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We employ the complex method to obtain all meromorphic exact solutions of complex Drinfeld-Sokolov equations (DS system
of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all
constant and simply periodic traveling wave exact solutions of the equations (DS) are solitary wave solutions, the complex method
is simpler than other methods and there exist simply periodic solutions V

𝑠,3
(𝑧) which are not only new but also not degenerated

successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions
in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main
results.

1. Introduction

In this work, we aim to further study the Drinfeld-Sokolov
system (Drinfeld-Sokolov equations (DS system of equa-
tions)) [1–3]

𝑢
𝑡
+ (V2)

𝑥

= 0,

V
𝑡
− 𝑎V
𝑥𝑥𝑥

+ 3𝑑V𝑢
𝑥
+ 3𝑘𝑢V

𝑥
= 0,

(1)

where 𝑎, 𝑑, and 𝑘 are constants. This system was introduced
by Drinfeld and Sokolov as an example of a system of
nonlinear equations possessing Lax pairs of a special form [1].

Wazwaz [4] used the sine-cosine method and the tanh
method to stress the power of these methods to nonlinear
equations. Wazwaz [4] also investigated the traveling wave
solutions with compact and noncompact structures for the
Drinfeld-Sokolov equations (DS system of equations).

To look for the traveling wave solution of (1), we use the
transformation 𝑢(𝑥, 𝑡) = 𝑢(𝑧), 𝑧 = 𝑥 − 𝑐𝑡 (where 𝑐 is a

complex constant number). Then in (1), the system is carried
to a system of ordinary differential equation:

−𝑐𝑢


+ (V2)


= 0, (2)

𝑐V + 𝑎V − 3𝑑V𝑢 − 3𝑘𝑢V2 = 0. (3)

By integrating the first equation in the system and neglecting
the constant of integration we find

𝑐𝑢 = V2. (4)

By inserting (4) into (3) and integration we find

𝑐
2V − (2𝑑 + 𝑘) V3 + 𝑎𝑐V = 0. (5)

In 2007, El-Wakil and Abdou [5] got two solutions of (5)
via tanh-function method for finding exact solutions of (5).

In this paper, we employ the complex method which was
introduced by Yuan et al. [6–8] to obtain the general solutions
and some new solutions of (5). In order to state our results,
we need some concepts and notations.

A meromorphic function 𝑤(𝑧) means that 𝑤(𝑧) is holo-
morphic in the complex planeC except for poles. ℘(𝑧; 𝑔

2
, 𝑔
3
)
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is the Weierstrass elliptic function with invariants 𝑔
2
and 𝑔

3
.

We say that a meromorphic function 𝑓 belongs to the class
𝑊 if 𝑓 is an elliptic function, or a rational function of 𝑒𝛼𝑧,
𝛼 ∈ C, or a rational function of 𝑧.

Our main result is the following theorem.

Theorem 1. All meromorphic solutions 𝑢 of (5) belong to
the class 𝑊. Furthermore, (5) has the following two forms of
solutions:

(i) the elliptic general solutions

V
𝑑
(𝑧)

= ±√
𝑎𝑐

4𝑑 + 2𝑘

× ((−℘ + 𝐴) (4℘𝐴
2

+ 4℘
2

𝐴 + 2℘


𝐵 − ℘𝑔
2
− 𝐴𝑔
2
))

× (((12𝐴
2

− 𝑔
2
) ℘ + 4𝐴

3

− 3𝐴𝑔
2
) ℘


+4𝐵℘
3

+ 12𝐴𝐵℘
2

− 3𝐵𝑔
2
℘ − 𝐴𝐵𝑔

2
)
−1

,

(6)

where 𝑔
3

= 0, 𝐵2 = 4𝐴3 − 𝑔
2
𝐴, 𝑔
2
and 𝐴 are arbitrary

constants;

(ii) the simply periodic solutions, where 𝜉 = 𝑒
𝛼𝑧 are

obtained, for 𝑧
0
∈ C, by

V
𝑠,1

(𝜉) = ±𝑐
1

√2𝑑 + 𝑘
(coth 𝛼

2
(𝑧 − 𝑧

0
)) , (7)

where 𝑎 = 2𝑐/𝛼
2;

V
𝑠,2

(𝜉) = ±√2𝑐√
−1

2𝑑 + 𝑘

1

sinh𝛼 (𝑧 − 𝑧
0
)
, (8)

where 𝑎 = −𝑐/𝛼2;

V
𝑠,3

(𝜉) = ±𝑐√
1

2𝑑 + 𝑘
(

1

sinh𝛼 (𝑧 − 𝑧
0
)
+ 1) , (9)

where 𝑎 = 𝑐/2𝛼2.

Remark 2. Compared with the results of Wazwaz [4], we
find that V

𝑠,3
(𝑧) is the new solution of this Drinfeld-Sokolov

equations (DS system of equations).

2. Preliminary Lemmas and
the Complex Method

In order to give complex method and the proof ofTheorem 1,
we need some notations and results.

Set 𝑚 ∈ N := {1, 2, 3, . . .}, 𝑟
𝑗

∈ N
0

= N ∪ {0}, 𝑟 =

(𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑚
), and 𝑗 = 0, 1, . . . , 𝑚. We define a differential

monomial denoted by

𝑀
𝑟
[𝑤] (𝑧) := [𝑤 (𝑧)]

𝑟0[𝑤


(𝑧)]
𝑟1

[𝑤


(𝑧)]
𝑟2

⋅ ⋅ ⋅ [𝑤
(𝑚)

(𝑧)]
𝑟𝑚

.

(10)

𝑝(𝑟) := 𝑟
0
+ 2𝑟
1
+ ⋅ ⋅ ⋅ + (𝑚 + 1)𝑟

𝑚
and deg(𝑀) are called the

weight and degree of𝑀
𝑟
[𝑤], respectively.

A differential polynomial 𝑃(𝑤,𝑤, . . . , 𝑤(𝑚)) is defined as
follows:

𝑃 (𝑤,𝑤


, . . . , 𝑤
(𝑚)

) := ∑
𝑟∈𝐼

𝑎
𝑟
𝑀
𝑟
[𝑤] , (11)

where 𝑎
𝑟
are complex constants and 𝐼 is a finite index set.

The total weight and degree of 𝑃(𝑤,𝑤, . . . , 𝑤(𝑚)) are defined
by 𝑊(𝑃) := max

𝑟∈𝐼
{𝑝(𝑟)} and deg(𝑃) := max

𝑟∈𝐼
{deg(𝑀

𝑟
)},

respectively.
We will consider the following complex ordinary differ-

ential equations:

𝑃 (𝑤,𝑤


, . . . , 𝑤
(𝑚)

) = 𝑏𝑤
𝑛

+ 𝑐, (12)

where 𝑏 ̸= 0, 𝑐 are complex constants, 𝑛 ∈ N.
Let 𝑝, 𝑞 ∈ N. Suppose that (12) has a meromorphic

solution𝑤with at least one pole; we say that (12) satisfiesweak
⟨𝑝, 𝑞⟩ condition if it substitutes Laurent series

𝑤 (𝑧) =

∞

∑
𝑘=−𝑞

𝑐
𝑘
𝑧
𝑘

, 𝑞 > 0, 𝑐
−𝑞

̸= 0 (13)

into (12). We can determine 𝑝 distinct Laurent singular parts
as follows:

−1

∑
𝑘=−𝑞

𝑐
𝑘
𝑧
𝑘

. (14)

Lemma 3 (see [6–8]). Let 𝑝, 𝑙, 𝑚, 𝑛 ∈ N, deg𝑃(𝑤,𝑤(𝑚)) < 𝑛.
Suppose that an𝑚-order Briot-Bouquet equation

𝑃 (𝑤
(𝑚)

, 𝑤) = 𝑏𝑤
𝑛

+ 𝑐 (15)

satisfies weak ⟨𝑝, 𝑞⟩ condition; then all meromorphic solutions
of (15) belong to the class 𝑊. If for some values of parameters
such solution 𝑤 exists, then other meromorphic solutions form
a one-parametric family 𝑤(𝑧 − 𝑧

0
), 𝑧
0
∈ C. Furthermore, each

elliptic solution with pole at 𝑧 = 0 can be written as

𝑤 (𝑧)

=

𝑙−1

∑
𝑖=1

𝑞𝑖

∑
𝑗=2

(−1)
𝑗

𝑐
−𝑖𝑗

(𝑗 − 1)!

𝑑𝑗−2

𝑑𝑧𝑗−2
(

1

4
[
℘ (𝑧) + 𝐵

𝑖

℘ (𝑧) − 𝐴
𝑖

]

2

− ℘ (𝑧))

+

𝑙−1

∑
𝑖=1

𝑐
−𝑖1

2

℘ (𝑧) + 𝐵
𝑖

℘ (𝑧) − 𝐴
𝑖

+

𝑞𝑙

∑
𝑗=2

(−1)
𝑗

𝑐
−𝑙𝑗

(𝑗 − 1)!

𝑑𝑗−2

𝑑𝑧𝑗−2
℘ (𝑧) + 𝑐

0
,

(16)

where 𝑐
−𝑖𝑗

are given by (13), 𝐵2
𝑖

= 4𝐴3
𝑖
− 𝑔
2
𝐴
𝑖
− 𝑔
3
, and

∑
𝑙

𝑖=1
𝑐
−𝑖1

= 0.

Each rational function solution 𝑤 := 𝑅(𝑧) is of the form

𝑅 (𝑧) =

𝑙

∑
𝑖=1

𝑞

∑
𝑗=1

𝑐
𝑖𝑗

(𝑧 − 𝑧
𝑖
)
𝑗
+ 𝑐
0
, (17)

with 𝑙(≤ 𝑝) distinct poles of multiplicity 𝑞.
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Each simply periodic solution is a rational function 𝑅(𝜉)

of 𝜉 = 𝑒𝛼𝑧(𝛼 ∈ C). 𝑅(𝜉) has 𝑙(≤ 𝑝) distinct poles of
multiplicity 𝑞 and is of the form

𝑅 (𝜉) =

𝑙

∑
𝑖=1

𝑞

∑
𝑗=1

𝑐
𝑖𝑗

(𝜉 − 𝜉
𝑖
)
𝑗
+ 𝑐
0
. (18)

In order to give the representations of elliptic solutions,
we need some notations and results concerning elliptic
function [9].

Let 𝜔
1
, 𝜔
2
be two given complex numbers such that

Im(𝜔
1
/𝜔
2
) > 0, and let 𝐿 = 𝐿[2𝜔

1
, 2𝜔
2
] be a discrete subset

𝐿[2𝜔
1
, 2𝜔
2
] = {𝜔 | 𝜔 = 2𝑛𝜔

1
+ 2𝑚𝜔

2
, 𝑛, 𝑚 ∈ Z}, which

is isomorphic to Z × Z. The discriminant Δ = Δ(𝑐
1
, 𝑐
2
) :=

𝑐
3

1
− 27𝑐
2

2
and

𝑠
𝑛
= 𝑠
𝑛
(𝐿) := ∑

𝜔∈𝐿\{0}

1

𝜔𝑛
. (19)

Weierstrass elliptic function ℘(𝑧) := ℘(𝑧, 𝑔
2
, 𝑔
3
) is a

meromorphic function with double periods 2𝜔
1
, 2𝜔
2
and

satisfying the equation

(℘


(𝑧))
2

= 4℘(𝑧)
3

− 𝑔
2
℘ (𝑧) − 𝑔

3
, (20)

where 𝑔
2
= 60𝑠
4
, 𝑔
3
= 140𝑠

6
, and Δ(𝑔

2
, 𝑔
3
) ̸= 0.

If we changed (18) to the form

(℘


(𝑧))
2

= 4 (℘ (𝑧) − 𝑒
1
) (℘ (𝑧) − 𝑒

2
) (℘ (𝑧) − 𝑒

2
) , (21)

we will have 𝑒
1
= ℘(𝜔

1
), 𝑒
2
= ℘(𝜔

2
), and 𝑒

3
= ℘(𝜔

1
+ 𝜔
2
).

Inversely, given two complex numbers 𝑔
2
and 𝑔

3
such

that Δ(𝑔
2
, 𝑔
3
) ̸= 0, then there exists double periods 2𝜔

1
, 2𝜔
2

Weierstrass elliptic function ℘(𝑧) such that the previous
results hold.

Lemma 4 (see [9, 10]). Weierstrass elliptic functions ℘(𝑧) :=

℘(𝑧, 𝑔
2
, 𝑔
3
) have two successive degeneracies and addition

formula:

(i) degeneracy to simply periodic functions (i.e., rational
functions of one exponential 𝑒𝑘𝑧) according to

℘ (𝑧, 3𝑑
2

, −𝑑
3

) = 2𝑑 −
3𝑑

2
coth2√3𝑑

2
𝑧, (22)

if one root 𝑒
𝑗
is double (Δ(𝑔

2
, 𝑔
3
) = 0);

(ii) degeneracy to rational functions of 𝑧 according to

℘ (𝑧, 0, 0) =
1

𝑧2
(23)

if one root 𝑒
𝑗
is triple (𝑔

2
= 𝑔
3
= 0);

(iii) addition formula

℘ (𝑧 − 𝑧
0
) = −℘ (𝑧) − ℘ (𝑧

0
) +

1

4
[
℘


(𝑧) + ℘ (𝑧
0
)

℘ (𝑧) − ℘ (𝑧
0
)
]

2

. (24)

By the previous lemma and results, we can give a new
method next say complex method, to find exact solutions of
some PDEs.

Step 1. Substituting the transform 𝑇 : 𝑢(𝑥, 𝑡) →

𝑤(𝑧), (𝑥, 𝑡) → 𝑧 into a given PDE gives a nonlinear ordinary
differential equations (12) or (15).

Step 2. Substitute (13) into (12) or (15) to determine that weak
⟨𝑝, 𝑞⟩ condition holds.

Step 3. By determinant relation (16)–(18), we find the elliptic
rational and simply periodic solutions 𝑢(𝑧) of (12) or (15) with
pole at 𝑧 = 0, respectively.

Step 4. By Lemmas 3 and 4, we obtain the all meromorphic
solutions 𝑤(𝑧 − 𝑧

0
).

Step 5. By substituting the inverse transform 𝑇−1 into these
meromorphic solutions 𝑤(𝑧 − 𝑧

0
), we get all the exact

solutions 𝑢(𝑥, 𝑡) of the original given PDE.

3. Proof of Theorem 1

By substituting (13) into (5), we have 𝑞 = 1. 𝑝 = 2, 𝑐
−1

=

±√2𝑎𝑐/(2𝑑 + 𝑘), 𝑐
0
= 0, 𝑐
1
= √2𝑐2/6√𝑎𝑐(2𝑑 + 𝑘), and 𝑐

2
= 0.

Hence, (5) satisfies weak ⟨2, 1⟩ condition and is a 2-order
Briot-Bouquet differential equation. Obviously, (5) satisfies
the dominant condition. So, by Lemma 3, we know that all
meromorphic solutions of (5) belong to𝑊. Now, we will give
the forms of all meromorphic solutions of (5).

By (16), we infer the indeterminate rational solutions of
(5) with pole at 𝑧 = 0 that

V
𝑟
(𝑧) =

𝑐
11

𝑧
+

𝑐
12

𝑧 − 𝑧
1

+ 𝑐
10
. (25)

By substituting V
𝑟
(𝑧) into (5), we get two distinct forms as

follows:
V
𝑟,1

(𝑧) = 0,

V
𝑟,2

(𝑧) = ±𝑐√
1

2𝑑 + 𝑘
.

(26)

We omit the constant solutions, and we obtain that there does
not exist rational function solution.

In order to have simply periodic solutions, set 𝜉 =

exp(𝛼𝑧) and put V = V(𝜉) into (5), then

𝑎𝑐𝛼
2

(𝜉
2V + 𝜉V) − (2𝑑 + 𝑘) V3 + 𝑐

2V = 0. (27)

By substituting

V
2
(𝜉) =

𝑐
2

𝜉 − 1
+

𝑐
1

𝜉 − 𝜉
1

+ 𝑐
0 (28)

into (5), we obtain the indeterminate simply periodic solu-
tions of (27) with pole at 𝜉 = 1 that

V
𝑠1,1

(𝜉) = ±𝑐√
1

2𝑑 + 𝑘
(

2

𝜉 − 1
+ 1) , (29)

where 𝑎 = 2𝑐/𝛼2;
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−1
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1.6

1.8

x
y

(c)

Figure 1: The solution of (DS) corresponding to V
𝑠,1
: take 𝑐 = 1, 𝑧

0
= 0, 𝑑 = 1/2, 𝑘 = 0, 𝛼 = 2, (a) 𝑡 = −1/10, (b) 𝑡 = 0, and (c) 𝑡 = 1/10.

V
𝑠1,2

(𝜉) = ±√2𝑐√
−1

2𝑑 + 𝑘
(

1

𝜉 − 1
+

1

𝜉 + 1
) , (30)

where 𝑎 = −𝑐/𝛼2;

V
𝑠1,3

(𝜉) = ±𝑐√
1

2𝑑 + 𝑘
(

1

𝜉 − 1
+

1

𝜉 + 1
+ 1) , (31)

where 𝑎 = 𝑐/2𝛼
2.

By substituting 𝜉 = 𝑒𝛼𝑧 into the previous six relations, we
get all simply periodic solutions of (5) with pole at 𝑧 = 0:

V
𝑠0,1

(𝑧) = ±𝑐√
1

2𝑑 + 𝑘
(

2

𝑒𝛼𝑧 − 1
+ 1) , (32)

where 𝑎 = 2𝑐/𝛼2;

V
𝑠0,2

(𝑧) = ±√2𝑐√
−1

2𝑑 + 𝑘
(

1

𝑒𝛼𝑧 − 1
+

1

𝑒𝛼𝑧 + 1
) , (33)

where 𝑎 = −𝑐/𝛼2;

V
𝑠0,3

(𝑧) = ±𝑐√
1

2𝑑 + 𝑘
(

1

𝑒𝛼𝑧 − 1
+

1

𝑒𝛼𝑧 + 1
+ 1) , (34)

where 𝑎 = 𝑐/2𝛼2.
So all simply periodic solutions of (5) are obtained, for

𝑧
0
∈ C, by

V
𝑠,1

(𝑧) = ±𝑐√
1

2𝑑 + 𝑘
(

2

𝑒𝛼(𝑧−𝑧0) − 1
+ 1)

= ±𝑐
1

√2𝑑 + 𝑘
(coth 𝛼

2
(𝑧 − 𝑧

0
)) ,

(35)

where 𝑎 = 2𝑐/𝛼
2;

V
𝑠,2

(𝑧) = ±√2𝑐√
−1

2𝑑 + 𝑘
(

1

𝑒𝛼(𝑧−𝑧0) − 1
+

1

𝑒𝛼(𝑧−𝑧0) + 1
)

= ±√2𝑐√
−1

2𝑑 + 𝑘

1

sinh𝛼 (𝑧 − 𝑧
0
)
,

(36)

where 𝑎 = −𝑐/𝛼2;

V
𝑠,3

(𝑧) = ±𝑐√
1

2𝑑 + 𝑘
(

1

𝑒𝛼(𝑧−𝑧0) − 1
+

1

𝑒𝛼(𝑧−𝑧0) + 1
+ 1)

= ±𝑐√
1

2𝑑 + 𝑘
(

1

sinh𝛼 (𝑧 − 𝑧
0
)
+ 1) ,

(37)

where 𝑎 = 𝑐/2𝛼2.

From (15) in Lemma 3, we have indeterminant relations
of elliptic solutions of (5) with pole at 𝑧 = 0:

V
𝑑0

(𝑧) = ±√
𝑎𝑐

4𝑑 + 2𝑘

℘ (𝑧) + 𝐹

℘ (𝑧) − 𝐸
+ 𝑐
30
, (38)

where 𝐹2 = 4𝐸3 − 𝑔
2
𝐸 − 𝑔

3
. By applying the conclusion (ii)

of Lemma 4 to 𝑢
𝑑0
(𝑧) and noting that the results of rational

solutions obtained previously, we deduce that 𝑐
30

= 0, 𝐸 =

𝐹 = 0, and 𝑔
3
= 0. Then, we get that

V
𝑑0

(𝑧) = ±√
𝑎𝑐

4𝑑 + 2𝑘

℘ (𝑧)

℘ (𝑧)
. (39)

Therefore, all elliptic function solutions of (5) are as
follows

V
𝑑0

(𝑧) = ±√
𝑎𝑐

4𝑑 + 2𝑘

℘ (𝑧 − 𝑧
0
)

℘ (𝑧 − 𝑧
0
)
. (40)

Here 𝑧
0
∈ C, 𝑔

3
= 0. Making use of the addition of Lemma 3

we rewrite it to the form

V
𝑑
(𝑧)

= ±√
𝑎𝑐

4𝑑 + 2𝑘

× ((−℘ + 𝐴) (4℘𝐴
2

+ 4℘
2

𝐴 + 2℘


𝐵 − ℘𝑔
2
− 𝐴𝑔
2
))

× (((12𝐴
2

− 𝑔
2
) ℘ + 4𝐴

3

− 3𝐴𝑔
2
) ℘


+4𝐵℘
3

+ 12𝐴𝐵℘
2

− 3𝐵𝑔
2
℘ − 𝐴𝐵𝑔

2
)
−1

.

(41)

Here 𝑔
3

= 0, 𝐵2 = 4𝐴3 − 𝑔
2
𝐴, 𝑔
2
, and 𝐴 are arbitrary

constants.
This completes the proof of Theorem 1.

4. Computer Graphs for New Solutions

In this section, we give some computer graphs to illustrate
our main results. Here, we take the simple periodic solutions
V
𝑠,1−3

(𝑧) by Figures 1, 2, and 3.
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Figure 2: The solution of (DS) corresponding to V
𝑠,2
: take 𝑐 = 1, 𝑧

0
= 0, 𝑑 = −1/2, 𝑘 = 0, 𝛼 = 1, (a) 𝑡 = −1/3, (b) 𝑡 = 0, and (c) 𝑡 = 1/3.
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Figure 3: The solution of (DS) corresponding to V
𝑠,3
: take 𝑐 = 1, 𝑧

0
= 0, 𝑑 = 1/2, 𝑘 = 0, 𝛼 = 1, (a) 𝑡 = −1/3, (b) 𝑡 = 0, and (c) 𝑡 = 1/3.

5. Conclusions

Complexmethod is a very important tool in finding the exact
solutions of nonlinear evolution equations, and the Drinfeld-
Sokolov equations (DS system of equations) are a classic and
simplest case of the nonlinear reaction-diffusion equation.
In this paper, we employ the complex method to obtain
the general meromorphic solutions of the Drinfeld-Sokolov
equations (DS system of equations), which improves the
corresponding result obtained by El-Wakil and Abdou, [5].
Our results show that simply periodic traveling wave exact
solutions of the equations (DS) are solitary wave solutions,
the complexmethod is simpler than other methods and there
does not exist any rational solutions and there exist simply
periodic solutions V

𝑠,3
(𝑧)which are not only new but also not

degenerated successively by the elliptic function solutions.
We believe that this method should play an important role
in finding exact solutions in the mathematical physics. For
these new traveling wave solutions, we give some computer
simulations to illustrate our main results.
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