all 𝑡 ≥ 𝑇

0
, 𝑖 = 1, 2.

Denote

𝑅
2
=

𝜆𝑞𝐾𝑒
−𝑑𝜏

(𝛾 + 𝑓
2
𝐵) (𝛼𝐾 + 𝑔

2
(𝛿, 𝑇))

, (29)

where

𝐵 =

𝑘𝑏 (𝑒
−(𝑔+𝑚)𝑇

− 𝑒
−ℎ𝑇

)

(ℎ − 𝑔 − 𝑚) (1 − 𝑒
−(𝑔+𝑚)𝑇

) (1 − 𝑒
−ℎ𝑇

)

+

𝑘𝑏





ℎ − 𝑔 − 𝑚





(1 − 𝑒

−ℎ𝑇
)

,

𝑔
2
(𝛿, 𝑇) =

1 − 𝑒
−𝛽𝑇

1 − 𝛿 − 𝑒
−𝛽𝑇

.

(30)

Theorem 9. If 𝑅
2

> 1, there exists a positive constant 𝑚
∗

such that 𝑦
2
(𝑡) ≥ 𝑚

∗ for any solution (𝑥(𝑡), 𝑦
2
(𝑡), 𝑐
0
(𝑡), 𝑐
𝑒
(𝑡))

of system (2).

Proof. Since 𝑅
2
> 1, we can choose positive constants𝑚∗

1
, 𝜖
1
,

and 𝜖
2
such that

𝜆𝑞𝑒
−𝑑𝜏 𝜎

1 + 𝛼𝜎

> 𝛾 + 𝑓
2
(𝐵 + 𝜖

2
) (31)

and 𝛿 < 1 − 𝑒
−(𝛽−𝑞𝑚

∗

1
)𝑇 hold, where

𝜎 =

𝐾 (𝛽 − 𝑞𝑚
∗

2
) (1 − 𝛿 − 𝑒

−(𝛽−𝑞𝑚
∗

1
)𝑇
)

𝛽 (1 − 𝑒
−(𝛽−𝑞𝑚

∗

2
)𝑇
)

− 𝜖
1
> 0.

(32)

The second equation of system (2) can be written as

𝑑𝑦
2
(𝑡)

𝑑𝑡

= (𝜆𝑞𝑒
−𝑑𝜏 𝑥 (𝑡)

1 + 𝛼𝑥 (𝑡)

− 𝛾 − 𝑓
2
𝑐
0
(𝑡)) 𝑦

2
(𝑡)

− 𝜆𝑞𝑒
−𝑑𝜏 𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏

𝑥 (𝜃)

1 + 𝛼𝑥 (𝜃)

𝑦
2
(𝜃) 𝑑𝜃.

(33)

Define

𝑉 (𝑡) = 𝑦
2
(𝑡) + 𝜆𝑞𝑒

−𝑑𝜏 𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏

𝑥 (𝜃)

1 + 𝛼𝑥 (𝜃)

𝑦
2
(𝜃) 𝑑𝜃. (34)

Calculating the derivative of 𝑉(𝑡) along the solution of (2),
we have

𝑑𝑉 (𝑡)

𝑑𝑡

= (𝜆𝑞𝑒
−𝑑𝜏 𝑥 (𝑡)

1 + 𝛼𝑥 (𝑡)

− 𝛾 − 𝑓
2
𝑐
0
(𝑡)) 𝑦

2
(𝑡) . (35)

We claim that the inequality 𝑦
2
(𝑡) < 𝑚

∗

1
cannot hold for all

𝑡 ≥ 𝑡
0
. Otherwise, there is a positive constant 𝑡

0
such that

𝑦
2
(𝑡) < 𝑚

∗

1
for all 𝑡 ≥ 𝑡

0
. From the first equation of system

(2), we have

𝑑𝑥 (𝑡)

𝑑𝑡

> 𝛽𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) − 𝑞𝑥 (𝑡)𝑚
∗

2
,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+
,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(36)

Consider the following comparison system:

𝑑𝑧 (𝑡)

𝑑𝑡

= 𝛽𝑧 (𝑡) (1 −

𝑧 (𝑡)

𝐾

) − 𝑞𝑧 (𝑡)𝑚
∗

2
,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+
,

Δ𝑧 (𝑡) = −𝛿𝑧 (𝑡) , 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(37)

Then

𝑧
∗
(𝑡) =

(𝐾 (𝛽 − 𝑞𝑚
∗

2
) /𝛽) (1 − 𝛿 − 𝑒

−(𝛽−𝑞𝑚
∗

2
)𝑇
)

1 − 𝛿 − 𝑒
−(𝛽−𝑞𝑚

∗

2
)𝑇

+ 𝛿𝑒
−(𝛽−𝑞𝑚

∗

2
)(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇]

(38)

is a unique globally asymptotically stable positive 𝑇-periodic
solution of system (37). By using comparison theorem of
impulsive differential equation, for 𝜖

1
> 0, there exists a

𝑇
1
> 𝑡
0
such that for 𝑡 > 𝑇

1
,

𝑥 (𝑡) > 𝑧
∗
(𝑡) − 𝜖

1

≥

𝐾 (𝛽 − 𝑞𝑚
∗

2
) (1 − 𝛿 − 𝑒

−(𝛽−𝑞𝑚
∗

2
)𝑇
)

𝛽 (1 − 𝑒
−(𝛽−𝑞𝑚

∗

2
)𝑇
)

− 𝜖
1

= 𝜎

(39)

holds.
By Lemma 2, for 𝜖

2
> 0, there exists a 𝑇

2
> 0 such that for

𝑡 > 𝑇
2
,

𝑐
∗

0
(𝑡) − 𝜀

2
< 𝑐
0
(𝑡) < 𝑐

∗

0
(𝑡) + 𝜀

2
< 𝐵 + 𝜀

2
. (40)
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Let 𝑇
0
= max{𝑇

1
, 𝑇
2
}, and from (39) and (40), we have

𝑑𝑉 (𝑡)

𝑑𝑡

> (𝜆𝑞𝑒
−𝑑𝜏 𝜎

1 + 𝛼𝜎

− 𝛾 − 𝑓
2
(𝐵 + 𝜖

2
)) 𝑦
2
(𝑡) ,

𝑡 > 𝑇
0
.

(41)

Let

𝑦
𝑙

2
= min
𝑡∈[𝑇
0
,𝑇
0
+𝜏]

{𝑦
2
(𝑡)} . (42)

We will show that 𝑦
2
(𝑡) ≥ 𝑦

𝑙

2
for all 𝑡 ≥ 𝑇

0
. Otherwise, there

exists a nonnegative constant 𝑇
3
such that 𝑦

2
(𝑡) ≥ 𝑦

𝑙

2
for 𝑡 ∈

[𝑇
0
, 𝑇
0
+𝑇
3
+𝜏],𝑦

2
(𝑇
0
+𝑇
3
+𝜏) = 𝑦

𝑙

2
and𝑑𝑦

2
(𝑇
0
+𝑇
3
+𝜏)/𝑑𝑡 < 0.

Thus from the second equation of (2), (31), and (41), we easily
see that

𝑑𝑦
2
(𝑇
0
+ 𝑇
3
+ 𝜏)

𝑑𝑡

≥ 𝑦
𝑙

2
[𝜆𝑞𝑒
−𝑑𝜏 𝜎

1 + 𝛼𝜎

− 𝛾 − 𝑓
2
(𝐵 + 𝜖

2
)]

> 0,

(43)

which is a contradiction. Hence we get that 𝑦𝑙
2

≥ 𝑚
∗

1
for all

𝑡 > 𝑇
0
. Then we have

𝑑𝑉 (𝑡)

𝑑𝑡

> 𝑦
𝑙

2
(𝜆𝑞𝑒
−𝑑𝜏 𝜎

1 + 𝛼𝜎

− 𝛾 − 𝑓
2
(𝐵 + 𝜖

2
))

> 0, 𝑡 > 𝑇
0
,

(44)

which implies 𝑉(𝑡) → +∞ as 𝑡 → +∞. This is a
contradiction to 𝑉(𝑡) ≤ 𝐿 + 𝐾𝐿𝜆𝑞𝑒

−𝑑𝜏
𝜏. Therefore, for any

positive constant 𝑡
0
, the inequality 𝑦

2
(𝑡) < 𝑚

∗

1
cannot hold

for all 𝑡 ≥ 𝑡
0
. If 𝑦
2
(𝑡) ≥ 𝑚

∗

1
holds true for all 𝑡 large enough,

then our aim is obtained; otherwise, 𝑦
2
(𝑡) is oscillatory about

𝑚
∗

1
. Let

𝑚
∗
= min{

𝑚
∗

1

2

,𝑚
∗

1
𝑒
−(𝛾+𝑓

2
𝐿)𝜏

} . (45)

In the following, we will show that 𝑦
2
(𝑡) ≥ 𝑚

∗. There exist
two positive constants 𝑡∗ and 𝜃

∗ such that

𝑦
2
(𝑡
∗
) = 𝑦
2
(𝑡
∗
+ 𝜃
∗
) = 𝑚

∗

1
,

𝑦
2
(𝑡) < 𝑚

∗

1
, 𝑡
∗
< 𝑡 < 𝑡

∗
+ 𝜃
∗
.

(46)

When 𝑡
∗ is large enough, the inequality 𝑥(𝑡) > 𝜎 holds

true for 𝑡
∗

< 𝑡 < 𝑡
∗

+ 𝜃
∗. Since 𝑦

2
(𝑡) is continuous and

bounded and not affected by impulses, we conclude that 𝑦
2
(𝑡)

is uniformly continuous. Hence there exists a constant 𝑇
4

(0 < 𝑇
4
< 𝜏, and 𝑇

4
is independent of the choice of 𝑡∗) such

that 𝑦
2
(𝑡) > 𝑚

1
∗ /2 for all 𝑡∗ ≤ 𝑡 ≤ 𝑡

∗
+ 𝑇
4
.

If 𝜃∗ ≤ 𝑇
4
, our aim is obtained.

If 𝑇
4

< 𝜃
∗

≤ 𝜏, from the second equation of (2), we
have that

𝑑𝑦
2
(𝑡)

𝑑𝑡

≥ − (𝛾 + 𝑓
2
𝐿) 𝑦
2
(𝑡) ,

𝑡
∗
< 𝑡 ≤ 𝑡

∗
+ 𝜃
∗
.

(47)

Thenwe have𝑦
2
(𝑡) ≥ 𝑚

∗

1
𝑒
−(𝛾+𝑓

2
𝐿)𝜏 for 𝑡∗ < 𝑡 ≤ 𝑡

∗
+𝜃
∗
≤ 𝑡
∗
+𝜏.

It is clear that 𝑦
2
(𝑡) ≥ 𝑚

∗ for 𝑡∗ < 𝑡 ≤ 𝑡
∗
+ 𝜃
∗.

If 𝜃∗ > 𝜏, by the second equation of (2), then we have that
𝑦
2
(𝑡) ≥ 𝑚

∗ for 𝑡
∗

< 𝑡 ≤ 𝑡
∗
+ 𝜏. The same arguments can be

continued, and we can obtain 𝑦
2
(𝑡) ≥ 𝑚

∗ for 𝑡∗ +𝜏 < 𝑡 ≤ 𝑡
∗
+

𝜃
∗. Since the interval [𝑡∗, 𝑡∗ +𝜃

∗
] is arbitrarily chosen, we get

that 𝑦
2
(𝑡) ≥ 𝑚

∗ for t large enough. In view of our arguments
above, the choice of𝑚∗ is independent of the positive solution
of (2). This completes the proof.

Theorem 10. If 𝑅
2
> 1, the system (2) is permanent.

Proof. Suppose that (𝑥(𝑡), 𝑦
1
(𝑡), 𝑦
2
(𝑡), 𝑐
0
(𝑡), 𝑐
𝑒
(𝑡)) is any posi-

tive solution of system (2) with initial conditions (2). By (39),
we have 𝑥(𝑡) ≥ 𝜎 for 𝑡 large enough. By Theorem 9, we have
𝑦
2
(𝑡) ≥ 𝑚

∗ for 𝑡 large enough. From the second equation of
system (2), we obtain

𝑑𝑦
1
(𝑡)

𝑑𝑡

≥ 𝜆

𝑞𝜎𝑚
∗

1 + 𝛼𝜎

− 𝜆𝑒
−𝑑𝜏 𝑞𝜎𝑚

∗

1 + 𝛼𝜎

− 𝑑𝑦
1
(𝑡) − 𝑓

1
𝑦
1
(𝑡)

= 𝜆 (1 − 𝑒
−𝑑𝜏

)

𝑞𝜎𝑚
∗

1 + 𝛼𝜎

− (𝑑 + 𝑓
1
) 𝑦
1
(𝑡)

≐ 𝐻 − (𝑑 + 𝑓
1
) 𝑦
1
(𝑡) .

(48)

So,

𝑦
1
(𝑡) ≥

𝐻

𝑑 + 𝑓
1

+ (𝑦 (0) −

𝐻

𝑑 + 𝑓
1

) 𝑒
−(𝑑+𝑓

1
)𝑡

→

𝐻

𝑑 + 𝑓
1

, as 𝑡 → ∞.

(49)

Thus 𝑦
1
(𝑡) ≥ 𝐻/(𝑑 + 𝑓

1
) for 𝑡 large enough. By Lemma 2, we

know for a sufficiently small positive 𝜖
3
, 𝑐
𝑒
(𝑡) > 𝑐

∗

𝑒
(𝑡) − 𝜖

3
≥

(𝑏𝑒
−ℎ𝑇

)/(1 − 𝑒
−ℎ𝑇

) − 𝜖
3

> 0. Then from (15), Lemma 3, and
Definition 8, we have that system (2) is permanent.The proof
is completed.

5. Discussion

In this paper, we discuss a pest controlmodelwith stage struc-
ture for natural enemy in a polluted environment by intro-
ducing a constant periodic pollutant input and killing pest at
different fixed moments. FromTheorems 7, 9, and 10, we can
observe that the extinction andpermanence of the population
are very much dependent on 𝑏, 𝑇, and 𝛿.

To verify the theoretical results obtained in this paper, in
the following we will give some numerical simulations and
take 𝛽 = 0.9; 𝐾 = 0.8; 𝑞 = 0.8; 𝑑 = 0.4; 𝜏 = 0.5; 𝜆 = 0.8; 𝛾 =

0.3; 𝑏 = 0.1; 𝑘 = 0.5; 𝑓
2

= 0.2; 𝑓
1

= 0.1; 𝛿 = 0.1; 𝛼 =

0.2; ℎ = 2; 𝑔 = 0.2; 𝑚 = 0.4; 𝑇 = 1 (see Figure 1), and here
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Figure 1: Time series of system (2) with parameters 𝛽 = 0.9, 𝐾 =

0.8, 𝑞 = 0.8, 𝑑 = 0.4, 𝜏 = 0.5, 𝜆 = 0.8, 𝛾 = 0.3, 𝑏 = 0.1, 𝑘 =

0.5, 𝑓
2
= 0.2, 𝑓

1
= 0.1, 𝛿 = 0.1, 𝛼 = 0.2, ℎ = 2, 𝑔 = 0.2, 𝑚 = 0.4,

and 𝑇 = 1.
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Figure 2: Time series of system (2) with parameters 𝛽 = 0.9, 𝐾 =

0.8, 𝑞 = 0.8, 𝑑 = 0.4, 𝜏 = 0.5, 𝜆 = 0.8, 𝛾 = 0.3, 𝑏 = 0.1, 𝑘 =

0.5, 𝑓
2
= 0.2, 𝑓

1
= 0.1, 𝛿 = 0.1, 𝛼 = 0.2, ℎ = 2, 𝑔 = 0.2, 𝑚 = 0.4,

and 𝑇 = 0.3.

we can compute𝑅
2
= 1.005252 > 1, and fromTheorem 10 we

know the system (2) is permanent. If we decrease the period
of pulsing 𝑇 = 0.3 (𝑅

1
= 0.755095 < 1) or increase the

pollution input amount to 𝑏 = 0.8 (𝑅
1

= 0.996079 < 1),
and other parameters are the same with those in Figure 1,
the natural enemy will be extinct (see Figures 2 and 3). If we
increase the harvesting rate of pests to 𝛿 = 0.5, and other
parameters are the same with those in Figure 1, then 𝑅

1
=

0.413158 < 1, and the natural enemies will also be extinct
(see Figure 4). Our results indicate that if impulsive period 𝑇

is short or 𝑏 or 𝛿 is too large, the natural enemywill go extinct,
but we wish to protect natural enemy from extinction, so we
should harvest the pests reasonably and control the period
and quantity of emission of pollution into the environment
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Figure 3: Time series of system (2) with parameters 𝛽 = 0.9, 𝐾 =

0.8, 𝑞 = 0.8, 𝑑 = 0.4, 𝜏 = 0.5, 𝜆 = 0.8, 𝛾 = 0.3, 𝑏 = 0.8, 𝑘 =

0.5, 𝑓
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= 0.2, 𝑓
1

= 0.1, 𝛿 = 0.1, 𝛼 = 0.2, ℎ = 2, 𝑔 = 0.2, 𝑚 =

0.4, and 𝑇 = 1.
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Figure 4: Time series of system (2) with parameters 𝛽 = 0.9, 𝐾 =

0.8, 𝑞 = 0.8, 𝑑 = 0.4, 𝜏 = 0.5, 𝜆 = 0.8, 𝛾 = 0.3, 𝑏 = 0.1, 𝑘 =

0.5, 𝑓
2

= 0.2, 𝑓
1

= 0.1, 𝛿 = 0.5, 𝛼 = 0.2, ℎ = 2, 𝑔 = 0.2, 𝑚 =

0.4, and 𝑇 = 1.

efficiently.This offers us some reasonable suggestions for pest
management.
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