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By introducing the probability function describing latency of infected cells, we unify some models of viral infection with latent
stage. For the case that the probability function is a step function, which implies that the latency period of the infected cells is
constant, the corresponding model is a delay differential system. The model with delay of latency and two types of target cells is
investigated, and the obtained results show that when the basic reproduction number is less than or equal to unity, the infection-
free equilibrium is globally stable, that is, the in-host free virus will be cleared out finally; when the basic reproduction number is
greater than unity, the infection equilibrium is globally stable, that is, the viral infection will be chronic and persist in-host. And by
comparing the basic reproduction numbers of ordinary differential system and the associated delayed differential system, we think
that it is necessary to elect an appropriate type of probability function for predicting the final outcome of viral infection in-host.

1. Introduction

The dynamical models of virus infection have played an
important role in understanding the action of in-host free
virus on target cells. Nowak et al. [1, 2] proposed one of the
earliest of these models:

𝑥
󸀠
= 𝜆 − 𝑑𝑥 − 𝛽𝑥V,

𝑦
󸀠
= 𝛽𝑥V − 𝑎𝑦,

V
󸀠
= 𝑘𝑎𝑦 − 𝛾V,

(1)

where 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), and V = V(𝑡) are the concentrations
of uninfected cells, infected cells, and viral particles (virions)
at time 𝑡, respectively. In model (1), uninfected target cells are
assumed to be produced at a constant rate 𝜆 and die at a rate
𝑑𝑥. Infection of target cells by in-host free virus is assumed
to occur at a bilinear rate 𝛽𝑥V. Infected cells are lost at a rate
𝑎𝑦. Free virus are produced by infected cells at a rate 𝑘𝑎𝑦

in which 𝑘 is the average number of viral particles produced
by a single infected cell over its lifetime and die at a rate 𝛾V.

Model (1) is a basic model of viral infection, which has been
used widely to investigate infection of some viruses (such as,
HIV,HBV,HCV, andHLTV).However, following infection of
virus, within a cell the provirus may remain latent, giving no
sign of its presence for months or years [3]. According to this
fact, in order to investigate HIV-1 dynamics in vivo, Perelson
et al. incorporated the latently infected cells into the basic
model (1) [4, 5]. It implies that the development of infected
cell should include latent and active two stages. That is, once
infected, a cell first becomes a latently infected cell, but does
not produce virus; after a period of time a latently infected cell
turns active and begins to produce virus. The global stability
of some ODE models of viral infection with latent stage is
considered in [6, 7].

In 1997, Perelson et al. [8] observed that HIV attacks
two types of target cells, CD4

+ T cells and macrophages. On
the other hand, it was also detected that, except for liver
tissue, HCV may be produced in some extrahepatic tissues,
such as bone marrow [9], peripheral blood mononuclear
cells (PBMC) [10], brain [11], and lymph nodes [12]. Then,
according to these virological findings, based on model (1),
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some viral dynamical models with two types of target cells
were proposed [5, 13, 14], which are all expressed by ordinary
differential equations.

Since the dynamics of viral infection in-host is not well
understood, in order to investigate the mechanism of viral
infection, some reasonable assumptions are often incorpo-
rated into mathematical models describing the interaction
between target cells and viral particles. In this paper, we first
introduce the probability functions describing the latency of
infected cells to unify some models of viral infection with
latent stage and then analyze dynamics of viral infection
model with constant latency period and two types of target
cells. The discussed model is a system of delay differential
equations.

The organization of this paper is as follows. In Section 2,
we unify some models of viral infection with latent stage
by introducing the probability function describing latency
of infected cells and propose a model of virus infection
with latent delay and two types of target cells. The global
stability is analyzed in Section 3. At last, the conclusion
on the model is summarized, and the basic reproduction
numbers of ordinary differential system and the associated
delay differential system are compared.

2. Models

Let 𝑄(𝑡) for 𝑡 ≥ 0 denote the probability that an infected
cell is in the latent stage at least 𝑡 time units before becoming
the actively infected cell, and then, when the infection rate
of virus is assumed to be 𝛽𝑥(𝑡)V(𝑡), the concentration of
the latently infected cells at time 𝑡 can be expressed by the
following equation:

𝑤 (𝑡) = 𝑤
0
(𝑡) + ∫

𝑡

0

𝛽𝑥 (𝜃) V (𝜃) 𝑄 (𝑡 − 𝜃) 𝑒
−𝑑(𝑡−𝜃)

𝑑𝜃, (2)

where 𝑤
0
(𝑡) is the concentration of the latently infected

cells which are in the latent stage at time 0 and still at the
same state at time 𝑡. Function 𝑤

0
(𝑡) is a nonnegative, non-

increasing, and piecewise continuous function. Thus, when
incorporating the latent stage of infected cells into the basic
model (1), we have the model of viral infection with latent
stage:

𝑥
󸀠
= 𝜆 − 𝑑𝑥 − 𝛽𝑥V,

𝑤 (𝑡) = 𝑤
0
(𝑡) + ∫

𝑡

0

𝛽𝑥 (𝜃) V (𝜃) 𝑄 (𝑡 − 𝜃) 𝑒
−𝑑(𝑡−𝜃)

𝑑𝜃,

𝑦
󸀠
= 𝐹 (𝑥, 𝑦, 𝑤) − 𝑎𝑦,

V
󸀠
= 𝑘𝑎𝑦 − 𝛾V,

(3)

where the term 𝐹(𝑥, 𝑦, 𝑤) in the third equation of (3)
represents the recruitment rate of actively infected cells; its
expression should depend on the form of function 𝑄(𝑡).

Usually, function 𝑄(𝑡) is elected as one of the following
two types, the exponential function (i.e., 𝑄(𝑡) = exp(−𝜀𝑡))
and the step function (i.e., 𝑄(𝑡) equals to 1 for 𝑡 ∈ [0, 𝜏) and
0 for 𝑡 ∈ [𝜏, +∞)) [15, 16]. Here, the exponential function

means that the transfer of the infected cells from the latent
state to the active one follows the exponential distribution,
and the step function means that the time length of staying
at the latent state for the infected cells is constant 𝜏 and that
they become active after the time period 𝜏. It is easy to know
that the average latency period of the infected cells is 1/𝜀 for
the exponential function and 𝜏 for the step function.

When 𝑄(𝑡) = exp(−𝜀𝑡), (2) becomes

𝑤 (𝑡) = 𝑤
0
𝑒
−(𝑑+𝜀)𝑡

+ ∫

𝑡

0

𝛽𝑥 (𝜃) V (𝜃) 𝑒
−(𝑑+𝜀)(𝑡−𝜃)

𝑑𝜃, (4)

where 𝑤
0
is the concentration of the latently infected cells at

𝑡 = 0, then we have

𝑤
󸀠

(𝑡) = 𝛽𝑥 (𝑡) V (𝑡) − (𝑑 + 𝜀)𝑤 (𝑡) . (5)

From the equation of 𝑤, we know that the removed rate
of the latently infected cells is (𝑑 + 𝜀)𝑤, where 𝑑 is the
death rate coefficient of uninfected cells; then 𝜀𝑤 is the
infection-induced transfer rate to actively infected cells, that
is, 𝐹(𝑥, 𝑦, 𝑤) = 𝜀𝑤. So, system (3) becomes

𝑥
󸀠
= 𝜆 − 𝑑𝑥 − 𝛽𝑥V,

𝑤
󸀠
= 𝛽𝑥V − (𝑑 + 𝜀)𝑤,

𝑦
󸀠
= 𝜀𝑤 − 𝑎𝑦,

V
󸀠
= 𝑘𝑎𝑦 − 𝛾V.

(6)

When 𝑄(𝑡) is a step function, that is,

𝑄 (𝑡) = {

1 for 𝑡 ∈ [0, 𝜏) ,

0 for 𝑡 ∈ [𝜏, +∞) ,

(7)

𝑤
0
(𝑡) = 0 for 𝑡 ≥ 𝜏. Thus, for 𝑡 ≥ 𝜏 the integral equation (2)

becomes

𝑤 (𝑡) = ∫

𝑡

𝑡−𝜏

𝛽𝑥 (𝜃) V (𝜃) 𝑒
−𝑑(𝑡−𝜃)

𝑑𝜃. (8)

It is equivalent to the following delay differential equation:

𝑤
󸀠

(𝑡) = 𝛽𝑥 (𝑡) V (𝑡) − 𝛽𝑒
−𝑑𝜏

𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑑𝑤 (𝑡) , (9)

with𝑤(0) = ∫

0

−𝜏
𝛽𝑥(𝜃)V(𝜃)𝑒𝑑𝜃𝑑𝜃, where the term𝛽𝑒

−𝑑𝜏
𝑥(𝑡−𝜏)

V(𝑡 − 𝜏) represents the recruitment rate of the actively
infected cells for 𝑡 > 𝜏. Thus, when investigating the long-
term behavior of model (3), the corresponding model with
constant latent period is given by

𝑥
󸀠
= 𝜆 − 𝑑𝑥 − 𝛽𝑥V,

𝑤
󸀠
= 𝛽𝑥V − 𝛽𝑒

−𝑑𝜏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑑𝑤,

𝑦
󸀠
= 𝛽𝑒
−𝑑𝜏

𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑎𝑦,

V
󸀠
= 𝑘𝑎𝑦 − 𝛾V.

(10)

From the inference above, we may see that models (6) and
(10) can be unified into model (3) and are two special cases
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of (3). This is due to the introduction of the probability
function 𝑄(𝑡). Global properties of models (6) and (10) were
investigated in [6, 17], respectively.

When considering the case that virus attacks two types
of target cells, we denote the corresponding quantities by
the same letters as model (3) with the subscript 1 or 2. The
subscript represents the type of target cells.Thus, we have the
followingmodel with latent stage and two types of target cells:

𝑥
󸀠

1
= 𝜆
1
− 𝑑
1
𝑥
1
− 𝛽
1
𝑥
1
V,

𝑤
1
(𝑡) = 𝑤

10
(𝑡)

+ ∫

𝑡

0

𝛽
1
𝑥
1
(𝜃) V (𝜃) 𝑄

1
(𝑡 − 𝜃) 𝑒

−𝑑
1
(𝑡−𝜃)

𝑑𝜃,

𝑦
󸀠

1
= 𝐹
1
(𝑥
1
, 𝑦
1
, 𝑤
1
) − 𝑎
1
𝑦
1
,

𝑥
󸀠

2
= 𝜆
2
− 𝑑
2
𝑥
2
− 𝛽
2
𝑥
2
V,

𝑤
2
(𝑡) = 𝑤

20
(𝑡)

+ ∫

𝑡

0

𝛽
2
𝑥
2
(𝜃) V (𝜃) 𝑄

2
(𝑡 − 𝜃) 𝑒

−𝑑
2
(𝑡−𝜃)

𝑑𝜃,

𝑦
󸀠

2
= 𝐹
2
(𝑥
2
, 𝑦
2
, 𝑤
2
) − 𝑎
2
𝑦
2
,

V
󸀠
= 𝑘
1
𝑎
1
𝑦
1
+ 𝑘
2
𝑎
2
𝑦
2
− 𝛾V.

(11)

Similarly, when the probability functions in (11) are
exponential function, model (11) can become

𝑥
󸀠

1
= 𝜆
1
− 𝑑
1
𝑥
1
− 𝛽
1
𝑥
1
V,

𝑤
󸀠

1
= 𝛽
1
𝑥
1
V − (𝑑

1
+ 𝜀
1
) 𝑤
1
,

𝑦
󸀠

1
= 𝜀
1
𝑤
1
− 𝑎
1
𝑦
1
,

𝑥
󸀠

2
= 𝜆
2
− 𝑑
2
𝑥
2
− 𝛽
2
𝑥
2
V,

𝑤
󸀠

2
= 𝛽
2
𝑥
2
V − (𝑑

2
+ 𝜀
2
) 𝑤
2
,

𝑦
󸀠

2
= 𝜀
2
𝑤
2
− 𝑎
2
𝑦
2
,

V
󸀠
= 𝑘
1
𝑎
1
𝑦
1
+ 𝑘
2
𝑎
2
𝑦
2
− 𝛾V.

(12)

Its dynamical behavior was analyzed in [7].
When the probability functions in (11) are step function,

for 𝑡 > 𝜏 := max{𝜏
1
, 𝜏
2
}, model (11) can become

𝑥
󸀠

1
(𝑡) = 𝜆

1
− 𝑑
1
𝑥
1
(𝑡) − 𝛽

1
𝑥
1
(𝑡) V (𝑡) ,

𝑤
󸀠

1
(𝑡) = 𝛽

1
𝑥
1
(𝑡) V (𝑡) − 𝛽

1
𝑒
−𝑑
1
𝜏
1
𝑥
1
(𝑡 − 𝜏
1
)

× V (𝑡 − 𝜏
1
) − 𝑑
1
𝑤
1
(𝑡) ,

𝑦
󸀠

1
(𝑡) = 𝛽

1
𝑒
−𝑑
1
𝜏
1
𝑥
1
(𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
) − 𝑎
1
𝑦
1
(𝑡) ,

𝑥
󸀠

2
(𝑡) = 𝜆

2
− 𝑑
2
𝑥
2
(𝑡) − 𝛽

2
𝑥
2
(𝑡) V (𝑡) ,

𝑤
󸀠

2
(𝑡) = 𝛽

2
𝑥
2
(𝑡) V (𝑡) − 𝛽

2
𝑒
−𝑑
2
𝜏
2
𝑥
2
(𝑡 − 𝜏)

× V (𝑡 − 𝜏
2
) − 𝑑
2
𝑤
2
(𝑡) ,

𝑦
󸀠

2
= 𝛽
2
𝑒
−𝑑
2
𝜏
2
𝑥
2
(𝑡 − 𝜏
2
) V (𝑡 − 𝜏

2
) − 𝑎
2
𝑦
2
(𝑡) ,

V
󸀠
= 𝑘
1
𝑎
1
𝑦
1
(𝑡) + 𝑘

2
𝑎
2
𝑦
2
(𝑡) − 𝛾V (𝑡) .

(13)

For system (13), variables 𝑤
1
and 𝑤

2
do not appear in the

equations of 𝑥
𝑖
, 𝑦
𝑖
(𝑖 = 1, 2), and V, then denoting 𝑏

1
= 𝑒
−𝑑
1
𝜏
1 ,

and 𝑏
2
= 𝑒
−𝑑
2
𝜏
2 , gives a subsystem of (13) as follows:

𝑥
󸀠

1
(𝑡) = 𝜆

1
− 𝑑
1
𝑥
1
(𝑡) − 𝛽

1
𝑥
1
(𝑡) V (𝑡) ,

𝑦
󸀠

1
(𝑡) = 𝛽

1
𝑏
1
𝑥
1
(𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
) − 𝑎
1
𝑦
1
(𝑡) ,

𝑥
󸀠

2
(𝑡) = 𝜆

2
− 𝑑
2
𝑥
2
(𝑡) − 𝛽

2
𝑥
2
(𝑡) V (𝑡) ,

𝑦
󸀠

2
= 𝛽
2
𝑏
2
𝑥
2
(𝑡 − 𝜏
2
) V (𝑡 − 𝜏

2
) − 𝑎
2
𝑦
2
(𝑡) ,

V
󸀠
= 𝑘
1
𝑎
1
𝑦
1
(𝑡) + 𝑘

2
𝑎
2
𝑦
2
(𝑡) − 𝛾V (𝑡) .

(14)

In this paper, we will investigate the global behaviors of sys-
tem (14).

For system (14), we set a suitable phase space. Denote
the Banach space of continuous functions mapping the
interval [−𝜏, 0] into R5 with the sup-norm for 𝜙 = (𝜙

1
, 𝜙
2
,

𝜙
3
, 𝜙
4
, 𝜙
5
)
𝑇

∈ 𝐶 by𝐶 = 𝐶([−𝜏, 0],R5), where 𝜏 = max{𝜏
1
, 𝜏
2
}.

The nonnegative cone of 𝐶 is defined as 𝐶
+

= 𝐶([−𝜏, 0];R5
+
).

From the biologicalmeaning, the initial conditions for system
(14) are given as follows:

𝑥
1
(𝜃) = 𝜙

1
(𝜃) , 𝑦

1
(𝜃) = 𝜙

2
(𝜃) , 𝑥

2
(𝜃) = 𝜙

3
(𝜃) ,

𝑦
2
(𝜃) = 𝜙

4
(𝜃) , V (𝜃) = 𝜙

5
(𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(15)

where (𝜙
1
(𝜃), 𝜙
2
(𝜃), 𝜙
3
(𝜃), 𝜙
4
(𝜃), 𝜙
5
(𝜃))
𝑇

∈ 𝐶
+
and 𝜙

𝑖
(0) > 0,

𝑖 = 1, 2, 3, 4, 5.
Under the initial conditions (15), it is easy to see that all

solutions of system (14) are positive on [0, +∞). Furthermore,
we have the following statement with respect to the bounded-
ness of solutions of system (14).

Theorem 1. All solutions of system (14) under the initial con-
ditions (15) are ultimately bounded.

Proof. Define a Lyapunov functional 𝐿
01

= 𝑏
1
𝑥
1
(𝑡)+𝑦

1
(𝑡+𝜏
1
)

then from the first two equations of (14), we have

𝐿
󸀠

01
= 𝑏
1
𝜆
1
− [𝑏
1
𝑑
1
𝑥
1
(𝑡) + 𝑎

1
𝑦
1
(𝑡 + 𝜏
1
)]

≤ 𝑏
1
𝜆
1
− 𝜌
1
𝐿
01
,

(16)

where 𝜌
1
= min{𝑑

1
, 𝑎
1
}. It follows that lim sup

𝑡→+∞
[𝑏
1
𝑥
1
(𝑡)+

𝑦
1
(𝑡 + 𝜏
1
)] ≤ 𝑏
1
𝜆
1
/𝜌
1
, that is, for any positive number 𝜀 there

is𝑇
1
> 0 such that 𝑏

1
𝑥
1
(𝑡)+𝑦

1
(𝑡+𝜏
1
) < 𝑏
1
𝜆
1
/𝜌
1
+𝜀 for 𝑡 > 𝑇

1
.
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Similarly, from the third and fourth equations of (14) we
know that for any positive number 𝜀 there is 𝑇

2
> 0 such that

𝑏
2
𝑥
2
(𝑡) + 𝑦

2
(𝑡 + 𝜏

2
) < 𝑏

2
𝜆
2
/𝜌
2
+ 𝜀 for 𝑡 > 𝑇

2
, where 𝜌

2
=

min{𝑑
2
, 𝑎
2
}.

Therefore, for 𝑡 > 𝑇 = max{𝑇
1
+ 𝜏, 𝑇

2
+ 𝜏}, we have

𝑦
1
(𝑡) < 𝑏

1
𝜆
1
/𝜌
1
+ 𝜀 and 𝑦

2
(𝑡) < 𝑏

2
𝜆
2
/𝜌
2
+ 𝜀. Thus, from the

last equation of (14), it follows that

V
󸀠

(𝑡) < 𝑘
1
𝑎
1
(

𝑏
1
𝜆
1

𝜌
1

+ 𝜀) + 𝑘
2
𝑎
2
(

𝑏
2
𝜆
2

𝜌
2

+ 𝜀) − 𝛾V (𝑡) , (17)

for 𝑡 > 𝑇. It implies that

lim sup
𝑡→+∞

V (𝑡) ≤

1

𝛾

[𝑘
1
𝑎
1
(

𝑏
1
𝜆
1

𝜌
1

+ 𝜀) + 𝑘
2
𝑎
2
(

𝑏
2
𝜆
2

𝜌
2

+ 𝜀)] .

(18)

Summarizing the above inference, Theorem 1 holds.

Since the positive number 𝜀 in the proof of Theorem 1 is
arbitrary, we can know that the set

Ω = {𝑥
𝑇

(𝑡) ∈ 𝐶
+

: 𝑏
𝑖
𝑥
𝑖
(𝑡) + 𝑦

𝑖
(𝑡 + 𝜏
𝑖
)

≤

𝑏
𝑖
𝜆
𝑖

𝜌
𝑖

, 𝑖 = 1, 2, V (𝑡) ≤ 𝜌}

(19)

is positively invariant to system (14), where 𝑥 (𝑡) = (𝑥
1
(𝑡),

𝑦
1
(𝑡), 𝑥
2
(𝑡), 𝑦
2
(𝑡), V(𝑡)), 𝜌 = (𝑘

1
𝑎
1
𝑏
1
𝜆
1
/𝜌
1
+ 𝑘
2
𝑎
2
𝑏
2
𝜆
2
/𝜌
2
)/𝛾.

Therefore, we will consider system (14) on the set Ω.

3. Global Stability

In this section, we will investigate the existence and stability
of equilibria of system (14).

Obviously, (14) always has the infection-free equilibrium
𝐸
0
(𝑥
10
, 0, 𝑥
20
, 0, 0), where 𝑥

10
= 𝜆
1
/𝑑
1
and 𝑥

20
= 𝜆
2
/𝑑
2
.

The infection equilibrium 𝐸
∗
(𝑥
∗

1
, 𝑦
∗

1
, 𝑥
∗

2
, 𝑦
∗

2
,V∗) (V∗ > 0) is

determined by the following equations:

𝜆
1
− 𝑑
1
𝑥
1
− 𝛽
1
𝑥
1
V = 0,

𝛽
1
𝑏
1
𝑥
1
V − 𝑎
1
𝑦
1
= 0,

𝜆
2
− 𝑑
2
𝑥
2
− 𝛽
2
𝑥
2
V = 0,

𝛽
2
𝑏
2
𝑥
2
V − 𝑎
2
𝑦
2
= 0,

𝑘
1
𝑎
1
𝑦
1
+ 𝑘
2
𝑎
2
𝑦
2
− 𝛾V = 0.

(20)

From the first and third equations of (20), we have

𝑥
1
=

𝜆
1

𝑑
1
+ 𝛽
1
V
, 𝑥

2
=

𝜆
2

𝑑
2
+ 𝛽
2
V
, (21)

respectively. Substituting them into the second and fourth
equations of (20) yields

𝑦
1
=

𝛽
1
𝑏
1
𝜆
1
V

𝑎
1
(𝑑
1
+ 𝛽
1
V)

, 𝑦
2
=

𝛽
2
𝑏
2
𝜆
2
V

𝑎
2
(𝑑
2
+ 𝛽
2
V)

, (22)

respectively.When V ̸= 0, substituting the above𝑦
1
and𝑦
2
into

the last equation of (20) gives

𝑘
1
𝛽
1
𝑏
1
𝜆
1

𝑑
1
+ 𝛽
1
V

+

𝑘
2
𝛽
2
𝑏
2
𝜆
2

𝑑
2
+ 𝛽
2
V

= 𝛾. (23)

Since the function of V at the left hand side of (23) is
strictly decreasing, it is easy to see that (23) has a positive
root if and only if 𝑘

1
𝛽
1
𝑏
1
𝜆
1
/𝑑
1
+𝑘
2
𝛽
2
𝑏
2
𝜆
2
/𝑑
2
> 𝛾 and that the

positive root is unique, denoted by V∗.Therefore, with respect
to the existence of equilibria of (14), we have the following
result.

Theorem 2. Denote

𝑅
0
= (

𝑘
1
𝛽
1
𝑏
1
𝜆
1

𝑑
1

+

𝑘
2
𝛽
2
𝑏
2
𝜆
2

𝑑
2

)

1

𝛾

; (24)

then, when 𝑅
0

≤ 1, system (14) only has the infection-free
equilibrium 𝐸

0
(𝑥
10
,0, 𝑥
20
, 0, 0), where 𝑥

10
= 𝜆
1
/𝑑
1
and 𝑥

20
=

𝜆
2
/𝑑
2
; when 𝑅

0
> 1, besides 𝐸

0
, system (14) also has a unique

infection equilibrium 𝐸
∗
(𝑥
∗

1
, 𝑦
∗

1
, 𝑥
∗

2
, 𝑦
∗

2
, V∗), where

𝑥
∗

1
=

𝜆
1

𝑑
1
+ 𝛽
1
V∗

, 𝑥
∗

2
=

𝜆
2

𝑑
2
+ 𝛽
2
V∗

,

𝑦
∗

1
=

𝛽
1
𝑏
1
𝜆
1
V∗

𝑎
1
(𝑑
1
+ 𝛽
1
V∗)

, 𝑦
∗

2
=

𝛽
2
𝑏
2
𝜆
2
V∗

𝑎
2
(𝑑
2
+ 𝛽
2
V∗)

,

(25)

and V∗ is determined by (23).

Note that 𝑅
0
is the basic reproduction number describing

the viral infection within host.
In the following, we consider the global stability of

equilibria of (14).
In order to simplify the proof of the global stability of the

infection equilibrium 𝐸
∗, we first introduce an inequality as

lemma, which was proved in [18].

Lemma 3. For 𝑛 positive numbers 𝑐
𝑖
(𝑖 = 1, 2, . . . , 𝑛), the

inequality

𝑛 − 𝑐
1
− 𝑐
2
− ⋅ ⋅ ⋅ − 𝑐

𝑛
+ ln (𝑐

1
𝑐
2
⋅ ⋅ ⋅ 𝑐
𝑛
) ≤ 0 (26)

is true, and the equality holds if and only if 𝑐
1
= 𝑐
2
= ⋅ ⋅ ⋅ = 𝑐

𝑛
=

1.

Theorem4. When𝑅
0
≤ 1, the infection-free equilibrium𝐸

0
of

system (14) is globally stable on Ω; when 𝑅
0
> 1, the infection

equilibrium 𝐸
∗ of (14) is globally stable in the region Ω.

Proof. In order to prove the global stability of the infection-
free equilibrium 𝐸

0
of (14), we define a Lyapunov function:

𝐿
11

= 𝑘
1
𝑏
1
(𝑥
1
− 𝑥
10

− 𝑥
10
ln 𝑥
1

𝑥
10

) + 𝑘
1
𝑦
1

+ 𝑘
2
𝑏
2
(𝑥
2
− 𝑥
20

− 𝑥
20
ln 𝑥
2

𝑥
20

) + 𝑘
2
𝑦
2
+ V,

(27)
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then

𝑑𝐿
11

𝑑𝑡

= 𝑘
1
𝑏
1
(𝑥
1
− 𝑥
10
) (

𝜆
1

𝑥
1

− 𝑑
1
− 𝛽
1
V)

+ 𝑘
1
[𝛽
1
𝑏
1
𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
) − 𝑎
1
𝑦
1
]

+ 𝑘
2
𝑏
2
(𝑥
2
− 𝑥
20
) (

𝜆
2

𝑥
2

− 𝑑
2
− 𝛽
2
V)

+ 𝑘
2
[𝛽
2
𝑏
2
𝑥 (𝑡 − 𝜏

2
) V (𝑡 − 𝜏

2
) − 𝑎
2
𝑦
2
]

+ 𝑘
1
𝑎
1
𝑦
1
+ 𝑘
2
𝑎
2
𝑦
2
− 𝛾V

= 𝑘
1
𝑏
1
(𝑥
1
− 𝑥
10
) [𝜆
1
(

1

𝑥
1

−

1

𝑥
10

) − 𝛽
1
V]

+ 𝑘
1
[𝛽
1
𝑏
1
𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
) − 𝑎
1
𝑦
1
]

+ 𝑘
2
𝑏
2
(𝑥
2
− 𝑥
20
) [𝜆
2
(

1

𝑥
2

−

1

𝑥
20

) − 𝛽
2
V]

+ 𝑘
2
[𝛽
2
𝑏
2
𝑥 (𝑡 − 𝜏

2
) V (𝑡 − 𝜏

2
) − 𝑎
2
𝑦
2
]

+ 𝑘
1
𝑎
1
𝑦
1
+ 𝑘
2
𝑎
2
𝑦
2
− 𝛾V

= 𝑘
1
𝑏
1
𝜆
1
(2 −

𝑥
1

𝑥
10

−

𝑥
10

𝑥
1

)

+ 𝑘
2
𝑏
2
𝜆
2
(2 −

𝑥
2

𝑥
20

−

𝑥
20

𝑥
2

)

+ 𝑘
1
𝑏
1
𝛽
1
[𝑥
1
(𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
) − 𝑥
1
(𝑡) V (𝑡)]

+ 𝑘
2
𝑏
2
𝛽
2
[𝑥
2
(𝑡 − 𝜏
2
) V (𝑡 − 𝜏

2
) − 𝑥
2
(𝑡) V (𝑡)]

+ (𝑘
1
𝑏
1
𝛽
1
𝑥
10

+ 𝑘
2
𝑏
2
𝛽
2
𝑥
20

− 𝛾) V.

(28)

Let 𝐿
1

= 𝐿
11

+ 𝑘
1
𝑏
1
𝛽
1
∫

𝑡

𝑡−𝜏
1

𝑥
1
(𝜃)V(𝜃)𝑑𝜃 + 𝑘

2
𝑏
2
𝛽
2
∫

𝑡

𝑡−𝜏
2

𝑥
2
(𝜃)

V(𝜃)𝑑𝜃; then

𝑑𝐿
1

𝑑𝑡

= 𝑘
1
𝑏
1
𝜆
1
(2 −

𝑥
1

𝑥
10

−

𝑥
10

𝑥
1

)

+ 𝑘
2
𝑏
2
𝜆
2
(2 −

𝑥
2

𝑥
20

−

𝑥
20

𝑥
2

) + 𝛾 (𝑅
0
− 1) V,

(29)

where 𝑅
0
= (𝑘
1
𝑏
1
𝛽
1
𝑥
10

+ 𝑘
2
𝑏
2
𝛽
2
𝑥
20
)/𝛾 is used.

It is easy to see that 2 ≤ 𝑥
𝑖
/𝑥
𝑖0

+ 𝑥
𝑖0
/𝑥
𝑖
(𝑖 = 1, 2), then

𝑑𝐿
1
/𝑑𝑡 ≤ 0 as 𝑅

0
≤ 1. Note that, for 𝑅

0
< 1, 𝑑𝐿

1
/𝑑𝑡 = 0

if and only if 𝑥
𝑖

= 𝑥
𝑖0
(𝑖 = 1, 2) and V = 0; for 𝑅

0
= 1,

𝑑𝐿
1
/𝑑𝑡 = 0 if and only if𝑥

𝑖
= 𝑥
𝑖0
(𝑖 = 1, 2). Nomatter the case

𝑅
0
< 1 or 𝑅

0
= 1, the largest invariant set of (14) on the setΩ

is the singleton {𝐸
0
}. Since any solution of (14) is bounded,

it follows from the Lyapunov-LaSalle Invariance Principle
for functional differential equations that the infection-free
equilibrium 𝐸

0
is globally stable on the set Ω when 𝑅

0
≤ 1

[19].

In order to prove the global stability of the infection equi-
librium 𝐸

∗
(𝑥
∗

1
, 𝑦
∗

1
, 𝑥
∗

2
, 𝑦
∗

2
, V∗), define the following Lyapunov

functions and functionals:

𝐿
21

= 𝑘
1
𝑏
1
(𝑥
1
− 𝑥
∗

1
− 𝑥
∗

1
ln 𝑥
1

𝑥
∗

1

)

+ 𝑘
1
(𝑦
1
− 𝑦
∗

1
− 𝑦
∗

1
ln

𝑦
1

𝑦
∗

1

) ,

𝐿
22

= 𝑘
2
𝑏
2
(𝑥
2
− 𝑥
∗

2
− 𝑥
∗

2
ln 𝑥
2

𝑥
∗

2

)

+ 𝑘
2
(𝑦
2
− 𝑦
∗

2
− 𝑦
∗

2
ln

𝑦
2

𝑦
∗

2

) ,

𝐿
23

= (V − V
∗
− V
∗ ln V

V∗
) ,

𝐿
24

= 𝑘
1
𝑏
1
𝛽
1
𝑥
∗

1
V
∗

× ∫

𝑡

𝑡−𝜏
1

[

𝑥
1
(𝜃) V (𝜃)

𝑥
∗

1
V∗

− 1 − ln 𝑥
1
(𝜃) V (𝜃)

𝑥
∗

1
V∗

] 𝑑𝜃

+ 𝑘
2
𝑏
2
𝛽
2
𝑥
∗

2
V
∗

× ∫

𝑡

𝑡−𝜏
2

[

𝑥
2
(𝜃) V (𝜃)

𝑥
∗

2
V∗

− 1 − ln 𝑥
2
(𝜃) V (𝜃)

𝑥
∗

2
V∗

] 𝑑𝜃.

(30)

According to (20), we have

𝑑
1
=

𝜆
1

𝑥
∗

1

− 𝛽
1
V
∗
,

𝑎
1
=

𝛽
1
𝑏
1
𝑥
∗

1
V∗

𝑦
∗

1

,

𝑑
2
=

𝜆
2

𝑥
∗

2

− 𝛽
2
V
∗
,

𝑎
2
=

𝛽
2
𝑏
2
𝑥
∗

2
V∗

𝑦
∗

2

,

𝛾 =

𝑘
1
𝑎
1
𝑦
∗

1

V∗
+

𝑘
2
𝑎
2
𝑦
∗

2

V∗
.

(31)

Then, system (14) can be rewritten as

𝑥
󸀠

1
(𝑡) = 𝑥

1
(𝑡) [𝜆

1
(

1

𝑥
1
(𝑡)

−

1

𝑥
∗

1

) − 𝛽
1
(V (𝑡) − V

∗
)] ,

𝑦
󸀠

1
(𝑡) = 𝛽

1
𝑏
1
𝑦
1
(𝑡) [

𝑥
1
(𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
)

𝑦
1
(𝑡)

−

𝑥
∗

1
V∗

𝑦
∗

1

] ,

𝑥
󸀠

2
(𝑡) = 𝑥

2
(𝑡) [𝜆

2
(

1

𝑥
2
(𝑡)

−

1

𝑥
∗

2

) − 𝛽
2
(V (𝑡) − V

∗
)] ,

𝑦
󸀠

2
(𝑡) = 𝛽

2
𝑏
2
𝑦
2
(𝑡) [

𝑥
2
(𝑡 − 𝜏
2
) V (𝑡 − 𝜏

2
)

𝑦
2
(𝑡)

−

𝑥
∗

2
V∗

𝑦
∗

2

] ,

V
󸀠

(𝑡) = V (𝑡) [𝑘
1
𝑎
1
(

𝑦
1
(𝑡)

V (𝑡)

−

𝑦
∗

1

V∗
) + 𝑘
2
𝑎
2
(

𝑦
2
(𝑡)

V (𝑡)

−

𝑦
∗

2

V∗
)] .

(32)
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By using 𝜆
1

= 𝑑
1
𝑥
∗

1
+ 𝛽
1
𝑥
∗

1
V∗ and 𝜆

2
= 𝑑
2
𝑥
∗

2
+ 𝛽
2
𝑥
∗

2
V∗,

direct computations show that

𝐿
󸀠

21
= 𝑘
1
𝑏
1
𝑑
1
𝑥
∗

1
(2 −

𝑥
∗

1

𝑥
1

−

𝑥
1

𝑥
∗

1

)

+ 𝑘
1
𝑏
1
𝛽
1
𝑥
∗

1
V
∗
(2 −

𝑥
∗

1

𝑥
1

−

𝑥
1
V

𝑥
∗

1
V∗

+

V

V∗
)

+ 𝑘
1
𝑏
1
𝛽
1
𝑥
∗

1
V
∗
[

𝑥
1
(𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
)

𝑥
∗

1
V∗

−

𝑦
1

𝑦
∗

1

−

𝑥
1
(𝑡 − 𝜏
1
) 𝑦
∗

1
V (𝑡 − 𝜏

1
)

𝑥
∗

1
𝑦
1
V∗

] ,

𝐿
󸀠

22
= 𝑘
2
𝑏
2
𝑑
2
𝑥
∗

2
(2 −

𝑥
∗

2

𝑥
2

−

𝑥
2

𝑥
∗

2

)

+ 𝑘
2
𝑏
2
𝛽
2
𝑥
∗

2
V
∗
(2 −

𝑥
∗

2

𝑥
2

−

𝑥
2
V

𝑥
∗

2
V∗

+

V

V∗
)

+ 𝑘
2
𝑏
2
𝛽
2
𝑥
∗

2
V
∗
[

𝑥
2
(𝑡 − 𝜏
2
) V (𝑡 − 𝜏

2
)

𝑥
∗

2
V∗

−

𝑦
2

𝑦
∗

2

−

𝑥
2
(𝑡 − 𝜏
2
) 𝑦
∗

2
V (𝑡 − 𝜏

2
)

𝑥
∗

2
𝑦
2
V∗

] ,

𝐿
󸀠

23
= 𝑘
1
𝑎
1
𝑦
∗

1
(

𝑦
1

𝑦
∗

1

−

𝑦
1
V∗

𝑦
∗

1
V

−

V

V∗
+ 1)

+ 𝑘
2
𝑎
2
𝑦
∗

2
(

𝑦
2

𝑦
∗

2

−

𝑦
2
V∗

𝑦
∗

2
V

−

V

V∗
+ 1) ,

𝐿
󸀠

24
= 𝑘
1
𝑏
1
𝛽
1
𝑥
∗

1
V
∗
[

𝑥
1
V

𝑥
∗

1
V∗

−

𝑥
1
(𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
)

𝑥
∗

1
V∗

+ ln
𝑥
1
(𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
)

𝑥
1
(𝑡) V (𝑡)

]

+ 𝑘
2
𝑏
2
𝛽
2
𝑥
∗

2
V
∗
[

𝑥
2
V

𝑥
∗

2
V∗

−

𝑥
2
(𝑡 − 𝜏
2
) V (𝑡 − 𝜏

2
)

𝑥
∗

2
V∗

+ ln
𝑥
2
(𝑡 − 𝜏
2
) V (𝑡 − 𝜏

2
)

𝑥
2
(𝑡) V (𝑡)

] .

(33)

Let 𝐿
2
= 𝐿
21

+ 𝐿
22

+ 𝐿
23

+ 𝐿
24
, then

𝐿
󸀠

2
= 𝑘
1
𝑏
1
𝑑
1
𝑥
∗

1
(2 −

𝑥
∗

1

𝑥
1

−

𝑥
1

𝑥
∗

1

) + 𝑘
2
𝑏
2
𝑑
2
𝑥
∗

2
(2 −

𝑥
∗

2

𝑥
2

−

𝑥
2

𝑥
∗

2

)

+ 𝑘
1
𝑏
1
𝛽
1
𝑥
∗

1
V
∗
[3 −

𝑥
∗

1

𝑥
1
(𝑡)

−

𝑥
1
(𝑡 − 𝜏
1
) 𝑦
∗

1
V (𝑡 − 𝜏

1
)

𝑥
∗

1
𝑦
1
V∗

−

𝑦
1
(𝑡) V∗

𝑦
∗

1
V (𝑡)

+ ln
𝑥
1
(𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
)

𝑥
1
(𝑡) V (𝑡)

]

+ 𝑘
2
𝑏
2
𝛽
2
𝑥
∗

2
V
∗
[3 −

𝑥
∗

2

𝑥
2
(𝑡)

−

𝑥
2
(𝑡 − 𝜏
2
) 𝑦
∗

2
V (𝑡 − 𝜏

2
)

𝑥
∗

2
𝑦
2
V∗

−

𝑦
2
(𝑡) V∗

𝑦
∗

2
V (𝑡)

+ ln
𝑥
2
(𝑡 − 𝜏
2
) V (𝑡 − 𝜏

2
)

𝑥
2
(𝑡) V (𝑡)

] .

(34)

According to the relationship between the arithmetic and
the associated geometric means and Lemma 3, 𝑑𝐿

2
/𝑑𝑡 ≤ 0

and 𝑑𝐿
2
/𝑑𝑡 = 0 if and only if 𝑥

1
= 𝑥
∗

1
, 𝑥
2

= 𝑥
∗

2
, 𝑦
1
/𝑦
∗

1
=

𝑦
2
/𝑦
∗

2
= V(𝑡)/V∗ = V(𝑡 − 𝜏

1
)/V∗ = V(𝑡 − 𝜏

2
)/V∗. It is

easy to see that the largest invariant set of (14) on the set
{(𝑥
1
, 𝑦
1
, 𝑥
2
, 𝑦
2
, V) ∈ Ω : 𝑑𝐿

2
/𝑑𝑡 = 0} is the singleton

{𝐸
∗
}. Since any solution of (14) is bounded, it follows from

the Lyapunov-LaSalle Invariance Principle for functional
differential equations that the infection equilibrium 𝐸

∗ is
globally stable on the set Ω when 𝑅

0
> 1 [19].

4. Discussion

In this paper, we first present the probability function
describing the latency of the infected cells such that some
models of viral infection with latent stage are unified. When
the function is an exponential one, the associated model is a
system of ordinary differential equations; when the function
is a step function, the associated one is a delay differential
system. Both of the two types of models have the similar
dynamical behaviors. That is, when the basic reproduction
number is less than or equal to unity, the infection-free
equilibrium is globally stable, which implies that the in-
host free virus will be cleared out finally; when the basic
reproduction number is greater than unity, the infection
equilibrium is globally stable, which implies that the viral
infection will be chronic and persist in-host [6, 7, 17]. But
there is a difference between the basic reproduction numbers
for the two types of models.

In fact, for ordinary differential systems (6) and (12), the
basic reproduction numbers are

𝑅
(𝑂)

01
=

𝛽𝜆𝑘𝜀

𝑑𝛾 (𝑑 + 𝜀)

,

𝑅
(𝑂)

02
= [

𝛽
1
𝜆
1
𝑘
1
𝜀
1

𝑑
1
(𝑑
1
+ 𝜀
1
)

+

𝛽
2
𝜆
2
𝑘
2
𝜀
2

𝑑
2
(𝑑
2
+ 𝜀
2
)

]

1

𝛾

,

(35)

respectively [6, 7]. For delay differential systems (10) and (13)
(or (14)), the basic reproduction numbers are

𝑅
(𝐷)

01
=

𝛽𝜆𝑘𝑒
−𝑑𝜏

𝑑𝛾

,

𝑅
(𝐷)

02
= [

𝛽
1
𝜆
1
𝑘
1
𝑒
−𝑑
1
𝜏
1

𝑑
1

+

𝛽
2
𝜆
2
𝑘
2
𝑒
−𝑑
2
𝜏
2

𝑑
2

]

1

𝛾

,

(36)

respectively, where𝑅
(𝐷)

01
was obtained in [17];𝑅(𝐷)

02
is𝑅
0
in this

paper.
According to the definition of probability function of

staying in the latent stage, for the two common types of prob-
ability functions, exponential function and step function, we
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assume that the associated average latent periods of infected
cells are equal, that is, 𝜏 = 1/𝜀. Then, the basic reproduction
numbers of ordinary differential systems (6) and (12) can be
rewritten by

𝑅
(𝑂)

01
=

𝛽𝜆𝑘

𝑑𝛾 (1 + 𝑑𝜏)

,

𝑅
(𝑂)

02
= [

𝛽
1
𝜆
1
𝑘
1

𝑑
1
(1 + 𝑑

1
𝜏
1
)

+

𝛽
2
𝜆
2
𝑘
2

𝑑
2
(1 + 𝑑

2
𝜏
2
)

]

1

𝛾

,

(37)

respectively.
From the inequality 1/(1 + 𝑢) > 𝑒

−𝑢 for 𝑢 > 0, it follows
that

𝑅
(𝑂)

01
> 𝑅
(𝐷)

01
, 𝑅

(𝑂)

02
> 𝑅
(𝐷)

02
. (38)

They imply that for certain models of viral infection, the
basic reproduction number of ordinary differential system
may be greater than that of delay differential system. It
is well known that the basic reproduction number usually
determines dynamics of models of viral infection. Therefore,
the difference between the basic reproduction numbers of
the different types of models reminds us that it is necessary
to elect an appropriate type of probability function, when
predicting the final outcome of viral infection in-host.
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