
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 596141, 7 pages
http://dx.doi.org/10.1155/2013/596141

Research Article
Multi-Innovation Stochastic Gradient Identification Algorithm
for Hammerstein Controlled Autoregressive Autoregressive
Systems Based on the Key Term Separation Principle and on
the Model Decomposition

Huiyi Hu,1 Xiao Yongsong,1 and Rui Ding2

1 Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China
2 School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China

Correspondence should be addressed to Rui Ding; rding12@126.com

Received 10 June 2013; Revised 22 August 2013; Accepted 6 September 2013

Academic Editor: Reinaldo Martinez Palhares

Copyright © 2013 Huiyi Hu et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other
including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein
controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model
decomposition, in order to improve the convergence speed of the stochastic gradient algorithm.The key term separation principle
can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational
efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the
parameters of IN-CARAR systems.

1. Introduction

There exist many nonlinear systems in process control [1–
3]. A nonlinear system can be modeled by input nonlinear
systems [4] and output nonlinear systems [5], input-output
nonlinear systems [6], feedback nonlinear systems [7], and so
on. Input nonlinear systems, which are called Hammerstein
systems [8], include input nonlinear equation error type sys-
tems and input nonlinear output error type systems. Recently,
many identification algorithms have been developed for input
nonlinear systems, such as the iterative methods [9–11], the
separable least squares methods [12, 13], the blind methods
[14], the subspace methods [15], and the overparameteriza-
tion methods [16, 17]. Some methods require paying much
extra computation.

The stochastic gradient (SG) algorithm is widely applied
to parameter estimation. For example, Wang and Ding pre-
sented an extended SG identification algorithm for Hammer-
stein-Wiener ARMAX systems [18], but it is well known that
the SG algorithm has slower convergence rates. In order to

improve the convergence rate of the SG algorithm, Xiao et al.
presented a multi-innovation stochastic gradient parameter
estimation algorithm for input nonlinear controlled autore-
gressive (IN-CAR) models using the over-parameterization
method [19]; Chen et al. proposed a modified stochastic
gradient algorithm by introducing a convergence index in
order to improve the convergence rate of the parameter
estimation [20]; Han and Ding developed a multi-innovation
stochastic gradient algorithm for multi-input single-output
systems [21]; Liu et al. studied the performance of the stochas-
tic gradient algorithm for multivariable systems [22].

The decomposition identification techniques include
matrix decomposition and model decomposition. Hu and
Ding presented a least squares based iterative identification
algorithm for controlled moving average systems using the
matrix decomposition [23]; Ding derived an iterative least
squares algorithm to estimate the parameters of output
error systems, and the matrix decomposition can enhance
computational efficiencies [24]. Ding also divided a Ham-
merstein nonlinear system into two subsystems based on the
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model decomposition and presented a hierarchical multi-
innovation stochastic gradient algorithm for Hammerstein
nonlinear systems [25].

This paper discusses identification problems of input
nonlinear controlled autoregressive autoregressive (IN-
CARAR) systems or Hammerstein controlled autoregressive
autoregressive (H-CARAR) systems, which is one kind of
input nonlinear equation error type systems. The basic idea
is using the key term separation principle [26] and the
decomposition technique [24] to derive a multi-innovation
stochastic gradient identification algorithm, which is differ-
ent from the work in [19, 21, 25].

The rest of this paper is organized as follows. Section 2
gives the identification model for the IN-CARAR systems.
Section 3 introduces the SG algorithm for the IN-CARAR
system. Section 4 deduces a multi-innovation SG algorithm
for IN-CARAR system using the decomposition technique.
Section 5 provides a numerical example to show the effective-
ness of the proposed algorithm. Finally, Section 6 offers some
concluding remarks.

2. The System Identification Model

The paper focuses on the parameter estimation of a Ham-
merstein nonlinear controlled autoregressive autoregressive
(H-CARAR) system, that is, an input nonlinear controlled
autoregressive autoregressive (IN-CARAR) system, which
consists of a nonlinear block and a linear dynamic sub-
system. It is worth noting that Xiao and Yue discussed a
data filtering based recursive least squares algorithm for H-
CARAR systems [27] and a multi-innovation stochastic gra-
dient parameter estimation algorithm for input nonlinear
controlled autoregressive (IN-CAR) systems.

An IN-CARAR system shown as Figure 1 is expressed as
[27]

𝐴 (𝑧) 𝑦 (𝑡) = 𝐵 (𝑧) 𝑢 (𝑡) +
1

𝐶 (𝑧)
V (𝑡) , (1)

𝑤 (𝑡) =
1

𝐶 (𝑧)
V (𝑡) , (2)

𝑢 (𝑡) = f (𝑢 (𝑡)) 𝛾, (3)

where 𝑢(𝑡) and 𝑦(𝑡) are the system input and output, 𝑢(𝑡) is
the output of the nonlinear part, and V(𝑡) is an uncorrelated
stochastic noise with zero mean. Here, 𝑢(𝑡) is expressed as
[28]

𝑢 (𝑡) = f (𝑢 (𝑡)) 𝛾 =

𝑛𝛾

∑

𝑖=1

𝛾
𝑖
𝑓
𝑖
(𝑢 (𝑡))

= 𝛾
1
𝑓
1
(𝑢 (𝑡)) + 𝛾

2
𝑓
2
(𝑢 (𝑡)) + ⋅ ⋅ ⋅ + 𝛾

𝑛𝛾
𝑓
𝑛𝛾

(𝑢 (𝑡)) ,

(4)

where f(𝑢(𝑡)) := [𝑓
1
(𝑢(𝑡)), 𝑓

2
(𝑢(𝑡)), . . . , 𝑓

𝑛𝛾
(𝑢(𝑡))]∈ R1×𝑛𝛾 and

𝛾 := [𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛𝛾
]
𝑇

∈ R𝑛𝛾 is the parameters vector of the
nonlinear part.

u(t)
f(·)

u(t)
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Figure 1: The IN-CARAR system.

In (1),𝐴(𝑧),𝐵(𝑧), and𝐶(𝑧) are the polynomials, of known
orders 𝑛

𝑎
, 𝑛
𝑏
, and 𝑛

𝑐
, in the unit backward shift operator 𝑧−1

[𝑧−1𝑦(𝑡) = 𝑦(𝑡 − 1)], defined by

𝐴 (𝑧) := 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑎
𝑛𝑎
𝑧
−𝑛𝑎 ,

𝐵 (𝑧) := 1 + 𝑏
1
𝑧
−1

+ 𝑏
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛𝑏
𝑧
−𝑛𝑏 ,

𝐶 (𝑧) := 1 + 𝑐
1
𝑧
−1

+ 𝑐
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛𝑐
𝑧
−𝑛𝑐 .

(5)

Assume 𝑦(𝑡) = 0, 𝑢(𝑡) = 0, and V(𝑡) = 0 for 𝑡 ⩽ 0. 𝑎
𝑖
, 𝑏
𝑖
, and

𝑐
𝑖
are the parameters to be estimated from measured input–

output data {𝑢(𝑡), 𝑦(𝑡)}.
Define the parameter vectors:

𝜃 := [𝜃
𝑇

𝑠
, 𝜃
𝑇

𝑛
]
𝑇

∈ R
𝑛𝑎+𝑛𝑏+𝑛𝛾+𝑛𝑐 ,

𝜃
𝑠
:= [a𝑇, b𝑇, 𝛾𝑇]

𝑇

∈ R
𝑛𝑎+𝑛𝑏+𝑛𝛾 ,

a := [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛𝑎
]
𝑇

∈ R
𝑛𝑎 ,

b := [𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛𝑏
]
𝑇

∈ R
𝑛𝑏 ,

𝜃
𝑛
:= [𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛𝑐
]
𝑇

∈ R
𝑛𝑐 ,

(6)

and the information vectors:

𝜑 (𝑡) := [
𝜑
𝑠
(𝑡)

𝜑
𝑛
(𝑡)

] ∈ R
𝑛𝑎+𝑛𝑏+𝑛𝛾+𝑛𝑐 ,

𝜑
𝑠
(𝑡) := [−𝑦 (𝑡 − 1) , −𝑦 (𝑡 − 2) , . . . , −𝑦 (𝑡 − 𝑛

𝑎
) ,

𝑢(𝑡 − 1), . . . , 𝑢(𝑡 − 𝑛
𝑏
), f(𝑢(𝑡))]𝑇∈ R

𝑛𝑎+𝑛𝑏+𝑛𝛾 ,

𝜑
𝑛
(𝑡) := [−𝑤 (𝑡 − 1) , −𝑤 (𝑡 − 2) , . . . , −𝑤 (𝑡 − 𝑛

𝑐
)]
𝑇

∈ R
𝑛𝑐 .

(7)

Equation (2) can be written as

𝑤 (𝑡) = [1 − 𝐶 (𝑧)] 𝑤 (𝑡) + V (𝑡)

= −

𝑛𝑐

∑

𝑖=1

𝑐
𝑖
𝑤 (𝑡 − 𝑖) + V (𝑡)

= 𝜑
𝑇

𝑛
(𝑡) 𝜃
𝑛
+ V (𝑡) .

(8)
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Using the key term separation principle [26], (1) can be writ-
ten as

𝑦 (𝑡) = [1 − 𝐴 (𝑧)] 𝑦 (𝑡) + [𝐵 (𝑧) − 1] 𝑢 (𝑡) + 𝑢 (𝑡) + 𝑤 (𝑡)

= −

𝑛𝑎

∑

𝑖=1

𝑎
𝑖
𝑦 (𝑡 − 𝑖) +

𝑛𝑏

∑

𝑖=1

𝑏
𝑖
𝑢 (𝑡 − 𝑖) +

𝑛𝛾

∑

𝑖=1

𝛾
𝑖
f
𝑖
(𝑢 (𝑡)) + 𝑤 (𝑡)

= 𝜑
𝑇

𝑠
(𝑡) 𝜃
𝑠
+ 𝑤 (𝑡)

(9)

= 𝜑
𝑇

𝑠
(𝑡) 𝜃
𝑠
+ 𝜑
𝑇

𝑛
(𝑡) 𝜃
𝑛
+ V (𝑡) (10)

= 𝜑
𝑇

(𝑡) 𝜃. (11)

This is the identification model of the IN-CARAR system.

3. The Stochastic Gradient Algorithm

According to [1] and based on the identificationmodel in (11),
we can obtain the stochastic gradient (SG) algorithm:

�̂� (𝑡) = �̂� (𝑡 − 1) +
�̂� (𝑡)

𝑟 (𝑡)
𝑒 (𝑡) ,

𝑒 (𝑡) = 𝑦 (𝑡) − �̂�
𝑇

(𝑡) �̂� (𝑡 − 1) ,

𝑟 (𝑡) = 𝑟 (𝑡 − 1) +
�̂�(𝑡)
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, 𝑟 (0) = 1,

�̂� (𝑡) = [

�̂�
𝑠
(𝑡)

�̂�
𝑛
(𝑡)

] ,

�̂�
𝑠
(𝑡) = [ − 𝑦 (𝑡 − 1) , −𝑦 (𝑡 − 2) , . . . , −𝑦 (𝑡 − 𝑛

𝑎
) ,

�̂�(𝑡 − 1), �̂�(𝑡 − 2), . . . , �̂�(𝑡 − 𝑛
𝑏
), f(𝑢(𝑡))]

𝑇

,

�̂�
𝑛
(𝑡) = [−𝑤 (𝑡 − 1) , −𝑤 (𝑡 − 2) , . . . , −𝑤 (𝑡 − 𝑛

𝑐
)]
𝑇

,

�̂� (𝑡) = f (𝑢 (𝑡)) 𝛾 (𝑡) ,

𝑤 (𝑡) = 𝑦 (𝑡) − �̂�
𝑇

𝑠
(𝑡) �̂�
𝑠
(𝑡) ,

f (𝑢 (𝑡)) = [𝑓
1
(𝑢 (𝑡)) , 𝑓

2
(𝑢 (𝑡)) , . . . , 𝑓

𝑛𝑟
(𝑢 (𝑡))] ,

�̂� (𝑡) = [

�̂�
𝑛
(𝑡)

�̂�
𝑠
(𝑡)

] ,

�̂�
𝑠
(𝑡) = [â𝑇 (𝑡) , b̂𝑇 (𝑡) , 𝛾𝑇 (𝑡)]

𝑇

,

â (𝑡) = [𝑎
1
(𝑡) , 𝑎
2
(𝑡) , . . . , 𝑎

𝑛𝑎
(𝑡)]
𝑇

,

b̂ (𝑡) = [�̂�
1
(𝑡) , �̂�
2
(𝑡) , . . . , �̂�

𝑛𝑏
(𝑡)]
𝑇

,

𝛾 (𝑡) = [𝛾
1
(𝑡) , 𝛾
2
(𝑡) , . . . , 𝛾

𝑛𝛾
(𝑡)]

𝑇

,

�̂�
𝑛
(𝑡) = [𝑐

1
(𝑡) , 𝑐
2
(𝑡) , . . . , 𝑐

𝑛𝑐
(𝑡)]
𝑇

,

(12)

where𝑋(𝑡) represents the estimate of𝑋 at time 𝑡; for example,
�̂�(𝑡) = [

̂𝜃𝑛(𝑡)

̂𝜃𝑠(𝑡)
] ∈ R𝑛𝑎+𝑛𝑏+𝑛𝛾+𝑛𝑐 is the estimate of 𝜃 = [

𝜃𝑠

𝜃𝑛
] at

time 𝑡.

4. The Multi-Innovation Stochastic
Gradient Algorithm

This section deduces themulti-innovation stochastic gradient
identification algorithm for the IN-CARAR system using the
decomposition technique [1].

Define two intermediate variables,

𝑦
1
(𝑡) := 𝑦 (𝑡) − 𝜑

𝑇

𝑛
(𝑡) 𝜃
𝑛
,

𝑦
2
(𝑡) := 𝑦 (𝑡) − 𝜑

𝑇

𝑠
(𝑡) 𝜃
𝑠
.

(13)

From (10), we have

𝑦
1
(𝑡) := 𝜑

𝑇

𝑠
(𝑡) 𝜃
𝑠
+ V (𝑡) ,

𝑦
2
(𝑡) := 𝜑

𝑇

𝑛
(𝑡) 𝜃
𝑛
+ V (𝑡) .

(14)

These two subsystems include the parameter vectors 𝜃
𝑠
and

𝜃
𝑛
, respectively. 𝜃

𝑠
contains the parameters od the system

model and 𝜃
𝑛
contains the parameters od the noise model.

Define the stacked information matrices and the stacked
output vectors:

Y (𝑝, 𝑡) := [𝑦 (𝑡) , 𝑦 (𝑡 − 1) , . . . , 𝑦 (𝑡 − 𝑝 + 1)]
𝑇

∈ R
𝑝

,

Y
1
(𝑝, 𝑡) := [𝑦

1
(𝑡) , 𝑦
1
(𝑡 − 1) , . . . , 𝑦

1
(𝑡 − 𝑝 + 1)]

𝑇

∈ R
𝑝

,

Y
2
(𝑝, 𝑡) := [𝑦

2
(𝑡) , 𝑦
2
(𝑡 − 1) , . . . , 𝑦

2
(𝑡 − 𝑝 + 1)]

𝑇

∈ R
𝑝

,

Φ
𝑠
(𝑝, 𝑡)

:= [𝜑
𝑠
(𝑡) ,𝜑
𝑠
(𝑡 − 1) , . . . ,𝜑

𝑠
(𝑡 − 𝑝 + 1)]

𝑇

∈ R
𝑝×(𝑛𝑎+𝑛𝑏+𝑛𝑐),

Φ̂
𝑛
(𝑝, 𝑡) :=[�̂�

𝑛
(𝑡) , �̂�
𝑛
(𝑡 − 1) , . . . , �̂�

𝑛
(𝑡 − 𝑝 + 1)]

𝑇

∈ R
𝑝×𝑛𝛾 ,

E
𝑠
(𝑝, 𝑡) := [𝑒

𝑠
(𝑡) , 𝑒
𝑠
(𝑡 − 1) , . . . , 𝑒

𝑠
(𝑡 − 𝑝 + 1)]

𝑇

∈ R
𝑝

,

E
𝑛
(𝑝, 𝑡) := [𝑒

𝑛
(𝑡) , 𝑒
𝑛
(𝑡 − 1) , . . . , 𝑒

𝑛
(𝑡 − 𝑝 + 1)]

𝑇

∈ R
𝑝

.

(15)

According to the multi-innovation identification theory [29–
41], we expand the scalar innovations:

𝑒
𝑠
(𝑡) = 𝑦

1
(𝑡) − 𝜑

𝑇

𝑠
(𝑡) �̂�
𝑠
(𝑡 − 1) ,

𝑒
𝑛
(𝑡) = 𝑦

2
(𝑡) − �̂�

𝑇

𝑛
(𝑡) �̂�
𝑛
(𝑡 − 1) ,

(16)

to the innovation vectors,

E
𝑠
(𝑝, 𝑡) = Ŷ

1
(𝑝, 𝑡) −Φ

𝑇

𝑠
(𝑝, 𝑡) �̂�

𝑠
(𝑡 − 1) ,

E
𝑛
(𝑝, 𝑡) = Ŷ

2
(𝑝, 𝑡) − Φ̂

𝑇

𝑛
(𝑝, 𝑡) �̂�

𝑛
(𝑡 − 1) .

(17)

Define two criterion functions,

𝐽
1
(𝜃
𝑠
) :=


Y
1
(𝑝, 𝑡) −Φ

𝑇

𝑠
(𝑝, 𝑡)𝜃

𝑠



2

,

𝐽
2
(𝜃
𝑛
) :=


Y
2
(𝑝, 𝑡) − Φ̂

𝑇

𝑛
(𝑝, 𝑡)𝜃

𝑛



2

.

(18)
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Table 1: The SG parameter estimates and errors.

𝑡 𝑎
1

𝑎
2

𝑏
1

𝑏
2

𝛾
1

𝛾
2

𝛾
3

𝑐
1

𝑐
2

𝛿 (%)
100 0.49020 −0.49380 0.01083 0.01505 0.00905 0.01482 0.02428 −0.00163 −0.00411 95.19650
200 0.49438 −0.49611 0.01052 0.01544 0.00908 0.01488 0.02437 −0.00159 −0.00415 95.15025
500 0.50037 −0.50067 0.01024 0.01579 0.00910 0.01491 0.02443 −0.00156 −0.00418 95.11481
1000 0.50136 −0.50130 0.01017 0.01588 0.00911 0.01492 0.02444 −0.00156 −0.00418 95.10595
2000 0.50017 −0.50007 0.01016 0.01589 0.00911 0.01492 0.02444 −0.00156 −0.00418 95.10507
3000 0.50042 −0.50031 0.01016 0.01589 0.00911 0.01492 0.02444 −0.00156 −0.00418 95.10474
True values 1.80000 0.80000 0.50000 0.65000 1.00000 0.50000 0.25000 0.30000 0.20000

Table 2: The MISG parameter estimates and errors.

𝑡 𝑎
1

𝑎
2

𝑏
1

𝑏
2

𝛾
1

𝛾
2

𝛾
3

𝑐
1

𝑐
2

𝛿 (%)
100 1.79885 0.80074 0.49998 0.65013 0.99968 0.50004 0.24953 0.21240 0.36032 7.46185
200 1.79813 0.80153 0.49999 0.65014 0.99955 0.50000 0.24927 0.37423 0.25902 3.87441
500 1.79820 0.80154 0.50001 0.65020 0.99927 0.49994 0.24876 0.32965 0.06371 5.69751
1000 1.79998 0.79973 0.50000 0.65023 0.99910 0.49990 0.24844 0.32849 0.19041 1.23012
2000 1.79979 0.79992 0.50000 0.65023 0.99909 0.49990 0.24842 0.28734 0.20472 0.55706
3000 1.79989 0.79982 0.50000 0.65023 0.99909 0.49990 0.24842 0.28556 0.20496 0.62823
True values 1.80000 0.80000 0.50000 0.65000 1.00000 0.50000 0.25000 0.30000 0.20000

The gradients of 𝐽
1
and 𝐽
2
with respect to 𝜃

𝑠
and 𝜃

𝑛
, respec-

tively, are

grad [𝐽
1
(𝜃
𝑠
)] =

𝜕𝐽
1
(𝜃
𝑠
)

𝜕𝜃
𝑛

= −2Φ
𝑠
(𝑝, 𝑡) [Y

1
(𝑝, 𝑡) −Φ

𝑇

𝑠
(𝑝, 𝑡) 𝜃

𝑠
] ,

grad [𝐽
2
(𝜃
𝑛
)] =

𝜕𝐽
2
(𝜃
𝑛
)

𝜕𝜃
𝑛

= −2Φ̂
𝑛
(𝑝, 𝑡) [Y

2
(𝑝, 𝑡) − Φ̂

𝑇

𝑛
(𝑝, 𝑡) 𝜃

𝑛
] .

(19)
Minimizing 𝐽

1
(𝜃
𝑠
) and 𝐽

2
(𝜃
𝑛
) using the negative gradient

search, we can obtain the multi-innovation stochastic gradi-
ent algorithm (MISG) for the IN-CARAR system:
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(𝑡) = [â𝑇 (𝑡) , b̂𝑇 (𝑡) , 𝛾𝑇 (𝑡)]

𝑇

,
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Figure 2: The SG estimation error 𝛿 versus 𝑡.

The initial values can be taken to be �̂�(0) = 1
𝑛𝑎+𝑛𝑏+𝑛𝛾+𝑛𝑐

/𝑝
0
,

𝑤(𝑖) = 1/𝑝
0
, 𝑖 ⩽ 0, and 𝑝

0
= 10
6.

5. Numerical Examples

Consider the following IN-CARAR system:

𝐴 (𝑧) 𝑦 (𝑡) = 𝐵 (𝑧) 𝑢 (𝑡) +
1
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(21)

In this example, the input {𝑢(𝑡)} is taken as a persistent exci-
tation signal sequence with zero mean and unit variance and
{V(𝑡)} as a white noise sequence with zero mean and variance
𝜎
2

= 0.50
2. Applying the SG algorithm and the MISG algo-

rithm to estimate the parameters of this IN-CARAR system,
the parameter estimates and their estimation errors are
shown in Tables 1 and 2 with the data length 𝐿 = 3000 and the
estimation error 𝛿 := ‖�̂�(𝑡) − 𝜃‖/‖𝜃‖ versus 𝑡 being shown in
Figures 2 and 3.

From Tables 1 and 2 and Figures 2 and 3, we can draw
the conclusions. The parameters estimation errors become
smaller with the data length 𝑡 increasing. The estimation
errors given by the MISG algorithm are much smaller than
that of the SG algorithm.The convergence speed of themulti-
innovation SG algorithm is faster than those of the SG algo-
rithm.These indicate that theMISG algorithmhas better per-
formance than the SG algorithm.
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Figure 3: The MISG estimation error 𝛿 versus.

6. Conclusions

The gradient and least squares algorithms are two different
kinds of important identification methods. It is well known
that the gradient algorithm has poor convergence rates. This
paper studies the multi-innovation SG identification meth-
ods for IN-CARAR systems. The numerical examples show
that the proposed MISG algorithm can estimate effectively
the parameters of input nonlinear systems and indicate that
increasing the innovation length can improve parameter
estimation accuracy of the multi-innovation identification
algorithm because the algorithm uses more information in
each recursion for a large innovation length. The proposed
method can be applied to nonlinear output error systems.
Although the algorithm is presented for the IN-CARAR
systems, the basic idea can be extended to other linear or
nonlinear systems with colored noises [42–61].
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