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We study a new class of three-point boundary value problems of nonlinear second-order q-difference equations. Our problems
contain different numbers of q in derivatives and integrals. By using a variety of fixed point theorems (such as Banach’s contraction
principle, Boyd andWong fixed point theorem for nonlinear contractions, Krasnoselskii’s fixed point theorem, and Leray-Schauder
nonlinear alternative) and Leray-Schauder degree theory, some new existence and uniqueness results are obtained. Illustrative
examples are also presented.

1. Introduction

The 𝑞-difference calculus or quantum calculus is an old sub-
ject that was initially developed by Jackson [1], Carmichael
[2], Mason [3], and Adams [4], in the first quarter of 20th
century, has been developed over the years, for instance, see
[5–14] and the references therein. In fact, 𝑞-calculus has a
rich history, and the details of its basic notions, results, and
methods can be found in the text [15]. In recent years, the
topic has attracted the attention of several researchers, and a
variety of new results can be found in the papers [16–28] and
the references cited therein.

In [24], Ahmad et al. studied a boundary value problem
of nonlinear 𝑞-difference equations with nonlocal boundary
conditions given by

𝐷
2

𝑞
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼

1

𝑞
,

𝛼
1
𝑥 (0) − 𝛽

1
𝐷
𝑞
𝑥 (0) = 𝛾

1
𝑥 (𝜂
1
) ,

𝛼
2
𝑥 (1) + 𝛽

2
𝐷
𝑞
𝑥 (1) = 𝛾

2
𝑥 (𝜂
2
) ,

(1)

where 𝑓 ∈ 𝐶(𝐼1
𝑞
× R,R), 𝐼1

𝑞
= {𝑞
𝑛
: 𝑛 ∈ N} ∪ {0, 1}, and

𝑞 ∈ (0, 1) is a fixed constant. The existence of solutions for

problem (1) is shown by means of a variety of fixed point
theorems such as Banach’s contraction principle, Krasnosel-
skii’s fixed point theorem, and Leray-Schauder nonlinear
alternative.

Yu and Wang [28] considered a boundary value problem
with the nonlinear second-order 𝑞-difference equation,

𝐷
2

𝑞
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞
𝑢 (𝑡)) = 0, 𝑡 ∈ 𝐼

1

𝑞
,

𝐷
𝑞
𝑢 (0) = 0, 𝐷

𝑞
𝑢 (1) = 𝛼𝑢 (1) ,

(2)

where𝑓 ∈ 𝐶(𝐼1
𝑞
×R2,R) and𝛼 ̸= 0 is a fixed number. Existence

and uniqueness of the solutions are obtained by means
of Banach’s contraction principle, Leray-Schauder nonlinear
alternative, and Leray-Schauder continuation theorem.

Pongarm et al. [29] considered sequential derivative of
nonlinear 𝑞-difference equation with three-point boundary
conditions,

𝐷
𝑞
(𝐷
𝑝
+ 𝜆) 𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐼

𝑇

𝑞
= [0, 𝑇] ∩ 𝐼

1

𝑞
,

𝑢 (0) = 0, 𝑢 (𝑇) = 𝛼∫

𝜂

0

𝑢 (𝑠) 𝑑
𝑟
𝑠,

(3)
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where 0 < 𝑝, 𝑞, 𝑟 < 1, 𝑓 ∈ 𝐶(𝐼𝑇
𝑞
× R,R), 0 < 𝜂 < 𝑇, and 𝜆,

𝛽 are given constants. Existence results are proved based on
Banach’s contraction mapping principle, Krasnoselskii’s fixed
point theorem, and Leray-Schauder degree theory.

We note that in the above-mentioned papers [24, 28] the
𝑞-numbers in the equation and the boundary conditions are
the same. As far as we know the paper by Pongarm et al. [29]
is the first paper which has different values of the 𝑞-numbers
in 𝑞-derivative and 𝑞-integral.

In this paper, we discuss the existence of solutions for the
following nonlinear 𝑞-difference equation with three-point
integral boundary condition

𝐷
2

𝑞
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼

𝑇

𝑞
,

𝛼𝑥 (𝜂) + 𝛽𝐷
𝑟
𝑥 (𝜂) = 0, ∫

𝑇

0

𝑥 (𝑠) 𝑑
𝑝
𝑠 = 0,

0 < 𝜂 < 𝑇,

(4)

where 𝑓 ∈ 𝐶(𝐼𝑇
𝑞
× R,R), 𝐼𝑇

𝑞
= 𝐼
1

𝑞
∩ [0, 𝑇], 𝐼1

𝑞
= {𝑞
𝑛
: 𝑛 ∈

N} ∪ {0, 1}, 𝑞 ∈ (0, 1) is a fixed constant, and 𝜂 ∈ 𝐼𝑇
𝑞
\ {0, 𝑇} :=

(0, 𝑇)
𝑞
. Also, 0 < 𝑝, 𝑞, 𝑟 < 1, and 𝛼, 𝛽 are given constants such

that 𝛽 ̸= 𝛼((𝑇/(1 + 𝑝)) − 𝜂).
It is noteworthy that, in the above problem (4), we have

three different values of the 𝑞-numbers, in 𝑞-derivatives and
the 𝑞-integral. Moreover, we emphasize the fact that, instead
the value 𝑥(0) is usually used in the literature, we use the
values of the function and its derivative in an intermediate
point 𝜂 ∈ (0, 𝑇).

The aim of this paper is to prove some existence and
uniqueness results for the boundary value problem (4). Our
results are based on Banach’s contraction mapping principle,
nonlinear contraction, Krasnoselskii’s fixed point theorem,
Leray-Schauder nonlinear alternative, and Leray-Schauder
degree theory.

The rest of the paper is organized as follows. In Section 2,
we provide some basic definitions, preliminaries facts, and a
lemma, which are used later. The main results are given in
Section 3. In the end, Section 4, some results illustrating the
results established in this paper are also presented.

2. Preliminaries

Let us recall some basic concepts of 𝑞-calculus [15, 18].

Definition 1. For 0 < 𝑞 < 1, one defines the 𝑞-derivative of a
real valued function 𝑓 as

𝐷
𝑞
𝑓 (𝑡) =

𝑓 (𝑡) − 𝑓 (𝑞𝑡)

(1 − 𝑞) 𝑡
, 𝑡 ∈ 𝐼

1

𝑞
\ {0} ,

𝐷
𝑞
𝑓 (0) = lim

𝑡→0

𝐷
𝑞
𝑓 (𝑡) .

(5)

The higher-order 𝑞-derivatives are given by

𝐷
0

𝑞
𝑓 (𝑡) = 𝑓 (𝑡) , 𝐷

𝑛

𝑞
𝑓 (𝑡) = 𝐷

𝑞
𝐷
𝑛−1

𝑞
𝑓 (𝑡) , 𝑛 ∈ N. (6)

For 𝑥 ≥ 0 one sets 𝐽
𝑥
= {𝑥𝑞

𝑛
: 𝑛 ∈ N ∪ {0}} ∪ {0} and

define, the definite 𝑞-integral of a function 𝑓 : 𝐽
𝑥
→ R by

𝐼
𝑞
𝑓 (𝑥) = ∫

𝑥

0

𝑓 (𝑠) 𝑑
𝑞
𝑠 =

∞

∑

𝑛=0

𝑥 (1 − 𝑞) 𝑞
𝑛
𝑓 (𝑥𝑞

𝑛
) (7)

provided that the series converges.
For 𝑎, 𝑏 ∈ 𝐽

𝑥
, one sets

∫

𝑏

𝑎

𝑓 (𝑠) 𝑑
𝑞
𝑠 = 𝐼
𝑞
𝑓 (𝑏) − 𝐼

𝑞
𝑓 (𝑎)

= (1 − 𝑞)

∞

∑

𝑛=0

𝑞
𝑛
[𝑏𝑓 (𝑏𝑞

𝑛
) − 𝑎𝑓 (𝑎𝑞

𝑛
)] .

(8)

Note that for 𝑎, 𝑏 ∈ 𝐽
𝑥
, one has 𝑎 = 𝑥𝑞𝑛1 , 𝑏 = 𝑥𝑞𝑛2 for

some 𝑛
1
, 𝑛
2
∈ N; thus, the definite integral ∫𝑏

𝑎
𝑓(𝑠)𝑑

𝑞
𝑠 is just a

finite sum, so no question about convergence is raised.
One notes that

𝐷
𝑞
𝐼
𝑞
𝑓 (𝑥) = 𝑓 (𝑥) , (9)

while if 𝑓 is continuous at 𝑥 = 0, then

𝐼
𝑞
𝐷
𝑞
𝑓 (𝑥) = 𝑓 (𝑥) − 𝑓 (0) . (10)

In 𝑞-calculus, the product rule and integration by parts
formula are

𝐷
𝑞
(𝑔ℎ) (𝑡) = (𝐷

𝑞
𝑔 (𝑡)) ℎ (𝑡) + 𝑔 (𝑞𝑡)𝐷

𝑞
ℎ (𝑡) ,

∫

𝑥

0

𝑓 (𝑡)𝐷
𝑞
𝑔 (𝑡) 𝑑

𝑞
𝑡

= [𝑓 (𝑡) 𝑔 (𝑡)]
𝑥

0
− ∫

𝑥

0

𝐷
𝑞
𝑓 (𝑡) 𝑔 (𝑞𝑡) 𝑑

𝑞
𝑡.

(11)

Further, reversing the order of integration is given by

∫

𝑡

0

∫

𝑠

0

𝑓 (𝑟) 𝑑
𝑞
𝑟 𝑑
𝑞
𝑠 = ∫

𝑡

0

∫

𝑡

𝑞𝑟

𝑓 (𝑟) 𝑑
𝑞
𝑠 𝑑
𝑞
𝑟. (12)

In the limit 𝑞 → 1, the above results correspond to their
counterparts in standard calculus.

Lemma 2. Let 0 < 𝑝, 𝑞, 𝑟 < 1 and 𝜂 ∈ (0, 𝑇)
𝑞
. Then, for any

𝑦 ∈ 𝐶(𝐼
𝑇

𝑞
,R), the boundary value problem,

𝐷
2

𝑞
𝑥 (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ 𝐼

𝑇

𝑞
, (13)

𝛼𝑥 (𝜂) + 𝛽𝐷
𝑟
𝑥 (𝜂) = 0, ∫

𝑇

0

𝑥 (𝑠) 𝑑
𝑝
𝑠 = 0, (14)
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is equivalent to the integral equation

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 −
(1 + 𝑝) 𝑡 − 𝑇

Ω

× [𝛼∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝛽∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠

+
𝛽

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠]

+
1 + 𝑝

𝑇Ω
(𝛼 (𝑡 − 𝜂) − 𝛽)∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑦 (V) 𝑑
𝑞
V𝑑
𝑝
𝑠,

(15)

where

Ω = (𝛼𝜂 + 𝛽) (1 + 𝑝) − 𝛼𝑇 ̸= 0. (16)

Proof. Taking double 𝑞-integral for (13), we have

𝑥 (𝑡) = ∫

𝑡

0

∫

𝑠

0

𝑦 (V) 𝑑
𝑞
V 𝑑
𝑞
𝑠 + 𝑐
1
𝑡 + 𝑐
2
. (17)

By changing the order of 𝑞-integration, we have

𝑥 (𝑡) = ∫

𝑡

0

∫

𝑡

𝑞V
𝑦 (V) 𝑑

𝑞
𝑠 𝑑
𝑞
V + 𝑐
1
𝑡 + 𝑐
2

= ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝑐
1
𝑡 + 𝑐
2
.

(18)

In particular, for 𝑡 = 𝜂, we get

𝑥 (𝜂) = ∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝜂𝑐
1
+ 𝑐
2
. (19)

Taking 𝑟-derivative for (18), for 𝑡 ̸= 0, we obtain

𝐷
𝑟
𝑥 (𝑡)

= 𝐷
𝑟
[∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝑐
1
𝑡 + 𝑐
2
]

=
1

(1−𝑟) 𝑡
[∫

𝑡

0

(𝑡−𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 −∫

𝑟𝑡

0

(𝑟𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠]+𝑐
1

= ∫

𝑟𝑡

0

𝑦 (𝑠) 𝑑
𝑞
𝑠 + ∫

𝑡

𝑟𝑡

𝑡 − 𝑞𝑠

(1 − 𝑟) 𝑡
𝑦 (𝑠) 𝑑

𝑞
𝑠 + 𝑐
1
.

(20)

For 𝑡 = 0, we have

𝐷
𝑟
𝑥 (0) = lim

𝑡→0

𝐷
𝑟
𝑥 (0)

= lim
𝑡→0

𝑡 (1 − 𝑞)

1 − 𝑟

∞

∑

𝑛=0

𝑞
𝑛
(1 − 𝑞

𝑛+1
)

× [ℎ (𝑡𝑞
𝑛
) − 𝑟
2
ℎ (𝑟𝑡𝑞

𝑛
)] + 𝑐
1

= 𝑐
1
.

(21)

Therefore,

𝐷
𝑟
𝑥 (𝜂) = ∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠 + ∫

𝜂

𝑟𝜂

𝜂 − 𝑞𝑠

(1 − 𝑟) 𝜂
𝑦 (𝑠) 𝑑

𝑞
𝑠 + 𝑐
1
. (22)

Now, using the first condition of (14) with (19), (22), we have

(𝛼𝜂 + 𝛽) 𝑐
1
+ 𝛼𝑐
2
= −𝛼∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠

− 𝛽∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠

−
𝛽

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠.

(23)

Taking the 𝑝-integral for (18) from 0 to 𝑡, we obtain

∫

𝑡

0

𝑥 (𝑠) 𝑑
𝑝
𝑠 = ∫

𝑡

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑦 (V) 𝑑
𝑞
V 𝑑
𝑝
𝑠 +

𝑡
2

1 + 𝑝
𝑐
1
+ 𝑡𝑐
2
.

(24)

Substituting 𝑡 = 𝑇 in (24) and using the second condition of
(14), we get

𝑇
2

1 + 𝑝
𝑐
1
+ 𝑇𝑐
2
= −∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑦 (V) 𝑑
𝑞
V 𝑑
𝑝
𝑠. (25)

Solving the system of linear equations (23) and (25) for the
unknown constants 𝑐

1
and 𝑐
2
, we have

𝑐
1
= −
1 + 𝑝

Ω
[𝛼∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠

+ 𝛽∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠 +

𝛽

(1 − 𝑟) 𝜂

×∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠]

+
𝛼 (1 + 𝑝)

𝑇Ω
∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑦 (V) 𝑑
𝑞
V 𝑑
𝑝
𝑠,

𝑐
2
= −
(𝛼𝜂 + 𝛽) (1 + 𝑝)

𝑇Ω
∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑦 (V) 𝑑
𝑞
V 𝑑
𝑝
𝑠

+
𝑇

Ω
[𝛼∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝛽∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠

+
𝛽

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠] ,

(26)

where Ω is defined by (16). Substituting the values of 𝑐
1
and

𝑐
2
in (18), we obtain (15). This completes the proof.

Let C = 𝐶(𝐼
𝑇

𝑞
,R) denotes the Banach space of all the

continuous functions from 𝐼𝑇
𝑞
to R endowed with the norm
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defined by ‖𝑥‖ = sup{|𝑥(𝑡)|, 𝑡 ∈ 𝐼𝑇
𝑞
}. Define an operator

𝐴 : C → C by

(𝐴𝑥) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠 −
(1 + 𝑝) 𝑡 − 𝑇

Ω

× [𝛼∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+ 𝛽∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+
𝛽

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠]

+
(1 + 𝑝) (𝛼 (𝑡 − 𝜂) − 𝛽)

𝑇Ω

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑓 (V, 𝑥 (V)) 𝑑
𝑞
V 𝑑
𝑝
𝑠.

(27)

Observe that the problem (4) has solutions if and only if the
operator 𝐴 has fixed points.

For the sake of convenience, we set a constant Λ as

Λ =
𝑇
2

1 + 𝑞
+
𝑝𝑇

|Ω|
[
|𝛼| 𝜂
2

1 + 𝑞
+
𝛽
 𝑟𝜂

+

𝛽
 𝜂 (1 + 𝑞 (2 + 𝑟))

1 + 𝑞
]

+
(1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
) 𝑇
2

(1 + 𝑞) (1 + 𝑝 + 𝑝2) |Ω|
.

(28)

3. Main Results

Now, we are in the position to establish the main results. Our
first result is based on Banach’s fixed point theorem.

Theorem 3. Assume that 𝑓 : 𝐼𝑇
𝑞
× R → R is a continuous

function satisfying the conditions

(H
1
) |𝑓(𝑡, 𝑥)−𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥−𝑦|, for all 𝑡 ∈ 𝐼𝑇

𝑞
and𝑥, 𝑦 ∈ R,

(H
2
) 𝐿Λ < 1,

where 𝐿 is a Lipschitz constant, and Λ is defined by (28).
Then, the boundary value problem (4) has a unique

solution.

Proof. We transform the boundary value problem (4) into a
fixed point problem 𝑥 = 𝐴𝑥, where𝐴 : C → C is defined by
(27). Assume that sup

𝑡∈𝐼
𝑇

𝑞

|𝑓(𝑡, 0)| = 𝑀, and choose a constant
𝑅 satisfying

𝑅 ≥
𝑀Λ

1 − 𝐿Λ
. (29)

Now, we will show that 𝐴𝐵
𝑅
⊂ 𝐵
𝑅
, where 𝐵

𝑅
= {𝑥 ∈ C :

‖𝑥‖ ≤ 𝑅}. For any 𝑥 ∈ 𝐵
𝑅
, we have

‖𝐴𝑥‖ = sup
𝑡∈𝐼
𝑇

𝑞


∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠 −
(1 + 𝑝) 𝑡 − 𝑇

Ω

× [𝛼∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+ 𝛽∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠 +

𝛽

(1 − 𝑟) 𝜂

×∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠]

+
(1 + 𝑝) (𝛼 (𝑡 − 𝜂) − 𝛽)

𝑇Ω

×∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑓 (V, 𝑥 (V)) 𝑑
𝑞
V 𝑑
𝑝
𝑠



≤ sup
𝑡∈𝐼
𝑇

𝑞

{∫

𝑡

0

(𝑡 − 𝑞𝑠)

× (
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

 +
𝑓 (𝑠, 0)

) 𝑑𝑞𝑠

+

(1 + 𝑝) 𝑡 − 𝑇


|Ω|

× [|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) (
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)



+
𝑓 (𝑠, 0)

 ) 𝑑𝑞𝑠

+
𝛽
 ∫

𝑟𝜂

0

(
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)



+
𝑓 (𝑠, 0)

) 𝑑𝑞𝑠

+

𝛽


(1 − 𝑟) 𝜂

× ∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) (
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)



+
𝑓 (𝑠, 0)

) 𝑑𝑞𝑠]

+
(1 + 𝑝)

𝛼 (𝑡 − 𝜂) − 𝛽


𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V)

× (
𝑓 (V, 𝑥 (𝑠)) − 𝑓 (V, 0)



+
𝑓 (V, 0)

) 𝑑𝑞V 𝑑𝑝𝑠}

≤ sup
𝑡∈𝐼
𝑇

𝑞

{∫

𝑡

0

(𝑡 − 𝑞𝑠) (𝐿𝑅 +𝑀) 𝑑
𝑞
𝑠 +

(1 + 𝑝) 𝑡 − 𝑇


|Ω|
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× [ |𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) (𝐿𝑅 +𝑀) 𝑑
𝑞
𝑠 +
𝛽


× ∫

𝑟𝜂

0

(𝐿𝑅 +𝑀)𝑑
𝑞
𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) (𝐿𝑅 +𝑀)𝑑
𝑞
𝑠]

+
(1 + 𝑝)

𝛼 (𝑡 − 𝜂) − 𝛽


𝑇 |Ω|

×∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) (𝐿𝑅 +𝑀)𝑑
𝑞
V 𝑑
𝑝
𝑠}

≤ (𝐿𝑅 +𝑀){
𝑇
2

1 + 𝑞
+
𝑝𝑇

|Ω|

× [
|𝛼| 𝜂
2

1 + 𝑞
+
𝛽
 𝑟𝜂

+

𝛽
 𝜂 (1 + 𝑞 (2 + 𝑟))

1 + 𝑞
]

+
(1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
) 𝑇
2

(1 + 𝑞) (1 + 𝑝 + 𝑝2) |Ω|
}

= (𝐿𝑅 +𝑀)Λ ≤ 𝑅.

(30)

Therefore, 𝐴𝐵
𝑅
⊂ 𝐵
𝑅
.

Next, we will show that 𝐴 is a contraction. For any 𝑥, 𝑦 ∈
C and for each 𝑡 ∈ 𝐼𝑇

𝑞
, we have

𝐴𝑥 − 𝐴𝑦


= sup
𝑡∈𝐼
𝑇

𝑞

(𝐴𝑥) (𝑡) − (𝐴𝑦) (𝑡)


≤ sup
𝑡∈𝐼
𝑇

𝑞


∫

𝑡

0

(𝑡 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

 𝑑𝑞𝑠

−
(1 + 𝑝) 𝑡 − 𝑇

Ω

× [𝛼∫

𝜂

0

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

−𝑓 (𝑠, 𝑦 (𝑠))
 𝑑𝑞𝑠

+ 𝛽∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠))

−𝑓 (𝑠, 𝑥
2
(𝑠))
 𝑑𝑞𝑠

+
𝛽

(1 − 𝑟) 𝜂

× ∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠)

−𝑓 (𝑠, 𝑦 (𝑠))
 𝑑𝑞𝑠 ]

+
(1 + 𝑝) (𝛼 (𝑡 − 𝜂) − 𝛽)

𝑇Ω

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V)

×
𝑓 (V, 𝑥 (V)) − 𝑓 (V, 𝑦 (V))

 𝑑𝑞V 𝑑𝑝𝑠


≤ sup
𝑡∈𝐼
𝑇

𝑞

{𝐿
𝑥 − 𝑦

 ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑑
𝑞
𝑠 + 𝐿

𝑥 − 𝑦


×

(1 + 𝑝) 𝑡 − 𝑇


|Ω|
[|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑑
𝑞
𝑠

+
𝛽
 ∫

𝑟𝜂

0

𝑑
𝑞
𝑠 +

𝛽


(1 − 𝑟) 𝜂

×∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑑
𝑞
𝑠]

+
(1 + 𝑝) (|𝛼| (𝑡 − 𝜂) +

𝛽
)

𝑇 |Ω|
𝐿
𝑥 − 𝑦



×∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑑
𝑞
V 𝑑
𝑝
𝑠}

≤ 𝐿
𝑥 − 𝑦

 {
𝑇
2

1 + 𝑞
+
𝑝𝑇

|Ω|

× [
|𝛼| 𝜂
2

1 + 𝑞
+
𝛽
 𝑟𝜂

+

𝛽
 𝜂 (1 + 𝑞 (2 + 𝑟))

1 + 𝑞
]

+
(1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
) 𝑇
2

(1 + 𝑞) (1 + 𝑝 + 𝑝2) |Ω|
}

= 𝐿Λ
𝑥 − 𝑦

 .

(31)

Since 𝐿Λ < 1, 𝐴 is a contraction. Thus, the conclusion of the
theorem follows by Banach’s contraction mapping principle.
This completes the proof.

Next, we can still deduce the existence and uniqueness
of a solution to the boundary value problem (4). We will use
nonlinear contraction to accomplish this.

Definition 4. Let 𝐸 be a Banach space and let 𝐹 : 𝐸 → 𝐸

be a mapping. 𝐹 is said to be a nonlinear contraction if there
exists a continuous nondecreasing function Ψ : 𝑅+ → 𝑅

+
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such that Ψ(0) = 0 and Ψ(𝜌) < 𝜌 for all 𝜌 > 0 with the
following property:

𝐹𝑥 − 𝐹𝑦
 ≤ Ψ (

𝑥 − 𝑦
) , ∀𝑥, 𝑦 ∈ 𝐸. (32)

Lemma 5 (Boyd and Wong [30]). Let 𝐸 be a Banach space
and let 𝐹 : 𝐸 → 𝐸 be a nonlinear contraction. Then, 𝐹 has a
unique fixed point in 𝐸.

Theorem 6. Suppose that

(H
3
) there exists a continuous function ℎ : 𝐼𝑇

𝑞
→ R+ such

that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ≤ ℎ (𝑡)

𝑥 − 𝑦


𝐺 +
𝑥 − 𝑦



(33)

for all 𝑡 ∈ 𝐼𝑇
𝑞
and 𝑥, 𝑦 ≥ 0, where

𝐺 = ∫

𝑇

0

(𝑇 − 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠 +
𝑝𝑇

|Ω|

× [ |𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠 +
𝛽
 ∫

𝑟𝜂

0

ℎ (𝑠) 𝑑
𝑞
𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠]

+
(1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
)

𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) ℎ (V) 𝑑
𝑞
V𝑑
𝑝
𝑠

(34)

and Ω is defined in (16).

Then, the boundary value problem (4) has a unique solu-
tion.

Proof. Let the operator 𝐴 : C → C be defined as (27). We
define a continuous nondecreasing function Ψ : R+ → R+

by

Ψ (𝜌) =
𝐺𝜌

𝐺 + 𝜌
, ∀𝜌 ≥ 0, (35)

such that Ψ(0) = 0 and Ψ(𝜌) < 𝜌, for all 𝜌 > 0.
Let 𝑥, 𝑦 ∈ C. Then, we get

𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
 ≤
ℎ (𝑠)

𝐺
Ψ (
𝑥 − 𝑦

) .
(36)

Thus,
𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)



≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠) ℎ (𝑠)

𝑥 (𝑠) − 𝑦 (𝑠)


𝐺 +
𝑥 (𝑠) − 𝑦 (𝑠)



𝑑
𝑞
𝑠

+

(1 + 𝑝) 𝑡 − 𝑇


|Ω|
[|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠)

× ℎ (𝑠)

𝑥 (𝑠) − 𝑦 (𝑠)


𝐺 +
𝑥 (𝑠) − 𝑦 (𝑠)



𝑑
𝑞
𝑠

+
𝛽
 ∫

𝑟𝜂

0

ℎ (𝑠)

𝑥 (𝑠) − 𝑦 (𝑠)


𝐺 +
𝑥 (𝑠) − 𝑦 (𝑠)



𝑑
𝑞
𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)

×ℎ (𝑠)

𝑥 (𝑠) − 𝑦 (𝑠)


𝐺 +
𝑥 (𝑠) − 𝑦 (𝑠)



𝑑
𝑞
𝑠]

+
(1 + 𝑝)

𝛼 (𝑡 − 𝜂) − 𝛽


𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V)

× ℎ (V)
𝑥 (V) − 𝑦 (V)



𝐺∗ +
𝑥 (V) − 𝑦 (V)



𝑑
𝑞
V 𝑑
𝑝
𝑠

≤ {∫

𝑇

0

(𝑇 − 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠 +
𝑝𝑇

|Ω|

× [ |𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠 +
𝛽
 ∫

𝑟𝜂

0

ℎ (𝑠) 𝑑
𝑞
𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠]

+
(1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
)

𝑇 |Ω|

×∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) ℎ (V) 𝑑
𝑞
V 𝑑
𝑝
𝑠}

×

𝑥 − 𝑦


𝐺 +
𝑥 − 𝑦



=
𝐺
𝑥 − 𝑦



𝐺 +
𝑥 − 𝑦



, ∀𝑡 ∈ 𝐼
𝑇

𝑞
.

(37)

This implies that ‖𝐴𝑥 − 𝐴𝑦‖ ≤ Ψ(‖𝑥 − 𝑦‖). Hence, 𝐴 is a
nonlinear contraction. Therefore, by Lemma 5, the operator
𝐴 has a unique fixed point inC, which is a unique solution of
problem (4).

The third result is based on the following Krasnoselskii
fixed point theorem [31].
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Theorem 7. Let𝐾 be a bounded closed convex and nonempty
subset of a Banach space𝑋. Let 𝐴, 𝐵 be operators such that:

(i) 𝐴𝑥 + 𝐵𝑦 ∈ 𝐾 whenever 𝑥, 𝑦 ∈ 𝐾,

(ii) 𝐴 is compact and continuous,

(iii) 𝐵 is a contraction mapping.

Then, there exists 𝑧 ∈ 𝐾 such that 𝑧 = 𝐴𝑧 + 𝐵𝑧.

Theorem 8. Assume that (𝐻
1
) and (𝐻

2
) hold. In addition one

supposes that:

(H
4
) |𝑓(𝑡, 𝑥)| ≤ 𝜇(𝑡), for all (𝑡, 𝑥) ∈ 𝐼𝑇

𝑞
× R, with 𝜇 ∈

𝐿
1
(𝐼
𝑇

𝑞
,R+).

If

Λ < 1, (38)

where Λ is given by (28), then the boundary value problem (4)
has at least one solution on 𝐼𝑇

𝑞
.

Proof. Setting max
𝑡∈𝐼
𝑇

𝑞

|𝜇(𝑡)| = ‖𝜇‖ and choosing a constant

𝑅 ≥
𝜇
 Λ, (39)

we consider 𝐵
𝑅
= {𝑥 ∈ C : ‖𝑥‖ ≤ 𝑅}.

In view of Lemma 2, we define the operatorsF
1
andF

2

on the ball 𝐵
𝑅
as

(F
1
𝑥) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠,

(F
2
𝑥) (𝑡)

= −
(1 + 𝑝) 𝑡 − 𝑇

Ω
[𝛼∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+ 𝛽∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+
𝛽

(1 − 𝑟) 𝜂

×∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠]

+
(1 + 𝑝) (𝛼 (𝑡 − 𝜂) − 𝛽)

𝑇Ω

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑓 (V, 𝑥 (V)) 𝑑
𝑞
V 𝑑
𝑝
𝑠.

(40)

For 𝑥, 𝑦 ∈ 𝐵
𝑅
, by computing directly, we have

F1𝑥 +F2𝑦
 ≤
𝜇
 ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑑
𝑞
𝑠 +
𝜇


(1 + 𝑝) 𝑡 − 𝑇


|Ω|

× [|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑑
𝑞
𝑠 +
𝛽
 ∫

𝑟𝜂

0

𝑑
𝑞
𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑑
𝑞
𝑠]

+
𝜇


(1 + 𝑝)
𝛼 (𝑡 − 𝜂) − 𝛽)



𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑑
𝑞
V 𝑑
𝑝
𝑠

≤
𝜇
 Λ ≤ 𝑅.

(41)

Therefore, F
1
𝑥 + F

2
𝑦 ∈ 𝐵

𝑅
. Condition (38) implies

that F
2
is a contraction mapping. Next, we will show that

F
1
is compact and continuous. Continuity of 𝑓 coupled

with the assumption (𝐻
3
) implies that the operator F

1

is continuous and uniformly bounded on 𝐵
𝑅
. We define

sup
(𝑡,𝑥)∈𝐼

𝑇

𝑞
×𝐵
𝑅

|𝑓(𝑡, 𝑥)| = 𝑓max < ∞. For 𝑡
1
, 𝑡
2
∈ 𝐼
𝑇

𝑞
with 𝑡

1
≤ 𝑡
2

and 𝑥 ∈ 𝐵
𝑅
, we have

F1𝑥 (𝑡2) −F1𝑥 (𝑡1)
 =


∫

𝑡
2

0

(𝑡
2
− 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑

𝑞
𝑠

−∫

𝑡
1

0

(𝑡
1
− 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑

𝑞
𝑠



=


∫

𝑡
1

0

(𝑡
2
− 𝑡
1
) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑

𝑞
𝑠

+∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑

𝑞
𝑠



≤

𝑡
2

2
− 𝑡
2

1


(
1 + 2𝑞

1 + 𝑞
)𝑓max.

(42)

Actually, as 𝑡
2
− 𝑡
1
→ 0, the right-hand side of the above

inequality tends to be zero. So,F
1
is relatively compact on𝐵

𝑅
.

Hence, by the Arzelá-Ascoli Theorem,F
1
is compact on 𝐵

𝑅
.

Therefore, all the assumptions ofTheorem 7 are satisfied, and
the conclusion ofTheorem 7 implies that the boundary value
problem (4) has at least one solution on 𝐼𝑇

𝑞
. This completes

the proof.

As the fourth result, we prove the existence of solutions of
(4) by using Leray-Schauder nonlinear alternative.

Theorem 9 (Nonlinear Alternative for Single Valued Maps
[32]). Let 𝐸 be a Banach space, 𝐶 a closed convex subset of 𝐸,
𝑈 an open subset of 𝐶, and 0 ∈ 𝑈. Suppose that 𝐹 : 𝑈 → 𝐶

is a continuous, compact (that is, 𝐹(𝑈) is a relatively compact
subset of 𝐶) map. Then, either
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(i) 𝐹 has a fixed point in 𝑈 or

(ii) there is a 𝑢 ∈ 𝜕𝑈 (the boundary of 𝑈 in 𝐶) and 𝜆 ∈
(0, 1) with 𝑢 = 𝜆𝐹(𝑢).

Theorem 10. Assume that:

(H
5
) there exists a continuous nondecreasing function 𝜓 :
[0,∞) → (0,∞) and a function 𝑧 ∈ 𝐿1(𝐼𝑇

𝑞
,R+) such

that

𝑓 (𝑡, 𝑢)
 ≤ 𝑧 (𝑡) 𝜓 (‖𝑢‖) , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑢) ∈ 𝐼

𝑇

𝑞
×R; (43)

(H
6
) there exists a constant𝑀 > 0 such that

𝑀

𝜓(𝑀) ‖𝑧‖
𝐿
1Λ
> 1. (44)

Then, the boundary value problem (4) has at least one solution
on 𝐼𝑇
𝑞
.

Proof. We will show that 𝐴 maps bounded sets (balls) into
bounded sets in C. For a positive number 𝜌, let 𝐵

𝜌
= {𝑥 ∈

𝐶(𝐼
𝑇

𝑞
,R) : ‖𝑥‖ ≤ 𝜌} be a bounded ball in 𝐶(𝐼𝑇

𝑞
,R). Then, for

𝑡 ∈ 𝐼
𝑇

𝑞
, we have

|(𝐴𝑥) (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠 +

(1 + 𝑝) 𝑡 − 𝑇


|Ω|

× [ |𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠

+
𝛽
 ∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑞𝑠 +

𝛽


(1 − 𝑟) 𝜂

×∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠]

+
(1 + 𝑝)

𝛼 (𝑡 − 𝜂) − 𝛽


𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑓 (V, 𝑥 (V))
 𝑑𝑞V 𝑑𝑝𝑠

≤ 𝜓 (‖𝑥‖) ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑧 (𝑠) 𝑑
𝑞
𝑠 +
𝜓 (‖𝑥‖)

(1 + 𝑝) 𝑡 − 𝑇


|Ω|

× [ |𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑧 (𝑠) 𝑑
𝑞
𝑠 +
𝛽
 ∫

𝑟𝜂

0

𝑧 (𝑠) 𝑑
𝑞
𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑧 (𝑠) 𝑑
𝑞
𝑠]

+
𝜓 (‖𝑥‖) (1 + 𝑝)

𝛼 (𝑡 − 𝜂) − 𝛽


𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑧 (𝑠) 𝑑
𝑞
V 𝑑
𝑝
𝑠

≤ 𝜓 (‖𝑥‖) ‖𝑧‖
𝐿
1 ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑑
𝑞
𝑠

+
𝜓 (‖𝑥‖) ‖𝑧‖

𝐿
1

(1 + 𝑝) 𝑡 − 𝑇


|Ω|

× [|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑑
𝑞
𝑠 +
𝛽
 ∫

𝑟𝜂

0

𝑑
𝑞
𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑑
𝑞
𝑠]

+
𝜓 (‖𝑥‖) ‖𝑧‖𝐿1 (1 + 𝑝)

𝛼 (𝑡 − 𝜂) − 𝛽


𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑑
𝑞
V𝑑
𝑝
𝑠

≤
𝜓 (‖𝑥‖) ‖𝑧‖

𝐿
1𝑇
2

1 + 𝑞

+
𝜓 (‖𝑥‖) ‖𝑧‖

𝐿
1𝑝𝑇

|Ω|
[
|𝛼| 𝜂
2

1 + 𝑞
+
𝛽
 𝑟𝜂

+

𝛽
 𝜂 (1 + 𝑞 (2 + 𝑟))

1 + 𝑞
]

+
𝜓 (‖𝑥‖) ‖𝑧‖

𝐿
1 (1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
) 𝑇
2

(1 + 𝑞) (1 + 𝑝 + 𝑝2) |Ω|

= 𝜓 (‖𝑥‖) ‖𝑧‖
𝐿
1Λ.

(45)

Consequently,

‖𝐴𝑥‖ ≤ 𝜓 (‖𝑥‖) ‖𝑧‖𝐿1Λ. (46)

Next, we will show that 𝐴maps bounded sets into equico-
ntinuous sets of 𝐶(𝐼𝑇

𝑞
,R). Let 𝑡

1
, 𝑡
2
∈ 𝐼
𝑇

𝑞
with 𝑡

1
≤ 𝑡
2
and

𝑥 ∈ 𝐵
𝜌
. Then, we have

(𝐴𝑥) (𝑡2) − (𝐴𝑥) (𝑡1)


≤


∫

𝑡
2

0

(𝑡
2
− 𝑞𝑠)

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑞𝑠

−∫

𝑡
1

0

(𝑡
1
− 𝑞𝑠)

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑞𝑠



+
(1 + 𝑝)

𝑡2 − 𝑡1


|Ω|
[|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠
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+
𝛽
 ∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑞𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)

×
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠]

+
(1 + 𝑝) |𝛼|

𝑡2 − 𝑡1


𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑓 (V, 𝑥 (V))
 𝑑𝑞V 𝑑𝑝𝑠

≤ ∫

𝑡
1

0

𝑡2 − 𝑡1
 𝑧 (𝑠) 𝜓 (𝜌) 𝑑𝑞𝑠

+ ∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑞𝑠) 𝑧 (𝑠) 𝜓 (𝜌) 𝑑

𝑞
𝑠

+
(1 + 𝑝)

𝑡2 − 𝑡1


|Ω|
[ |𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑧 (𝑠) 𝜓 (𝜌) 𝑑
𝑞
𝑠

+
𝛽
 ∫

𝑟𝜂

0

𝑧 (𝑠) 𝜓 (𝜌) 𝑑
𝑞
𝑠 +

𝛽


(1 − 𝑟) 𝜂

× ∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑧 (𝑠) 𝜓 (𝜌) 𝑑
𝑞
𝑠]

+
(1 + 𝑝) |𝛼|

𝑡2 − 𝑡1


𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑧 (𝑠) 𝜓 (𝜌) 𝑑
𝑞
V 𝑑
𝑝
𝑠.

(47)

As 𝑡
2
− 𝑡
1
→ 0, the right-hand side of the above inequality

tends to zero independently of 𝑥 ∈ 𝐵
𝜌
. As 𝐴 satisfies the

above assumptions; therefore, it follows by the Arzelá-Ascoli
theorem that 𝐴 : 𝐶(𝐼

𝑇

𝑞
,R) → 𝐶(𝐼

𝑇

𝑞
,R) is completely

continuous.
Let 𝑥 be a solution. Then, for 𝑡 ∈ 𝐼𝑇

𝑞
and following the

similar computations as in the first step, we have

|𝑥 (𝑡)| ≤ 𝜓 (‖𝑥‖) ‖𝑧‖𝐿1Λ. (48)

Consequently, we have

‖𝑥‖

𝜓 (‖𝑥‖) ‖𝑧‖𝐿1Λ
≤ 1. (49)

In view of (𝐻
5
), there exists𝑀 such that ‖𝑥‖ ̸=𝑀. Let us set

𝑈 = {𝑥 ∈ 𝐶 (𝐼
𝑇

𝑞
,R) : ‖𝑥‖ < 𝑀} . (50)

Note that the operator 𝐴 : 𝑈 → 𝐶(𝐼
𝑇

𝑞
,R) is continuous

and completely continuous. From the choice of 𝑈, there is
no 𝑥 ∈ 𝜕𝑈 such that 𝑥 = 𝜆𝐴𝑥 for some 𝜆 ∈ (0, 1). Conse-
quently, by the nonlinear alternative of Leray-Schauder type
(Theorem 9), we deduce that𝐴 has a fixed point 𝑥 ∈ 𝑈which
is a solution of the problem (4).This completes the proof.

Finally, we prove that problem (4) has at least one solution
on 𝐼𝑇
𝑞
by using Leray-Schauder degree theory.

Theorem 11. Let 𝑓 : 𝐼𝑇
𝑞
× R → R be a continuous function.

Assume that:

(H
7
) there exist constants 0 ≤ 𝜅 < Λ−1, where Λ is given by
(28) and 𝑁 > 0 such that |𝑓(𝑡, 𝑥)| ≤ 𝜅|𝑥| + 𝑁 for all
𝑡 ∈ 𝐼
𝑇

𝑞
, 𝑥 ∈ C.

Then, the boundary value problem (4) has at least one solution.

Proof. Let us define an operator 𝐴 : C → C as (27). We
wish to prove that there exists at least one solution 𝑥 ∈ C of
the fixed point equation

𝑥 = 𝐴𝑥. (51)

We define a ball 𝐵
𝑅
⊂ C, with a constant radius 𝑅 > 0 given

by

𝐵
𝑅
= {𝑥 ∈ C : max

𝑡∈𝐼
𝑇

𝑞

|𝑥 (𝑡)| < 𝑅} . (52)

Then, it is sufficient to show that 𝐴 : 𝐵
𝑅
→ C(𝐼𝑇

𝑞
) satisfies

𝑥 ̸= 𝜆𝐴𝑥, ∀𝑥 ∈ 𝜕𝐵
𝑅
, ∀𝜆 ∈ [0, 1] . (53)

Now, we set

𝐻(𝜆, 𝑥) = 𝜆𝐴𝑥, 𝑥 ∈ C, 𝜆 ∈ [0, 1] . (54)

Then, by the Arzelá-Ascoli theorem, we conclude that a
continuousmap ℎ

𝜆
defined by ℎ

𝜆
(𝑥) = 𝑥−𝐻(𝜆, 𝑥) = 𝑥−𝜆𝐴𝑥

is completely continuous. If (53) holds, then the following
Leray-Schauder degrees are well defined. From the homotopy
invariance of topological degree, it follows that

deg (ℎ
𝜆
, 𝐵
𝑅
, 0) = deg (𝐼 − 𝜆𝐴, 𝐵

𝑅
, 0) = deg (ℎ

1
, 𝐵
𝑅
, 0)

= deg (ℎ
0
, 𝐵
𝑅
, 0) = deg (𝐼, 𝐵

𝑅
, 0) = 1 ̸= 0,

0 ∈ 𝐵
𝑅
,

(55)

where 𝐼 denotes the unit operator. By the nonzero property
of Leray-Schauder degree, ℎ

1
(𝑥) = 𝑥 − 𝐴𝑥 = 0 for at least

one 𝑥 ∈ 𝐵
𝑅
. Let us assume that 𝑥 = 𝜆𝐴𝑥 for some 𝜆 ∈ [0, 1].

Then, for all 𝑡 ∈ 𝐼𝑇
𝑞
, we obtain

|𝑥 (𝑡)|

= |𝜆 (𝐴𝑥) (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠 +

(1 + 𝑝) 𝑡 − 𝑇


|Ω|

× [|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠
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+
𝛽
 ∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑞𝑠 +

𝛽


(1 − 𝑟) 𝜂

×∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠]

+
(1 + 𝑝)

𝛼 (𝑡 − 𝜂) − 𝛽


𝑇 |Ω|
∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V)

×
𝑦 (V, 𝑥 (V))

 𝑑𝑞V 𝑑𝑝𝑠

≤ (𝜅 |𝑥| + 𝑁)∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑑
𝑞
𝑠 + (𝜅 |𝑥| + 𝑁)

×

(1 + 𝑝) 𝑡 − 𝑇


|Ω|

× [|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) 𝑑
𝑞
𝑠 +
𝛽
 ∫

𝑟𝜂

0

𝑑
𝑞
𝑠

+

𝛽


(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑑
𝑞
𝑠]

+ (𝜅 |𝑥| + 𝑁)
(1 + 𝑝)

𝛼 (𝑡 − 𝜂) − 𝛽


𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑑
𝑞
V𝑑
𝑝
𝑠

≤ (𝜅 |𝑥| + 𝑁){
𝑇
2

1 + 𝑞
+
𝑝𝑇

|Ω|
[
|𝛼| 𝜂
2

1 + 𝑞
+
𝛽
 𝑟𝜂

+

𝛽
 𝜂 (1 + 𝑞 (2 + 𝑟))

1 + 𝑞
]

+
(1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
) 𝑇
2

(1 + 𝑞) (1 + 𝑝 + 𝑝2) |Ω|
}

= (𝜅 |𝑥| + 𝑁)Λ.

(56)
Taking norm sup

𝑡∈𝐼
𝑇

𝑞

|𝑥(𝑡)| = ‖𝑥‖ and solving it for ‖𝑥‖, this
yields

‖𝑥‖ ≤
𝑁Λ

1 − 𝜅Λ
. (57)

Let 𝑅 = (𝑁Λ/(1 − 𝜅Λ)) + 1, then (53) holds. This completes
the proof

4. Examples

In this section, we illustrate our main results with some
examples. Let us consider the following boundary value
problem of nonlinear second-order 𝑞-difference equations
with three-point boundary conditions

𝐷
2

1/2
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼

1/2

1/2
= 𝐼
1

1/2
∩ [0,

1

2
] ,

2

3
𝑥 (
1

8
) −
1

3
𝐷
3/4
𝑥(
1

8
) = 0, ∫

1/2

0

𝑥 (𝑠) 𝑑
1/4
𝑠 = 0.

(58)

Here, we have 𝑞 = 1/2, 𝑝 = 1/4, 𝑟 = 3/4, 𝑇 = 1/2, 𝛼 = 2/3,
𝛽 = −1/3, and 𝜂 = 1/8. We find that

Λ =
𝑇
2

1 + 𝑞
+
𝑝𝑇

|Ω|
[
|𝛼| 𝜂
2

1 + 𝑞

+
𝛽
 𝑟𝜂 +

𝛽
 𝜂 (1 + 𝑞 (2 + 𝑟))

1 + 𝑞
]

+
(1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
) 𝑇
2

(1 + 𝑞) (1 + 𝑝 + 𝑝2) |Ω|

=
1

6
+
6

31
[
1

144
+
1

32
+
19

288
] +
280

1953

≈ 0.33019713.

(59)

(a) Let 𝑓 : 𝐼1/2
1/2
×R → R be a continuous function given

by

𝑓 (𝑡, 𝑥) =
𝑒
−sin2𝑡

1 + 𝑒cos
2
𝑡
⋅
|𝑥 (𝑡)|

1 + |𝑥 (𝑡)|
. (60)

Since, |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ (1/2)|𝑥 − 𝑦|, then (𝐻
1
) is satisfied

with 𝐿 = 1/2. We can find that

𝐿Λ ≈ 0.16509857 < 1. (61)

Hence, byTheorem 3, problem (58) with𝑓(𝑡, 𝑥) given by (60)
has a unique solution on 𝐼1/2

1/2
.

(b) If 𝑓 : 𝐼1/2
1/2
×R → R is a continuous function given by

𝑓 (𝑡, 𝑥) =
(𝑡 + 1) |𝑥|

1 + |𝑥|
. (62)

Choosing ℎ(𝑡) = 𝑡 + 1, we find that

𝐺 = ∫

𝑇

0

(𝑇 − 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠 +
𝑝𝑇

|Ω|

× [|𝛼| ∫

𝜂

0

(𝜂 − 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠

+
𝛽
 ∫

𝑟𝜂

0

(𝑠 + 1) 𝑑
𝑞
𝑠 +

𝛽


(1 − 𝑟) 𝜂

×∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) (𝑠 + 1) 𝑑
𝑞
𝑠]

+
(1 + 𝑝) (|𝛼| (𝑇 − 𝜂) +

𝛽
)

𝑇 |Ω|

× ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) (V + 1) 𝑑
𝑞
V𝑑
𝑝
𝑠

≈ 0.40987235.

(63)
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Here,

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ≤

(1 + 𝑡)
𝑥 − 𝑦



0.40987235 +
𝑥 − 𝑦



. (64)

Therefore, by Theorem 6, the problem (58) with
𝑓(𝑡, 𝑥) given by (62) has a unique solution on 𝐼1/2

1/2
.

(c) Consider a continuous function 𝑓 : 𝐼1/2
1/2
× R → R

given by

𝑓 (𝑡, 𝑥) = sin 2𝑥 + 3

𝑒−𝑥
2

+ 𝑡 + 2
. (65)

We can show that

𝑓 (𝑡, 𝑥)
 =


sin 2𝑥 + 3

𝑒−𝑥
2

+ 𝑡 + 2


≤ 2 ‖𝑥‖ +

3

2
, (66)

with

𝜅 = 2 <
1

Λ
≈ 3.02849389, (67)

and 𝑁 = 3/2. By Theorem 11, the problem (58) with
the 𝑓(𝑡, 𝑥) given by (65) has at least one solution on
𝐼
1/2

1/2
.
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