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We investigate a periodic predator-prey system subject to impulsive perturbations, in which a disease can be transmitted among the
prey species only, in this paper. With the help of the theory of impulsive differential equations and Lyapunov functional method,
sufficient conditions for the permanence, global attractivity, and partial extinction of system are established, respectively. It is shown
that impulsive perturbations contribute to the above dynamics of the system. Numerical simulations are presented to substantiate
the analytical results.

1. Introduction

As a relatively new branch of study in theoretical biology,
ecoepidemiology can be viewed as the coupling of ecol-
ogy and epidemiology. Ecoepidemiological model is more
appropriate than the ecological model (or epidemiological
model) when species spreads the disease and is predated
by other species. Following Anderson and May [1] who
were the first to propose an ecoepidemiological model, a
number of sophisticated predator-prey models with disease
in prey population only are extensively investigated in the
ecoepidemiological literature (see [2–5]).

Notice that periodic phenomenon often occurs in many
realistic ecoepidemiological models. The effect of a peri-
odically varying environment is important for evolutionary
theory as the selective forces on systems in a fluctuating envi-
ronment differ from those in a stable environment. Nicholson
[6] has suggested that any periodic change of climate tends
to impose its period upon oscillations of internal origin or
to cause such oscillations to have a harmonic relation to
periodic climatic changes. Thus, it is reasonable to assume
that the coefficients in the systems are periodic functions.
On the other hand, in reality, many evolution processes are
characterized by the fact that they experience changes of
state suddenly. These processes are subject to short-term
perturbations whose duration is negligible in comparison

with the duration of the process. Consequently, the abrupt
changes can be well approximated as impulses. A natural
description of the motion of impulsive processes can be
expressed by impulsive differential equations. Some impul-
sive equations have been introduced in ecoepidemiological
models in relation to chemotherapeutic [7] and vaccination
[8, 9] and population disease control [10, 11].

Considering the above facts, in this paper, we will con-
sider a periodic predator-prey model subject to impulsive
perturbations, in which a disease can be transmitted among
the prey species only. Our motive comes from a delayed
nonautonomous predator-prey system with disease in the
prey in [5], and we consider the effect of impulsive pertur-
bations on a corresponding undelayed periodic version in
this paper. Here, we will establish the sufficient conditions for
the permanence and partial extinction of the system by using
the theory of impulsive differential equations and inequality
analytical technique. By Lyapunov functionalmethod,wewill
also establish sufficient conditions for the global attractivity
of the system.

2. Assumptions and Formulation of
Mathematical Model

The periodic predator-prey model with disease in the prey
which is studied in this paper is the system of impulsive
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differential equations below. To formulate the mathematical
model, we need tomake the following assumptions which are
the same as those in [5].

(A1) All newborns are susceptible in the model, in which
only susceptible prey is capable of reproducing with
logistic lawwhile the infected species does not recover
or become immune. The disease only spreads among
the prey species and it is not genetically inherited.

(A2) The mortality terms for susceptible and infected prey
are density dependent, and both contribute to pop-
ulation growth toward the environmental carrying
capacity.

(A3) The predator species hunts on susceptible and
infected prey with possibly different predation rates.
For example, in some situations, the infected individ-
uals may be caught easily, but the predators eat more
fewer infected ones in other situations.

Considering the above basic assumptions, we can now
construct the following dynamic system:

𝑆
󸀠

(𝑡) = 𝑆 (𝑡) [𝑟 (𝑡) − 𝑘
1
(𝑡) (𝑆 (𝑡) + 𝐼 (𝑡))

− 𝑎
1
(𝑡) 𝑃 (𝑡) − 𝛽 (𝑡) 𝐼 (𝑡)] ,

𝐼
󸀠

(𝑡) = 𝐼 (𝑡) [𝛽 (𝑡) 𝑆 (𝑡) − 𝑘
2
(𝑡) (𝑆 (𝑡) + 𝐼 (𝑡)) − 𝑎

2
(𝑡) 𝑃 (𝑡)] ,

𝑃
󸀠

(𝑡) = 𝑃 (𝑡) [−𝑑 (𝑡) − 𝑏 (𝑡) 𝑃 (𝑡) + 𝑐
1
(𝑡) 𝑆 (𝑡) + 𝑐

2
(𝑡) 𝐼 (𝑡)] ,

𝑡 ̸= 𝜏
𝑘
,

𝑆 (𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑆 (𝜏
𝑘
) ,

𝐼 (𝜏
+

𝑘
) = 𝐼 (𝜏

𝑘
) + 𝑝,

𝑃 (𝜏
+

𝑘
) = (1 + 𝛾

𝑘
) 𝑃 (𝜏
𝑘
) ,

𝑡 = 𝜏
𝑘
, 𝑘 ∈ N.

(1)

Here, 𝑆(0) > 0, 𝐼(0) > 0, 𝑃(0) > 0. 𝑟(𝑡) is intrinsic
birth rate function of the susceptible prey species 𝑆(𝑡), 𝑑(𝑡) is
death rate function of the predator species 𝑃(𝑡), 𝑘

1
(𝑡), 𝑘
2
(𝑡),

and 𝑏(𝑡) represent the self-inhibition rate functions of the
susceptible prey species 𝑆(𝑡), the infected prey species 𝐼(𝑡),
and the predator 𝑃(𝑡), respectively. 𝛽(𝑡) is the infection rate.
𝑎
1
(𝑡), 𝑎
2
(𝑡) and 𝑐

1
(𝑡), 𝑐
2
(𝑡) denote the capturing rates and

conversion rates, respectively.The parameters 𝑟(𝑡), 𝑑(𝑡), 𝑘
1
(𝑡),

𝑘
2
(𝑡), 𝑏(𝑡), 𝑎

1
(𝑡), 𝑎
2
(𝑡), 𝑐
1
(𝑡), and 𝑐

2
(𝑡) are positive continuous

𝜔-periodic functions. The fixed impulsive points satisfy 0 =

𝜏
0
< 𝜏
1
< 𝜏
2
< ⋅ ⋅ ⋅ and lim

𝑘→∞
𝜏
𝑘
= +∞ for 𝑘 ∈ N =

{1, 2, . . .}. For two real number sequences {𝛼
𝑘
} and {𝛾

𝑘
}, there

is an integer 𝑞 > 0 such that 𝜏
𝑘+𝑞

= 𝜏
𝑘
+ 𝜔, 𝛼

𝑘+𝑞
= 𝛼
𝑘
> −1,

𝛾
𝑘+𝑞

= 𝛾
𝑘
> −1 for 𝑘 ∈ N. The jump conditions reflect the

possibility of impulsive effects on the prey and predator. For
biological reality, it is natural to assume 𝛼

𝑘
> −1, 𝛾

𝑘
> −1 and

𝑝 > 0. An obvious example of ecological situation giving rise
to system (1) concerns the impulsive harvesting and stocking
of the above species; that is, when 𝛼

𝑘
> 0, 𝛾

𝑘
> 0, 𝑝 > 0,

the impulsive perturbations stand for stocking while 𝛼
𝑘
< 0,

𝛾
𝑘
< 0mean harvesting.
The organization of this paper is as follows. In the next

section, we present some notations and preliminary lemmas.
In Section 4, we establish sufficient conditions for the per-
manence, global attractivity of positive solutions, and partial
extinction for the above system, respectively. Several concrete
examples and numerical simulations are also presented to
substantiate the analytical results in the last section.

3. Notations and Preliminary Lemmas

Before establishing our main results, we summarize several
useful lemmas for the later sections.

Let J ⊂ R = (−∞, +∞). Denote by 𝑃𝐶(J,R) the set
of functions V : J → R which are continuous for 𝑡 ∈ J,
𝑡 ̸= 𝜏
𝑘
, are continuous from the left for 𝑡 ∈ J, and have

discontinuities of the first kind at the points 𝜏
𝑘
∈ J. Denote

by𝑃𝐶1(J,R) the set of functions V : J → Rwith a derivative
𝑑V/𝑑𝑡 ∈ 𝑃𝐶(J,R).

Lemma 1 (see [12]). Let the function V ∈ 𝑃𝐶
1
(J,R) satisfy the

inequalities

V󸀠 (𝑡) ≤ 𝑔 (𝑡) V (𝑡) + ℎ (𝑡) , 𝑡 ̸= 𝜏
𝑘
, 𝑡 ≥ 𝜏

0
,

V (𝜏+
𝑘
) ≤ 𝑑
𝑘
V (𝜏
𝑘
) + 𝛽
𝑘
, 𝑘 ∈ N,

(2)

where 𝑔(𝑡), ℎ(𝑡) ∈ 𝐶(J,R), 𝑑
𝑘
> 0, and 𝛽

𝑘
are constants for

𝑘 ∈ N. Then for 𝑡 ≥ 𝜏
0
,

V (𝑡) ≤ V (𝜏
0
) ∏

𝜏0<𝜏𝑘<𝑡

𝑑
𝑘
exp{∫

𝑡

𝜏0

𝑔 (𝑠) 𝑑𝑠}

+ ∑

𝜏0<𝜏𝑘<𝑡

( ∏

𝜏0<𝜏𝑗<𝑡

𝑑
𝑗
exp{∫

𝑡

𝜏𝑘

𝑔 (𝑠) 𝑑𝑠})𝛽
𝑘

+ ∫

𝑡

𝜏0

∏

𝑠<𝜏𝑘<𝑡

𝑑
𝑘
exp{∫

𝑡

𝑠

𝑔 (𝑟) 𝑑𝑟} ℎ (𝑠) 𝑑𝑠.

(3)

Analogously, one sees that

V (𝑡) ≥ V (𝜏
0
) ∏

𝜏0<𝜏𝑘<𝑡

𝑑
𝑘
exp{∫

𝑡

𝜏0

𝑔 (𝑠) 𝑑𝑠}

+ ∑

𝜏0<𝜏𝑘<𝑡

( ∏

𝜏0<𝜏𝑗<𝑡

𝑑
𝑗
exp{∫

𝑡

𝜏𝑘

𝑔 (𝑠) 𝑑𝑠})𝛽
𝑘

+ ∫

𝑡

𝜏0

∏

𝑠<𝜏𝑘<𝑡

𝑑
𝑘
exp{∫

𝑡

𝑠

𝑔 (𝑟) 𝑑𝑟} ℎ (𝑠) 𝑑𝑠,

(4)

for 𝑡 ≥ 𝜏
0
, when all the inequalities of (1) are reversed.

Lemma 2 (see [13, 14]). Consider the following single-species
impulsive model:

𝑥
󸀠

(𝑡) = 𝑚 (𝑡) 𝑥 (𝑡) , 𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

𝑥 (𝜏
+

𝑘
) = 𝑥 (𝜏

𝑘
) + 𝑝,

(5)
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where 𝑥(0) > 0, the constant 𝑝 > 0, 𝑚(𝑡) is a continuous
𝜔-periodic function satisfying ∫

𝜔

0
𝑚(𝑡)𝑑𝑡 < 0, and there is

an integer 𝑞 > 0 such that 𝜏
𝑘+𝑞

= 𝜏
𝑘
+ 𝜔, 𝑘 ∈ N. System

(5) has a unique positive 𝜔-periodic solution which is globally
asymptotically stable.

Lemma 3 (see [15]). Consider the following impulsive system:

𝑥
󸀠

(𝑡) = 𝑥 (𝑡) [𝑚 (𝑡) − 𝑛 (𝑡) 𝑥 (𝑡)] , 𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

𝑥 (𝜏
+

𝑘
) = 𝑥 (𝜏

𝑘
) + 𝑝,

(6)

where 𝑥(0) > 0, 𝑛(𝑡) > 0, the constant 𝑝 > 0, and 𝑚(𝑡), 𝑛(𝑡)
are continuous 𝜔-periodic functions. Assume that there is an
integer 𝑞 > 0 such that 𝜏

𝑘+𝑞
= 𝜏
𝑘
+ 𝜔, 𝑘 ∈ N. Then

(1) species 𝑥 is permanent;

(2) any two positive solutions 𝑥(𝑡) and 𝑥(𝑡) of (6) satisfy
lim
𝑡→+∞

|𝑥(𝑡) − 𝑥(𝑡)| = 0.

Lemma 4 (see [13, 16]). Consider the following single-species
system with impulsive perturbations:

𝑥
󸀠

(𝑡) = 𝑥 (𝑡) [𝑚 (𝑡) − 𝑛 (𝑡) 𝑥 (𝑡)] , 𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

𝑥 (𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑥 (𝜏
𝑘
) ,

(7)

where 𝑥(0) > 0, 𝑛(𝑡) > 0 for all 𝑡 ≥ 0,𝑚(𝑡), 𝑛(𝑡) are continuous
𝜔-periodic functions and {𝛼

𝑘
} is a real number sequence with

𝛼
𝑘
> −1. Meanwhile, there exists an integer 𝑞 > 0 such that

𝜏
𝑘+𝑞

= 𝜏
𝑘
+ 𝜔 and 𝛼

𝑘+𝑞
= 𝛼
𝑘
for 𝑘 ∈ N. Then

(1) any solution 𝑥(𝑡) of (7) satisfies lim
𝑡→+∞

𝑥(𝑡) = 0 if
∏
𝑞

𝑘=1
(1 + 𝛼

𝑘
) exp{∫𝜔

0
𝑚(𝑡)𝑑𝑡} < 1;

(2) (7) has a unique positive 𝜔-periodic solution
which is globally asymptotically stable if
∏
𝑞

𝑘=1
(1 + 𝛼

𝑘
) exp{∫𝜔

0
𝑚(𝑡)𝑑𝑡} > 1.

Lemma 5 (see [16]). Suppose that V(𝑡) is a continuous 𝜔-
periodic function, where 𝜔 > 0 and ∫

𝜔

0
V(𝑡)𝑑𝑡 > 0. Then the

following inequality

exp {𝑐 (𝑡 − 𝑠)} ≤ exp{1 + 𝑑𝜔 + ∫

𝑡

𝑠

V (𝑟) 𝑑𝑟} ,

𝑓𝑜𝑟 𝑡 ≥ 𝑠, 𝑡 󳨀→ +∞

(8)

holds, where 0 < 𝑐 ≤ min{∫𝜔
0
V(𝑡)𝑑𝑡/𝜔, 1/𝜔}, and 𝑑 =

max
𝑡∈[0,𝜔]

{|V(𝑡)|}.

4. Main Results

In this section, we will establish sufficient conditions for
the permanence, global attractivity of positive solutions, and
partial extinction of system (1), respectively. We first give the
result on permanence.

4.1. Permanence

Theorem 6. If

𝑞

∏

𝑘=1

(1 + 𝛼
𝑘
) exp {∫

𝜔

0

[𝑟 (𝑡) − 𝑀
2
(𝑘
1
(𝑡) + 𝛽 (𝑡))

−𝑀
3
𝑎
1
(𝑡) ] 𝑑𝑡} > 1,

(9)

𝑞

∏

𝑘=1

(1 + 𝛾
𝑘
) exp {∫

𝜔

0

[−𝑑 (𝑡) + 𝑚
1
𝑐
1
(𝑡)

+𝑚
2
𝑐
2
(𝑡)] 𝑑𝑡} > 1

(10)

hold, then system (1) is permanent, where𝑀
2
,𝑀
3
,𝑚
1
,𝑚
2
are

defined in (26), (29), (33), and (38), respectively.

Proof. For (1), it is easy to verify 𝑆(𝑡) > 0, 𝐼(𝑡) > 0, 𝑃(𝑡) > 0

for all 𝑡 > 0 if 𝑆(0+) = 𝑆(0) > 0, 𝐼(0+) = 𝐼(0) > 0, 𝑃(0+) =
𝑃(0) > 0. To finish the proof of Theorem 6, we consider the
following two steps (i.e., (I) and (II)).

(I) Consider the uniformly ultimately upper boundary
(or UUUB) of 𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡).

First of all, we discuss the UUUB of 𝑆(𝑡). It follows from
the first equation of (1) and impulsive condition that

𝑆
󸀠

(𝑡) ≤ 𝑟 (𝑡) 𝑆 (𝑡) , 𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

𝑆 (𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑆 (𝜏
𝑘
) ,

(11)

𝑆
󸀠

(𝑡) ≤ 𝑆 (𝑡) [𝑟 (𝑡) − 𝑘
1
(𝑡) 𝑆 (𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑆 (𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑆 (𝜏
𝑘
) .

(12)

Now, we consider two cases to obtain the UUUB of 𝑆(𝑡).

Case 1. Consider∏𝑞
𝑘=1

(1 + 𝛼
𝑘
) exp{∫𝜔

0
𝑟(𝑡)𝑑𝑡} ≤ 1.

For (11), applying Lemma 1, we have

𝑆 (𝑡) ≤ 𝑆 (0) ∏

0<𝜏𝑘<𝑡

(1 + 𝛼
𝑘
) exp{∫

𝑡

0

𝑟 (𝑠) 𝑑𝑠} . (13)

When 𝑡 ∈ (𝑛𝜔, (𝑛 + 1)𝜔], 𝑛 ∈ N ∪ {0}, we set

A = max
𝑡∈[0,𝜔]

∏

0<𝜏𝑘<𝑡

(1 + 𝛼
𝑘
) ,

R = max
𝑡∈(𝑛𝜔,(𝑛+1)𝜔]

exp{∫
𝜔

0

𝑟 (𝑠) 𝑑𝑠} .

(14)
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It follows from (13) that

𝑆 (𝑡) ≤ 𝑆 (0) ∏

0<𝜏𝑘<𝑛𝜔

(1 + 𝛼
𝑘
) exp{∫

𝑛𝜔

0

𝑟 (𝑠) 𝑑𝑠}

× ∏

𝑛𝜔≤𝜏𝑘<𝑡

(1 + 𝛼
𝑘
) exp{∫

𝑡

𝑛𝜔

𝑟 (𝑠) 𝑑𝑠}

≤ 𝑆 (0)(

𝑞

∏

𝑘=1

(1 + 𝛼
𝑘
) exp{∫

𝜔

0

𝑟 (𝑠) 𝑑𝑠})

𝑛

× ∏

0<𝜏𝑘<𝑡−𝑛𝜔

(1 + 𝛼
𝑘
) exp{∫

𝑡

𝑛𝜔

𝑟 (𝑠) 𝑑𝑠}

≤ 𝑆 (0)(

𝑞

∏

𝑘=1

(1 + 𝛼
𝑘
) exp{∫

𝜔

0

𝑟 (𝑠) 𝑑𝑠})

𝑛

AR.

(15)

If∏𝑞
𝑘=1

(1 + 𝛼
𝑘
) exp{∫𝜔

0
𝑟(𝑠)𝑑𝑠} = 1, then

𝑆 (𝑡) ≤ 𝑆 (0)AR. (16)

If∏𝑞
𝑘=1

(1 + 𝛼
𝑘
) exp{∫𝜔

0
𝑟(𝑠)𝑑𝑠} < 1, then

lim
𝑡→+∞

𝑆 (0)(

𝑞

∏

𝑘=1

(1 + 𝛼
𝑘
) exp{∫

𝜔

0

𝑟 (𝑠) 𝑑𝑠})

𝑛

AR = 0.

(17)

This fact implies that lim
𝑡→+∞

𝑆(𝑡) = 0. That is, there are a
sufficient small constant 𝜎

1
> 0 and 𝑡

1
> 0 such that

𝑆 (𝑡) ≤ 𝜎
1
, for 𝑡 ≥ 𝑡

1
. (18)

Case 2. Consider∏𝑞
𝑘=1

(1 + 𝛼
𝑘
) exp{∫𝜔

0
𝑟(𝑡)𝑑𝑡} > 1.

It follows from (2) in Lemma 4 that the comparison
system of (12)

𝑠
󸀠

1
(𝑡) = 𝑠

1
(𝑡) [𝑟 (𝑡) − 𝑘

1
(𝑡) 𝑠
1
(𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑠
1
(𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑠
1
(𝜏
𝑘
)

(19)

has a unique positive globally asymptotically stable 𝜔-
periodic solution denoted by 𝑠

1
(𝑡). Let 𝑠

1
(𝑡) be the solution

of (19) with 𝑠
1
(0) = 𝑆(0) > 0. The asymptotic property of

𝑠
1
(𝑡) shows that there exist a sufficient small constant 𝜎

2
> 0

and 𝑡
2
> 0 such that

𝑠
1
(𝑡) ≤ 𝑠

1
(𝑡) + 𝜎

2
, for 𝑡 ≥ 𝑡

2
. (20)

Applying the comparison theorem of impulsive differential
equations, one has

𝑆 (𝑡) ≤ 𝑠
1
(𝑡) + 𝜎

2
, for 𝑡 ≥ 𝑡

2
. (21)

Equations (18) and (21) show that there must be 𝑇
1

=

max{𝑡
1
, 𝑡
2
} and𝑀

1
= max

𝑡∈[0,𝜔]
{𝑆(0)AR, 𝜎

1
, 𝑠
1
(𝑡) + 𝜎

2
} > 0

such that

𝑆 (𝑡) ≤ 𝑀
1
, for 𝑡 ≥ 𝑇

1
. (22)

Next, we discuss the UUUB of 𝐼(𝑡). From the second
equation of (1) and impulsive condition, for 𝑡 ≥ 𝑇

1
, one has

𝐼
󸀠

(𝑡) ≤ 𝐼 (𝑡) [𝑀
1
𝛽 (𝑡) − 𝑘

2
(𝑡) 𝐼 (𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝐼 (𝜏
+

𝑘
) = 𝐼 (𝜏

𝑘
) + 𝑝.

(23)

Using (2) in Lemma 3, we can see that the comparison system
of (23)

𝑖
󸀠

1
(𝑡) = 𝑖

1
(𝑡) [𝑀

1
𝛽 (𝑡) − 𝑘

2
(𝑡) 𝑖
1
(𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑖
1
(𝜏
+

𝑘
) = 𝑖
1
(𝜏
𝑘
) + 𝑝

(24)

is permanent, which implies that there are𝑀
2
> 0 and 𝑇

2
≥

𝑇
1
such that

𝑖
1
(𝑡) ≤ 𝑀

2
, for 𝑡 ≥ 𝑇

2
. (25)

Using the comparison theorem of impulsive differential
equations, we get

𝐼 (𝑡) ≤ 𝑀
2
, for 𝑡 ≥ 𝑇

2
. (26)

Finally, we verify the UUUB of 𝑃(𝑡). For 𝑡 ≥ 𝑇
2
, from the

third equation of (1) and impulsive condition, we obtain

𝑃
󸀠

(𝑡) ≤ 𝑃 (𝑡) [−𝑑 (𝑡) + 𝑀
1
𝑐
1
(𝑡) + 𝑀

2
𝑐
2
(𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑃 (𝜏
+

𝑘
) = (1 + 𝛾

𝑘
) 𝑃 (𝜏
𝑘
)

(27)

𝑃
󸀠

(𝑡) ≤ 𝑃 (𝑡) [−𝑑 (𝑡) + 𝑀
1
𝑐
1
(𝑡) + 𝑀

2
𝑐
2
(𝑡)

− 𝑏 (𝑡) 𝑃 (𝑡)] , 𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

𝑃 (𝜏
+

𝑘
) = (1 + 𝛾

𝑘
) 𝑃 (𝜏
𝑘
) .

(28)

Similar to the proof of the UUUB of 𝑆(𝑡), it follows from (10)
that there exist 𝑇

3
> 0 and𝑀

3
> 0 such that

𝑃 (𝑡) ≤ 𝑀
3
, for 𝑡 ≥ 𝑇

3
. (29)

(II) Consider the uniformly ultimately lower boundary
(or UULB) of 𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡).

Firstly, we prove the UULB of 𝑆(𝑡). From (I), for 𝑡 ≥ 𝑇
3
,

one has

𝑆
󸀠

(𝑡) ≥ 𝑆 (𝑡) [𝑟 (𝑡) − 𝑀
2
(𝑘
1
(𝑡) + 𝛽 (𝑡))

−𝑀
3
𝑎
1
(𝑡) − 𝑘

1
(𝑡) 𝑆 (𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑆 (𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑆 (𝜏
𝑘
) .

(30)

By (2) in Lemma 4 and the assumption in (9), we know easily
that the comparison system of (30)

𝑠
󸀠

2
(𝑡) = 𝑠

2
(𝑡) [𝑟 (𝑡) − 𝑀

2
(𝑘
1
(𝑡) + 𝛽 (𝑡))

−𝑀
3
𝑎
1
(𝑡) − 𝑘

1
(𝑡) 𝑠
2
(𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑠
2
(𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑠
2
(𝜏
𝑘
)

(31)
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has a unique positive globally asymptotically stable 𝜔-
periodic solution denoted by 𝑠

2
(𝑡). Let 𝑠

2
(𝑡) be the solution

of (31) satisfying 𝑠
2
(𝑇
3
) = 𝑆(𝑇

3
). The asymptotic property of

𝑠
2
(𝑡) implies that there exist a sufficient small constant 𝜖 > 0

and 𝑇
4
≥ 𝑇
3
such that

𝑠
2
(𝑡) ≤ 𝑠

2
(𝑡) − 𝜖, for 𝑡 ≥ 𝑇

4
, (32)

where 𝜖 < (1/2)min
𝑡∈[0,𝜔]

{𝑠
2
(𝑡)}. It follows from the compar-

ison theorem of impulsive differential equations that

𝑆 (𝑡) ≥ 𝑠
2
(𝑡) − 𝜖 ≥ min

𝑡∈[0,𝜔]

{𝑠
2
(𝑡)} − 𝜖 ≐ 𝑚

1
, for 𝑡 ≥ 𝑇

4
.

(33)

Secondly, we prove the UULB of 𝐼(𝑡). Recall the above
results, and it follows from (1) that for 𝑡 ≥ 𝑇

4
,

𝐼
󸀠

(𝑡) ≥ 𝐼 (𝑡) [𝑚
1
𝛽 (𝑡) − (𝑀

1
+𝑀
2
) 𝑘
2
(𝑡) − 𝑀

3
𝑎
2
(𝑡)]

≥ 𝐼 (𝑡) [𝑚
1
𝛽 (𝑡) − (𝑀

1
+𝑀
2
) 𝑘
2
(𝑡)

−𝑀
3
𝑎
2
(𝑡) − 𝜂] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝐼 (𝜏
+

𝑘
) = 𝐼 (𝜏

𝑘
) + 𝑝,

(34)

where the constant 𝜂 > 0 satisfies

∫

𝜔

0

[𝑚
1
𝛽 (𝑡) − (𝑀

1
+𝑀
2
) 𝑘
2
(𝑡) − 𝑀

3
𝑎
2
(𝑡) − 𝜂] < 0. (35)

From Lemma 2, we know that the comparison system of (34)

𝑖
󸀠

2
(𝑡) = 𝑖

2
(𝑡) [𝑚

1
𝛽 (𝑡) − (𝑀

1
+𝑀
2
) 𝑘
2
(𝑡)

−𝑀
3
𝑎
2
(𝑡) − 𝜂] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑖
2
(𝜏
+

𝑘
) = 𝑖
2
(𝜏
𝑘
) + 𝑝

(36)

has a unique positive globally asymptotically stable 𝜔-
periodic solution denoted by 𝑖

2
(𝑡). The asymptotic property

of 𝑖
2
(𝑡) implies that there are 𝑇

5
≥ 𝑇
4
and a sufficient small

constant 𝛿 > 0 such that

𝑖
2
(𝑡) ≥ 𝑖

2
(𝑡) − 𝛿, for 𝑡 ≥ 𝑇

5
, (37)

where 𝛿 < (1/2)min
𝑡∈[0,𝜔]

{𝑖
2
(𝑡)}. Let 𝑖

2
(𝑡) be the solution of

(36) with 𝑖
2
(𝑇
5
) = 𝐼(𝑇

5
). Using the comparison theorem of

impulsive differential equations, we have

𝐼 (𝑡) ≥ 𝑖
2
(𝑡) − 𝛿 ≥ min

𝑡∈[0,𝜔]

{𝑖
2
(𝑡)} − 𝛿 ≐ 𝑚

2
, for 𝑡 ≥ 𝑇

5
.

(38)

Finally, we prove the UULB of 𝑃(𝑡). For 𝑡 ≥ 𝑇
5
, (1), (33), and

(38) reduce to

𝑃
󸀠

(𝑡) ≥ 𝑃 (𝑡) [−𝑑 (𝑡) + 𝑚
1
𝑐
1
(𝑡) + 𝑚

2
𝑐
2
(𝑡)

− 𝑏 (𝑡) 𝑃 (𝑡) ] , 𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

𝑃 (𝜏
+

𝑘
) = (1 + 𝛾

𝑘
) 𝑃 (𝜏
𝑘
) .

(39)

Notice that the assumption in (10) is similar to the proof of the
UULB of 𝑆(𝑡); we obtain that there are 𝑇

6
≥ 𝑇
5
and 𝑚

3
> 0

such that

𝑃 (𝑡) ≥ 𝑚
3
, for 𝑡 ≥ 𝑇

6
. (40)

(I) and (II) yield

𝑚
1
≤ 𝑆 (𝑡) ≤ 𝑀

1
, 𝑚
2
≤ 𝐼 (𝑡) ≤ 𝑀

2
,

𝑚
3
≤ 𝑃 (𝑡) ≤ 𝑀

3
, for 𝑡 ≥ 𝑇

6
,

(41)

and hence system (1) is permanent. The proof is completed.

4.2. Global Attractivity. In this subsection, wewill discuss the
global attractivity of system (1) based onTheorem 6.

Theorem 7. If there exist constants 𝜇
1
> 0, 𝜇

2
> 0, 𝜇

3
> 0

such that

lim inf
𝑡→+∞

{𝜇
1
𝑘
1
(𝑡) − 𝜇

2

󵄨󵄨󵄨󵄨𝛽 (𝑡) − 𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨 − 𝜇
3
𝑐
1
(𝑡)} > 0,

lim inf
𝑡→+∞

{𝜇
2
𝑘
2
(𝑡) − 𝜇

1
(𝑘
1
(𝑡) + 𝛽 (𝑡)) − 𝜇

3
𝑐
2
(𝑡)} > 0,

lim inf
𝑡→+∞

{𝜇
3
𝑏 (𝑡) − 𝜇

1
𝑎
1
(𝑡) − 𝜇

2
𝑎
2
(𝑡)} > 0,

𝑚
2
+ 𝑝 = 𝑀

2
,

(42)

hold, then any positive solution {𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡)} of system (1) is
globally attractive, where𝑀

2
,𝑚
2
are defined in (26) and (38).

Proof. Suppose that {𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡)} and {𝑆
∗
(𝑡), 𝐼
∗
(𝑡), 𝑃
∗
(𝑡)}

are any two positive solutions of system (1). It follows from
Theorem 6 that there exists a large enough 𝑡

∗ such that, for
𝑡 > 𝑡
∗
≥ 𝑇
6
,

𝑚
1
≤ 𝑆 (𝑡) , 𝑆

∗

(𝑡) ≤ 𝑀
1
,

𝑚
2
≤ 𝐼 (𝑡) , 𝐼

∗

(𝑡) ≤ 𝑀
2
,

𝑚
3
≤ 𝑃 (𝑡) , 𝑃

∗

(𝑡) ≤ 𝑀
3
.

(43)

Consider the following Lyapunov function:

𝑉 (𝑡) = 𝜇
1

󵄨󵄨󵄨󵄨ln 𝑆 (𝑡) − ln 𝑆∗ (𝑡)󵄨󵄨󵄨󵄨 + 𝜇
2

󵄨󵄨󵄨󵄨ln 𝐼 (𝑡) − ln 𝐼∗ (𝑡)󵄨󵄨󵄨󵄨

+ 𝜇
3

󵄨󵄨󵄨󵄨ln𝑃 (𝑡) − ln𝑃∗ (𝑡)󵄨󵄨󵄨󵄨 ,
(44)
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where 𝜇
1
, 𝜇
2
, and 𝜇

3
are positive constants. Calculating

and estimating the upper right derivative 𝐷+𝑉(𝑡) along the
solutions of system (1), for 𝑡 > 𝑡

∗ and 𝑡 ̸= 𝜏
𝑘
, we obtain that

𝐷
+
𝑉 (𝑡) = 𝜇

1
sgn [𝑆 (𝑡) − 𝑆

∗

(𝑡)] [
𝑆
󸀠
(𝑡)

𝑆 (𝑡)
−
𝑆
∗󸀠

(𝑡)

𝑆∗ (𝑡)
]

+ 𝜇
2
sgn [𝐼 (𝑡) − 𝐼

∗

(𝑡)] [
𝐼
󸀠
(𝑡)

𝐼 (𝑡)
−
𝐼
∗󸀠

(𝑡)

𝐼∗ (𝑡)
]

+ 𝜇
3
sgn [𝑃 (𝑡) − 𝑃

∗

(𝑡)] [
𝑃
󸀠
(𝑡)

𝑃 (𝑡)
−
𝑃
∗󸀠

(𝑡)

𝑃∗ (𝑡)
]

= 𝜇
1
sgn [𝑆 (𝑡) − 𝑆

∗

(𝑡)]

× [−𝑘
1
(𝑡) (𝑆 (𝑡) − 𝑆

∗

(𝑡))

− (𝑘
1
(𝑡) + 𝛽 (𝑡)) (𝐼 (𝑡) − 𝐼

∗

(𝑡))

− 𝑎
1
(𝑡) (𝑃 (𝑡) − 𝑃

∗

(𝑡))]

+ 𝜇
2
sgn [𝐼 (𝑡) − 𝐼

∗

(𝑡)]

× [(𝛽 (𝑡) − 𝑘
2
(𝑡)) (𝑆 (𝑡) − 𝑆

∗

(𝑡))

− 𝑘
2
(𝑡) (𝐼 (𝑡) − 𝐼

∗

(𝑡))

− 𝑎
2
(𝑡) (𝑃 (𝑡) − 𝑃

∗

(𝑡))]

+ 𝜇
3
sgn [𝑃 (𝑡) − 𝑃

∗

(𝑡)]

× [𝑐
1
(𝑡) (𝑆 (𝑡) − 𝑆

∗

(𝑡)) + 𝑐
2
(𝑡) (𝐼 (𝑡) − 𝐼

∗

(𝑡))

− 𝑏 (𝑡) (𝑃 (𝑡) − 𝑃
∗

(𝑡))]

≤ − [𝜇
1
𝑘
1
(𝑡) − 𝜇

2

󵄨󵄨󵄨󵄨𝛽 (𝑡) − 𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨 − 𝜇
3
𝑐
1
(𝑡)]

×
󵄨󵄨󵄨󵄨𝑆 (𝑡) − 𝑆

∗

(𝑡)
󵄨󵄨󵄨󵄨

− [𝜇
2
𝑘
2
(𝑡) − 𝜇

1
(𝑘
1
(𝑡) + 𝛽 (𝑡)) − 𝜇

3
𝑐
2
(𝑡)]

×
󵄨󵄨󵄨󵄨𝐼 (𝑡) − 𝐼

∗

(𝑡)
󵄨󵄨󵄨󵄨

− [𝜇
3
𝑏 (𝑡) − 𝜇

1
𝑎
1
(𝑡) − 𝜇

2
𝑎
2
(𝑡)]

×
󵄨󵄨󵄨󵄨𝑃 (𝑡) − 𝑃

∗

(𝑡)
󵄨󵄨󵄨󵄨 .

(45)

Applying (43) and the differential mean value theorem, for
any closed interval contained in 𝑡 ∈ (𝜏

𝑘
, 𝜏
𝑘+1

], 𝑘 = ℎ, ℎ+1, . . .,
and 𝜏
ℎ
> 𝑡
∗, we thus have

1

𝑀
1

󵄨󵄨󵄨󵄨𝑆 (𝑡) − 𝑆
∗

(𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨ln 𝑆 (𝑡) − ln 𝑆∗ (𝑡)󵄨󵄨󵄨󵄨

≤
1

𝑚
1

󵄨󵄨󵄨󵄨𝑆 (𝑡) − 𝑆
∗

(𝑡)
󵄨󵄨󵄨󵄨 ,

1

𝑀
2

󵄨󵄨󵄨󵄨𝐼 (𝑡) − 𝐼
∗

(𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨ln 𝐼 (𝑡) − ln 𝐼∗ (𝑡)󵄨󵄨󵄨󵄨

≤
1

𝑚
2

󵄨󵄨󵄨󵄨𝐼 (𝑡) − 𝐼
∗

(𝑡)
󵄨󵄨󵄨󵄨 ,

1

𝑀
3

󵄨󵄨󵄨󵄨𝑃 (𝑡) − 𝑃
∗

(𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨ln𝑃 (𝑡) − ln𝑃∗ (𝑡)󵄨󵄨󵄨󵄨

≤
1

𝑚
3

󵄨󵄨󵄨󵄨𝑃 (𝑡) − 𝑃
∗

(𝑡)
󵄨󵄨󵄨󵄨 .

(46)

Hence, for 𝑡 ∈ (𝜏
𝑘
, 𝜏
𝑘+1

], 𝑘 = ℎ, ℎ + 1, . . ., and 𝜏
ℎ
> 𝑡
∗, from

(45)-(46), we get

𝐷
+
𝑉 (𝑡) ≤ − [𝜇

1
𝑘
1
(𝑡) − 𝜇

2

󵄨󵄨󵄨󵄨𝛽 (𝑡) − 𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨 − 𝜇
3
𝑐
1
(𝑡)]

×
󵄨󵄨󵄨󵄨𝑆 (𝑡) − 𝑆

∗

(𝑡)
󵄨󵄨󵄨󵄨

− [𝜇
2
𝑘
2
(𝑡) − 𝜇

1
(𝑘
1
(𝑡) + 𝛽 (𝑡)) − 𝜇

3
𝑐
2
(𝑡)]

×
󵄨󵄨󵄨󵄨𝐼 (𝑡) − 𝐼

∗

(𝑡)
󵄨󵄨󵄨󵄨

− [𝜇
3
𝑏 (𝑡) − 𝜇

1
𝑎
1
(𝑡) − 𝜇

2
𝑎
2
(𝑡)]

×
󵄨󵄨󵄨󵄨𝑃 (𝑡) − 𝑃

∗

(𝑡)
󵄨󵄨󵄨󵄨

≤ −𝑚
1
[𝜇
1
𝑘
1
(𝑡) − 𝜇

2

󵄨󵄨󵄨󵄨𝛽 (𝑡) − 𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨 − 𝜇
3
𝑐
1
(𝑡)]

×
󵄨󵄨󵄨󵄨ln 𝑆 (𝑡) − ln 𝑆∗ (𝑡)󵄨󵄨󵄨󵄨

− 𝑚
2
[𝜇
2
𝑘
2
(𝑡) − 𝜇

1
(𝑘
1
(𝑡) + 𝛽 (𝑡)) − 𝜇

3
𝑐
2
(𝑡)]

×
󵄨󵄨󵄨󵄨ln 𝐼 (𝑡) − ln 𝐼∗ (𝑡)󵄨󵄨󵄨󵄨

− 𝑚
3
[𝜇
3
𝑏 (𝑡) − 𝜇

1
𝑎
1
(𝑡) − 𝜇

2
𝑎
2
(𝑡)]

×
󵄨󵄨󵄨󵄨ln𝑃 (𝑡) − ln𝑃∗ (𝑡)󵄨󵄨󵄨󵄨

≤ −𝜌 [
󵄨󵄨󵄨󵄨ln 𝑆 (𝑡) − ln 𝑆∗ (𝑡)󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨ln 𝐼 (𝑡) − ln 𝐼∗ (𝑡)󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨ln𝑃 (𝑡) − ln𝑃∗ (𝑡)󵄨󵄨󵄨󵄨] = −𝜌𝑉 (𝑡) ,

(47)

where

𝜌 = min
𝑡∈[0,𝜔]

{𝑚
1
[𝜇
1
𝑘
1
(𝑡) − 𝜇

2

󵄨󵄨󵄨󵄨𝛽 (𝑡) − 𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨 − 𝜇
3
𝑐
1
(𝑡)] ,

𝑚
2
[𝜇
2
𝑘
2
(𝑡) − 𝜇

1
(𝑘
1
(𝑡) + 𝛽 (𝑡)) − 𝜇

3
𝑐
2
(𝑡)] ,

𝑚
3
[𝜇
3
𝑏 (𝑡) − 𝜇

1
𝑎
1
(𝑡) − 𝜇

2
𝑎
2
(𝑡)]} > 0.

(48)

For 𝑡 = 𝜏
𝑘
, 𝑘 ∈ N, one has

𝑉 (𝜏
+

𝑘
) = 𝜇
1

󵄨󵄨󵄨󵄨ln 𝑆 (𝜏
+

𝑘
) − ln 𝑆∗ (𝜏+

𝑘
)
󵄨󵄨󵄨󵄨

+ 𝜇
2

󵄨󵄨󵄨󵄨ln 𝐼 (𝜏
+

𝑘
) − ln 𝐼∗ (𝜏+

𝑘
)
󵄨󵄨󵄨󵄨

+ 𝜇
3

󵄨󵄨󵄨󵄨ln𝑃 (𝜏
+

𝑘
) − ln𝑃∗ (𝜏+

𝑘
)
󵄨󵄨󵄨󵄨

= 𝜇
1

󵄨󵄨󵄨󵄨ln (1 + 𝛼
𝑘
) 𝑆 (𝜏
𝑘
) − ln (1 + 𝛼

𝑘
) 𝑆
∗
(𝜏
𝑘
)
󵄨󵄨󵄨󵄨

+ 𝜇
2

󵄨󵄨󵄨󵄨ln (𝐼 (𝜏𝑘) + 𝑝) − ln (𝐼∗ (𝜏
𝑘
) + 𝑝)

󵄨󵄨󵄨󵄨

+ 𝜇
3

󵄨󵄨󵄨󵄨ln (1 + 𝛾
𝑘
) 𝑃 (𝜏
𝑘
) − ln (1 + 𝛾

𝑘
) 𝑃
∗
(𝜏
𝑘
)
󵄨󵄨󵄨󵄨
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= 𝜇
1

󵄨󵄨󵄨󵄨ln 𝑆 (𝜏𝑘) − ln 𝑆∗ (𝜏
𝑘
)
󵄨󵄨󵄨󵄨

+ 𝜇
2
𝑔
󸀠

(V) |V=𝜁𝑘
󵄨󵄨󵄨󵄨𝐼 (𝜏𝑘) − 𝐼

∗
(𝜏
𝑘
)
󵄨󵄨󵄨󵄨

+ 𝜇
3

󵄨󵄨󵄨󵄨ln𝑃 (𝜏
𝑘
) − ln𝑃∗ (𝜏

𝑘
)
󵄨󵄨󵄨󵄨

= 𝜇
1

󵄨󵄨󵄨󵄨ln 𝑆 (𝜏𝑘) − ln 𝑆∗ (𝜏
𝑘
)
󵄨󵄨󵄨󵄨

+
𝜇
2

𝜁
𝑘
+ 𝑝

󵄨󵄨󵄨󵄨𝐼 (𝜏𝑘) − 𝐼
∗
(𝜏
𝑘
)
󵄨󵄨󵄨󵄨

+ 𝜇
3

󵄨󵄨󵄨󵄨ln𝑃 (𝜏
𝑘
) − ln𝑃∗ (𝜏

𝑘
)
󵄨󵄨󵄨󵄨 ,

(49)

where 𝜁
𝑘
is between 𝐼(𝜏

𝑘
) and 𝐼

∗
(𝜏
𝑘
), 𝑔(V) = ln(V + 𝑝). It

follows from (46) that

𝜇
2

𝜁
𝑘
+ 𝑝

󵄨󵄨󵄨󵄨𝐼 (𝜏𝑘) − 𝐼
∗
(𝜏
𝑘
)
󵄨󵄨󵄨󵄨 ≤

𝜇
2
𝑀
2

𝑚
2
+ 𝑝

󵄨󵄨󵄨󵄨ln 𝐼 (𝜏𝑘) − ln 𝐼∗ (𝜏
𝑘
)
󵄨󵄨󵄨󵄨 ,

(50)

which, together with (49), leads to

𝑉 (𝜏
+

𝑘
) ≤ 𝜇
1

󵄨󵄨󵄨󵄨ln 𝑆 (𝜏𝑘) − ln 𝑆∗ (𝜏
𝑘
)
󵄨󵄨󵄨󵄨

+
𝜇
2
𝑀
2

𝑚
2
+ 𝑝

󵄨󵄨󵄨󵄨ln 𝐼 (𝜏𝑘) − ln 𝐼∗ (𝜏
𝑘
)
󵄨󵄨󵄨󵄨

+ 𝜇
3

󵄨󵄨󵄨󵄨ln𝑃 (𝜏
𝑘
) − ln𝑃∗ (𝜏

𝑘
)
󵄨󵄨󵄨󵄨 ≤ 𝜆𝑉 (𝜏

𝑘
) ,

(51)

where 𝜆 = max{𝜇
1
, 𝜇
2
𝑀
2
/(𝑚
2
+𝑝), 𝜇

3
}. Combining (47) and

(51), we have

𝐷
+
𝑉 (𝑡) ≤ −𝜌𝑉 (𝑡) , 𝑡 ̸= 𝜏

𝑘
, 𝑡 > 𝑡

∗
,

𝑉 (𝜏
+

𝑘
) ≤ 𝜆𝑉 (𝜏

𝑘
) , 𝜏

𝑘
> 𝑡
∗
, 𝑘 = ℎ, ℎ + 1, . . . .

(52)

From Lemma 1, for 𝑡 > 𝜏
ℎ
> 𝑡
∗, (52) yields

𝑉(𝑡) ≤ 𝜆𝑉(𝜏
+

ℎ
) exp{−∫

𝑡

𝜏ℎ

𝜌𝑑𝑠} = 𝜆𝑉 (𝜏
+

ℎ
) exp{−𝜌 (𝑡 − 𝜏

ℎ
)}.

(53)

Since 𝜏
ℎ
is an impulsive point, we have from (43) and (44)

that,

𝑉 (𝜏
+

ℎ
) = 𝜇
1

󵄨󵄨󵄨󵄨ln 𝑆 (𝜏
+

ℎ
) − ln 𝑆∗ (𝜏+

ℎ
)
󵄨󵄨󵄨󵄨

+ 𝜇
2

󵄨󵄨󵄨󵄨ln 𝐼 (𝜏
+

ℎ
) − ln 𝐼∗ (𝜏+

ℎ
)
󵄨󵄨󵄨󵄨

+ 𝜇
3

󵄨󵄨󵄨󵄨ln𝑃 (𝜏
+

ℎ
) − ln𝑃∗ (𝜏+

ℎ
)
󵄨󵄨󵄨󵄨

≤ max {2𝜇
1

󵄨󵄨󵄨󵄨ln𝑀1
󵄨󵄨󵄨󵄨 , 2𝜇1

󵄨󵄨󵄨󵄨ln𝑚1
󵄨󵄨󵄨󵄨}

+max {2𝜇
2

󵄨󵄨󵄨󵄨ln (𝑀2 + 𝑝)
󵄨󵄨󵄨󵄨 , 2𝜇2

󵄨󵄨󵄨󵄨ln (𝑚2 + 𝑝)
󵄨󵄨󵄨󵄨}

+max {2𝜇
3

󵄨󵄨󵄨󵄨ln𝑀3
󵄨󵄨󵄨󵄨 , 2𝜇3

󵄨󵄨󵄨󵄨ln𝑚3
󵄨󵄨󵄨󵄨} ,

(54)

which indicates that𝑉(𝜏+
ℎ
) is bounded. As a consequence, we

get

𝑉 (𝑡) ≤ 𝜆𝑉 (𝜏
+

ℎ
) exp {−𝜌 (𝑡 − 𝜏

ℎ
)} 󳨀→ 0, as 𝑡 󳨀→ +∞,

(55)

and hence

lim
𝑡→+∞

(
󵄨󵄨󵄨󵄨ln 𝑆 (𝑡) − ln 𝑆∗ (𝑡)󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨ln 𝐼 (𝑡) − ln 𝐼∗ (𝑡)󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨ln𝑃 (𝑡) − ln𝑃∗ (𝑡)󵄨󵄨󵄨󵄨) = 0

(56)

or equivalently

lim
𝑡→+∞

󵄨󵄨󵄨󵄨ln 𝑆 (𝑡) − ln 𝑆∗ (𝑡)󵄨󵄨󵄨󵄨 = 0,

lim
𝑡→+∞

󵄨󵄨󵄨󵄨ln 𝐼 (𝑡) − ln 𝐼∗ (𝑡)󵄨󵄨󵄨󵄨 = 0,

lim
𝑡→+∞

󵄨󵄨󵄨󵄨ln𝑃 (𝑡) − ln𝑃∗ (𝑡)󵄨󵄨󵄨󵄨 = 0,

(57)

which, together with (46), yields

lim
𝑡→+∞

1

𝑀
1

󵄨󵄨󵄨󵄨𝑆 (𝑡) − 𝑆
∗

(𝑡)
󵄨󵄨󵄨󵄨 = 0,

lim
𝑡→+∞

1

𝑀
2

󵄨󵄨󵄨󵄨𝐼 (𝑡) − 𝐼
∗

(𝑡)
󵄨󵄨󵄨󵄨 = 0,

lim
𝑡→+∞

1

𝑀
3

󵄨󵄨󵄨󵄨𝑃 (𝑡) − 𝑃
∗

(𝑡)
󵄨󵄨󵄨󵄨 = 0,

(58)

that is,

lim
𝑡→+∞

󵄨󵄨󵄨󵄨𝑆 (𝑡) − 𝑆
∗

(𝑡)
󵄨󵄨󵄨󵄨 = 0,

lim
𝑡→+∞

󵄨󵄨󵄨󵄨𝐼 (𝑡) − 𝐼
∗

(𝑡)
󵄨󵄨󵄨󵄨 = 0,

lim
𝑡→+∞

󵄨󵄨󵄨󵄨𝑃 (𝑡) − 𝑃
∗

(𝑡)
󵄨󵄨󵄨󵄨 = 0.

(59)

This completes the proof.

4.3. Partial Extinction. This section concerns the partial
extinction of system (1). We will see that species 𝑆, 𝑃 tend to
extinction while species 𝐼 stabilizes at a positive solution of
an impulsive system.

Theorem 8. If

𝑞

∏

𝑘=1

(1 + 𝛼
𝑘
) exp{∫

𝜔

0

𝑟 (𝑡) 𝑑𝑡} < 1, (60)

𝑞

∏

𝑘=1

(1 + 𝛾
𝑘
) exp{∫

𝜔

0

[−𝑑 (𝑡) + 𝑀
∗

1
𝑐
1
(𝑡) + 𝑀

∗

2
𝑐
2
(𝑡)] 𝑑𝑡} < 1

(61)

hold, then any positive solution {𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡)} of system (1)
satisfies lim

𝑡→+∞
𝑆(𝑡) = 0, lim

𝑡→+∞
|𝐼(𝑡) − Γ(𝑡)| = 0,

lim
𝑡→+∞

𝑃(𝑡) = 0, where 𝑀∗
1
, 𝑀∗
2
are defined in (65) and

(67), respectively, and Γ(𝑡) is a positive solution of the impulsive
system

Γ
󸀠

(𝑡) = − 𝑘
2
Γ
2

(𝑡) , 𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

Γ (𝜏
+

𝑘
) = Γ (𝜏

𝑘
) + 𝑝.

(62)
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Figure 1: Partial extinction of system (80) with 𝛼
𝑘
= 0, 𝑝 = 0, and 𝛾

𝑘
= 0. (a) Time series of 𝑆 for 𝑡 ∈ [0, 30]. (b) Time series of 𝐼 for 𝑡 ∈ [0, 30].

(c) Time series of 𝑃 for 𝑡 ∈ [0, 30].

Proof. We first focus on 𝑆(𝑡). We get from system (1) that

𝑆
󸀠

(𝑡) ≤ 𝑆 (𝑡) [𝑟 (𝑡) − 𝑘
1
(𝑡) 𝑆 (𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑆 (𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑆 (𝜏
𝑘
) .

(63)

It follows from (60) and (1) in Lemma 4 that any positive
solution of the comparison system of (63)

𝑠
󸀠

(𝑡) = 𝑠 (𝑡) [𝑟 (𝑡) − 𝑘
1
(𝑡) 𝑠 (𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑠 (𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑠 (𝜏
𝑘
)

(64)

satisfies lim
𝑡→+∞

𝑠(𝑡) = 0. By the comparison theo-
rem of impulsive differential equations we can obtain that

lim
𝑡→+∞

𝑆(𝑡) = 0.This fact implies that there exist a sufficient
small constant𝑀∗

1
> 0 and 𝑡̂

1
> 0 such that

𝑆 (𝑡) ≤ 𝑀
∗

1
, for 𝑡 ≥ 𝑡̂

1
. (65)

Next, from system (1), we obtain that, for 𝑡 ≥ 𝑡̂
1
,

𝐼
󸀠

(𝑡) ≤ 𝐼 (𝑡) [𝑀
∗

1
𝛽 (𝑡) − 𝑘

2
(𝑡) 𝐼 (𝑡)] , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝐼 (𝜏
+

𝑘
) = 𝐼 (𝜏

𝑘
) + 𝑝.

(66)

Similar to (23)–(26), we get that there exist a constant𝑀∗
2
> 0

and 𝑡̂
2
≥ 𝑡̂
1
such that

𝐼 (𝑡) ≤ 𝑀
∗

2
, for 𝑡 ≥ 𝑡̂

2
. (67)
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Figure 2: Permanence of system (80) with 𝛼
𝑘
= 0.26, 𝑝 = 0.1, and 𝛾

𝑘
= 0.53. (a) Time series of 𝑆 for 𝑡 ∈ [0, 30]. (b) Time series of 𝐼 for

𝑡 ∈ [0, 30]. (c) Time series of 𝑃 for 𝑡 ∈ [0, 30].

From system (1), (65), and (67), we have

𝑃
󸀠

(𝑡) ≤ 𝑃 (𝑡) [−𝑑 (𝑡) + 𝑀
∗

1
𝑐
1
(𝑡) + 𝑀

∗

2
𝑐
2
(𝑡)

− 𝑏 (𝑡) 𝑃 (𝑡) ] , 𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

𝑃 (𝜏
+

𝑘
) = (1 + 𝛾

𝑘
) 𝑃 (𝜏
𝑘
) .

(68)

Similar to 𝑆(𝑡), when the assumption (61) holds, a simple
proof can verify lim

𝑡→+∞
𝑃(𝑡) = 0.This fact implies that there

are a sufficient small constant𝑀∗
3
> 0 and 𝑡̂

3
≥ 𝑡̂
2
such that

𝑃 (𝑡) ≤ 𝑀
∗

3
, for 𝑡 ≥ 𝑡̂

3
. (69)

From system (1), (65), and (69), we obtain that for 𝑡 ≥ 𝑡̂
3

𝐼
󸀠

(𝑡) ≥ 𝐼 (𝑡) [−𝑀
∗

1
𝑘
2
(𝑡) − 𝑀

∗

3
𝑎
2
(𝑡) − 𝑘

2
(𝑡) 𝐼 (𝑡)] ,

𝑡 ̸= 𝜏
𝑘
, 𝑘 ∈ N,

𝐼 (𝜏
+

𝑘
) = 𝐼 (𝜏

𝑘
) + 𝑝.

(70)

Similar to (23)–(26), we can obtain that there exist a constant
𝑚
∗

2
> 0 and 𝑇∗ ≥ 𝑡̂

3
such that

𝐼 (𝑡) ≥ 𝑚
∗

2
, for 𝑡 ≥ 𝑇

∗
, (71)

which, together with (67), leads to

𝑚
∗

2
≤ 𝐼 (𝑡) ≤ 𝑀

∗

2
, for 𝑡 ≥ 𝑇

∗
. (72)
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Figure 3: Global attractivity of system (80) with 𝛼
𝑘
= 0.26, 𝑝 = 0.1, and 𝛾

𝑘
= 0.53. (a) Positive solution 𝑆(𝑡) with 𝑆(0) = 0.69 tends to the

other positive solution 𝑆
∗
(𝑡) with 𝑆

∗
(0) = 1.24 for 𝑡 ∈ [0, 20]. (b) Positive solution 𝐼(𝑡) with 𝐼(0) = 0.42 tends to the other positive solution

𝐼(𝑡)with 𝐼∗(0) = 0.11 for 𝑡 ∈ [0, 20]. (c) Positive solution 𝑃(𝑡)with 𝑃(0) = 0.265 tends to the other positive solution 𝑃∗(𝑡)with 𝑃∗(0) = 0.139

for 𝑡 ∈ [0, 20].

Based on the above discussion, we will investigate the global
attractivity of 𝐼(𝑡). Let

𝑍 (𝑡) = 𝐼 (𝑡) − Γ (𝑡) . (73)

Then,

𝑍
󸀠

(𝑡) = − 𝑘
2
(𝑡) (𝐼 (𝑡) + Γ (𝑡)) 𝑍 (𝑡)

+ (𝛽 (𝑡) − 𝑘
2
(𝑡)) 𝑆 (𝑡) 𝐼 (𝑡)

− 𝑎
2
(𝑡) 𝐼 (𝑡) 𝑃 (𝑡) , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ N,

𝑍 (𝜏
+

𝑘
) = (𝐼 (𝜏

𝑘
) + 𝑝) − (Γ (𝜏

𝑘
) + 𝑝) = 𝑍 (𝜏

𝑘
) .

(74)

Clearly, 𝑍(𝑡) is continuous. Recalling (74) and using the
formula of solutions of first-order linear differential equation,
we get, for 𝑡 ≥ 𝑇

∗,

𝑍 (𝑡) = 𝑍 (𝑇
∗
) exp{∫

𝑡

𝑇
∗

[−𝑘
2
(V) (𝐼 (V) + Γ (V))] 𝑑V}

+ ∫

𝑡

𝑇
∗

[(𝛽 (V) − 𝑘
2
(V)) 𝑆 (V) 𝐼 (V) − 𝑎

2
(V) 𝐼 (V) 𝑃 (V)]

× exp{∫
𝑡

V
[−𝑘
2
(𝑠) (𝐼 (𝑠) + Γ (𝑠))] 𝑑𝑠} 𝑑V,

(75)
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Figure 4: Partial extinction of system (80) with 𝛼
𝑘
= −0.45, 𝑝 = 0.13, and 𝛾

𝑘
= −0.04. (a) Time series of 𝑆 for 𝑡 ∈ [0, 20]. (b) Time series of Γ

for 𝑡 ∈ [0, 20]. (c) Time series of Γ and 𝐼 for 𝑡 ∈ [0, 20]. (d) Time series of 𝑃 for 𝑡 ∈ [0, 20].

Furthermore, applying Lemma 1, one obtains

|𝑍 (𝑡)| ≤
󵄨󵄨󵄨󵄨𝑍 (𝑇
∗
)
󵄨󵄨󵄨󵄨 exp{∫

𝑡

𝑇
∗

[−𝑘
2
(V) (𝐼 (V) + Γ (V))] 𝑑V}

+ ∫

𝑡

𝑇
∗

[
󵄨󵄨󵄨󵄨𝛽 (V) − 𝑘

2
(V)󵄨󵄨󵄨󵄨 𝑆 (V) 𝐼 (V) + 𝑎

2
(V) 𝐼 (V) 𝑃 (V)]

× exp{∫
𝑡

V
[−𝑘
2
(𝑠) (𝐼 (𝑠) + Γ (𝑠))] 𝑑𝑠} 𝑑V,

≤
󵄨󵄨󵄨󵄨𝑍 (𝑇
∗
)
󵄨󵄨󵄨󵄨 exp{−𝑚

∗

2
∫

𝑡

𝑇
∗

𝑘
2
(V) 𝑑V}

+𝑀
∗

2
∫

𝑡

𝑇
∗

[(𝛽
𝑈
+ 𝑘
𝑈

2
) 𝑆 (V) + 𝑎

𝑈

2
𝑃 (V)]

× exp{−𝑚∗
2
∫

𝑡

V
𝑘
2
(𝑠) 𝑑𝑠} 𝑑V,

≤
󵄨󵄨󵄨󵄨𝑍 (𝑇
∗
)
󵄨󵄨󵄨󵄨 exp {1 + 𝑚

∗

2
𝑘
𝑈

2
𝜔 −K (𝑡 − 𝑇

∗
)}

+ 𝑀
∗

2
exp {1 + 𝑚

∗

2
𝑘
𝑈

2
𝜔}

× ∫

𝑡

𝑇
∗

[(𝛽
𝑈
+ 𝑘
𝑈

2
) 𝑆 (V) + 𝑎

𝑈

2
𝑃 (V)]

× exp {K (V − 𝑡)} 𝑑V,

(76)
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where

𝑘
𝑈

2
= max
𝑡∈[0,𝜔]

{𝑘
2
(𝑡)} ,

𝛽
𝑈
= max
𝑡∈[0,𝜔]

{𝛽 (𝑡)} ,

𝑎
𝑈

2
= max
𝑡∈[0,𝜔]

{𝑎
2
(𝑡)} ,

0 < K < min
{

{

{

∫
𝜔

0
𝑚
∗

2
𝑘
2
(𝑡) 𝑑𝑡

𝜔
,
1

𝜔

}

}

}

.

(77)

Notice that lim
𝑡→+∞

𝑆(𝑡) = 0, lim
𝑡→+∞

𝑃(𝑡) = 0, and thus a
calculation shows that

lim
𝑡→+∞

∫

𝑡

𝑇
∗

𝑆 (V) exp {K (V − 𝑡)} 𝑑V = 0,

lim
𝑡→+∞

∫

𝑡

𝑇
∗

𝑃 (V) exp {K (V − 𝑡)} 𝑑V = 0.

(78)

Hence,

lim
𝑡→+∞

∫

𝑡

𝑇
∗

[(𝛽
𝑈
+ 𝑘
𝑈

2
) 𝑆(V) + 𝑎

𝑈

2
𝑃(V)]exp{K (V − 𝑡)} 𝑑V = 0.

(79)

Combining (76) and (79), we obtain that lim
𝑡→+∞

|𝑍(𝑡)| = 0,
which implies lim

𝑡→+∞
|𝐼(𝑡) − Γ(𝑡)| = 0. This completes the

proof.

5. Examples and Numerical Simulations

In this paper, we investigate the dynamic behaviors of a peri-
odic predator-prey system subject to impulsive perturbations,
in which disease only spreads among the prey species. A
good understanding of the permanence, global attractivity,
and partial extinction of the above system is obtained. Our
three main results (i.e., Theorems 6, 7, and 8) show that the
impulsive perturbations play important roles in shaping the
dynamics. To substantiate the theoretical results, we consider
the following system:

𝑆
󸀠

(𝑡) = 𝑆 (𝑡) [0.83 + 0.2 sin 2𝜋𝑡 − (0.96 + 0.01 cos 2𝜋𝑡)

× (𝑆 (𝑡) + 𝐼 (𝑡)) − (0.19 + 0.01 sin 2𝜋𝑡) 𝑃 (𝑡)

− (0.17 + 0.02 sin 2𝜋𝑡) 𝐼 (𝑡)] ,

𝐼
󸀠

(𝑡) = 𝐼 (𝑡) [(0.17 + 0.02 sin 2𝜋𝑡) 𝑆 (𝑡)

− (0.59 + 0.02 sin 2𝜋𝑡) (𝑆 (𝑡) + 𝐼 (𝑡))

− (0.26 + 0.02 cos 2𝜋𝑡) 𝑃 (𝑡)] ,

𝑃
󸀠

(𝑡) = 𝑃 (𝑡) [− (0.32 + 0.18 sin 2𝜋𝑡)

− (1.78 + 0.05 cos 2𝜋𝑡) 𝑃 (𝑡)

+ (0.16 + 0.02 sin 2𝜋𝑡) 𝑆 (𝑡)

+ (0.12 + 0.02 sin 2𝜋𝑡) 𝐼 (𝑡)] ,

𝑡 ̸= 𝜏
𝑘
,

𝑆 (𝜏
+

𝑘
) = (1 + 𝛼

𝑘
) 𝑆 (𝜏
𝑘
) ,

𝐼 (𝜏
+

𝑘
) = 𝐼 (𝜏

𝑘
) + 𝑝,

𝑃 (𝜏
+

𝑘
) = (1 + 𝛾

𝑘
) 𝑃 (𝜏
𝑘
) ,

𝑡 = 𝜏
𝑘
, 𝑘 ∈ N.

(80)

Obviously, the period 𝜔 = 1. Let 𝑞 = 1, 𝜏
𝑘
= 𝑘 ∈ N; then,

𝜏
𝑘+1

= 𝜏
𝑘
+ 1. When 𝛼

𝑘
= 0, 𝑝 = 0, 𝛾

𝑘
= 0, from Figures

1(a)–1(c), that species 𝑆 of system (80) is permanent while 𝐼,
𝑃 tend to extinction.

Provided that all the other coefficients remain unchanged,
we choose 𝛼

𝑘
= 0.26, 𝑝 = 0.1, and 𝛾

𝑘
= 0.53,

a calculation showing that the assumptions of Theorem 6
hold. So species 𝑆, 𝐼, 𝑃 are permanent (see Figures 2(a)–
2(c)), and moreover, we can prove that the assumptions of
Theorem 7 are satisfied, so system (80) is globally attractive.
From Figures 3(a)–3(c), it is true that the positive solution
{𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡)} with {𝑆(0), 𝐼(0), 𝑃(0)} = {0.69, 0.42, 0.265}

tends to the other positive solution {𝑆
∗
(𝑡), 𝐼
∗
(𝑡), 𝑃(𝑡)} with

{𝑆
∗
(0), 𝐼
∗
(0), 𝑃
∗
(0)} = {1.24, 0.11, 0.139}. To verify partial

extinction we choose 𝛼
𝑘
= −0.45, 𝑝 = 0.13, and 𝛾

𝑘
= −0.04;

system (62) with Γ(0) = 0.68 has a positive solution Γ(𝑡) (see
Figure 4(b)). We can see that the assumptions of Theorem 8
hold, so species 𝐼 stabilizes at a certain solution of a impulsive
system (see Figures 4(b) and 4(c)) while species 𝑆, 𝑃 tend
towards extinction (see Figures 4(a) and 4(d)). The above
facts demonstrate that the use of impulsive control strategy
can change the dynamic behaviors of the system, and hence a
suitable harvesting or stocking policy is important.
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