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The existence results of global asymptotic stability of the solution are proved for functional integral equation of mixed type. The
measure of noncompactness and the fixed-point theorem of Darbo are the main tools in carrying out our proof. Furthermore, some
examples are given to show the efficiency and usefulness of the main findings.

1. Introduction

It is well known that functional integral equation of various
types creates an important subject of numerous mathematical
investigations and constitutes a significant branch of non-
linear analysis. It has great applications in physics, engineer-
ing, economics, and biologyed modelling problems connect
with real world. With the help of several tools of functional
analysis, topology, and fixed-point theory, many authors have
made important contributions to this theory [1-5].

Let R denote the real lineand R™ = [0, +00). In this paper,
we investigate the nonlinear functional integral equation of
mixed type, namely,

£ = F(0f 6x @),
B)
J u(t,s,x(y(s))dg(t.s), 1
0

JOO v(t,s, x (5 (s))) ds> , teR™.
0

It is worthwhile mentioning that (1) contains numerous
functions and integral and functional integral equations
encountered in nonlinear analysis. For example, the classical
Volterra integral equation, the famous Chandrasekhar inte-
gral equation, the Urysohn integral equation, and the Vol-
terra-Stieltjes integral equation are the special cases of (1).
The goal of this paper is to investigate the existence and
asymptotic behavior of solutions for (1). Using the technique

associated with a suitable measure of noncompactness and
the fixed-point theorem of Darbo, we show that (1) has at least
one solution under rather general and convenient assump-
tions. We also obtain some asymptotic characterization of the
solutions of (1). The results of the present paper generalize
several ones obtained previously in the papers [1, 3, 6-8] and
references therein.

2. Preliminaries

In this section, we introduce some notations, definitions, and
preliminary facts which are used in this paper. Let x be a real
function defined on [a, b], and let \/l;x denotes the variation
of x on [a,b]; if \/Zx is finite, we say that x is of bounded
variation. Let g(t,s) : [a,b] x [c,d] — R be a function,
and let \/?:P g(t, s) indicate the variation of the function t —
g(t,s) on [p,q] C [a,b], where s is arbitrarily fixed in [c, d].

Similarly, define \/7_ »9(t, ). If x and ¢ are two real functions

defined on [a, b], define the Stieltjes integral f: x(t)de(t) and
say that x is Stieltjes integrable on [a, b] with respect to ¢.

Lemma 1 (see [9]). If x is Stieltjes integrable on [a,b] with
respect to @ of bounded variation; then

b t
s[ |x<t>|d(\/<p)- )

b
j x(t) dg (¢)

a




Lemma 2 (see [9]). Let x;, x, be Stieltjes integrable functions
on [a, b] with respect to a nondecreasing function ¢ such that
x,(t) < x,(t) fort € [a,b], then

b

b
I x, (t)dgo(t)sj x, () de (t). 3)

a a

We also consider Stieltjes integrals f: x(s)d,g(t, s), where
g :la,b] x [a,b] — R and d, indicates the integration with
respect to s. The details concerning the integral of this type
will be given later.

Let (E, | - ||) be a real Banach space with zero element 0.
Denote by B(x, r) the closed ball centered at x and with radius
r, B, stands for the ball B(0,r). If X is a nonempty subset
of E, we denote by X and ConvX the closure and the closed
convex hull of X, respectively. The family of all nonempty and
bounded subsets of E is denoted by M ; and its subfamily con-
sisting of all relatively compact sets is denoted by 9t .

Definition 3 (see [10]). A function p : Mz — R* := [0, 00)
is said to be a measure of noncompactness in E if it satisfies
the following conditions.

(1) The family ker y = {X € My : u(X) = 0} is nonempty
and ker y € N.

(2) X Y = u(X) < u(y).

(3) u(X) = u(ConvX) = u(X).

(4) pAX+(1-2)Y) < ApuX)+ (1 -A)u(Y) for A € [0, 1].

(5) If{X,,}, isa sequence of closed sets from i such that
Xy € X, (n=1,2,...)and if lim, ,  u(X,) = 0,
then the set X, = [, X,, is nonempty.

The family ker p in (1) is called the kernel of y. Note that
X from (5) is a member of ker .

Consider the Banach space BC(R™) of all real functions
defined, bounded and continuous on R*, and equipped with
the maximum norm ||x|| = sup{|x(t)| : t > 0}. Fixa nonempty
bounded subset X of BC(R*)and T > 0,and for x € X, > 0,
define

W' (x,€) = sup{|x (t) —x(s)| : t,s € [0, T], |t —s| < &}.
(4)

Let
w’ (X, ¢€) = sup {wT (x,€) : x € X} ,
wg (X) = 8liLnOwT (X,¢e), (5)
Wy (X) = Tlijloowg (X).

Moreover, for a fixed t € R", define
X@)={x®):x¢€X},
(6)
diam X (t) = sup {|x (t) = y (t)| : x, y € X}.
Finally, define the function p on My g+ by

p(X) = wy (X) + lim sup diam X (¢) . )
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It can be shown that y is a measure of noncompactness in
BC(R™) [10].

Remark 4. ker py contains nonempty and bounded sets X such
that functions from X are locally equicontinuous on R* and
tend to zero at infinity uniformly with respect to X.

Assume Q is a nonempty subset of BC(R") and Q is an
operator defined on Q with values in BC(R™). Consider the
operator equation

x(t) = (Qx) (), teR". 8)
Definition 5 (see [8]). The solution x(t) of (8) is said to be
locally attractive if there exists a ball B(x,, r) in BC(R") such

that for arbitrary solutions x = x(t) and y = y(t) of (8)
belonging to B(x,, 1) N Q such that

Jim (x(6) - y () =0. ©)

Definition 6 (see [3]). The solution x = x(¢) of (8) is said to be
globally attractive, if (9) holds for each solutions y = y(t) of
(8). If (9) is satisfied uniformly with respect to ), we say
that solutions of (8) are globally asymptotically stable (or uni-
formly globally attractive).

Theorem 7 (Darbo fixed-point theorem [10]). Let Q be a
nonempty bounded closed and convex subset of Banach space
Eandlet Q : QO — Q be a continuous mapping such that
w(QX) < ku(X) for any nonempty subset of X of Q, where
k € [0,1) is a constant. Then Q has a fixed-point in Q.

From Theorem 7, it can be shown that the set fix Q of
fixed-points of Q is a member of ker .

3. Main Results

In this section, we will investigate the existence and asymp-
totic behavior of solutions for (1) in BC(R*). Assume that the
following conditions are satisfied.

(H)) a, 3,7,6 : R" — R" are continuous functions.

(H,) g: R* xR" — R satisfies the following conditions.

(H,,) Forallt,t, € R such thatt, < t,, the function
s — g(t,,s) — g(t,,s) is nondecreasing on R™.

(H,;) The function s — ¢(0, s) is nondecreasing on
R".

(H,,) The functions s — g(t,s) andt — g(t,s) are
continuous on R for each fixed t € R or s €
R™, respectively.

(Hy) u: R" xR x R — R is a continuous function and
there exist a continuous function k(t, s) : R* x R* —
R" and a continuous, nondecreasing function ¢ :
R* — R such that

lut,s,x)| <k(ts)p(x]), VtseR', xeR. (10)
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(H)v:R"xR"xR — Risa continuous function,
v(t,s,0) = 0 and there exist a continuous function
p(t,s) : R* x R" — R* and a continuous, nonde-
creasing functions ¥ : R* — R such that y(0) =
0 and

[v(t,s,x)=v(ts y)]

(11)
<pts)y(x-y)),

Vt,s € R, x,y € R.

(H;) F: R*XRxRxR — R isacontinuous function and
there exist a constant M > 0 and continuous func-
tions m, (t), m,(t) : R* — R such that

|F(t,x1,x2,x3)—F(t,yl,yz,y3)|
S M|xy = p| +my () |x, - 3 (12)
+my (1) x5 = ys),

for all t € RY, x,,%,,%3,¥1, ¥, ¥3 € R. Moreover,
the function t — F(t,0,0,0) is bounded with F, =
sup,.,|F(t, 0,0, 0)|.

(Hg) f: R" xR — R isa continuous function and there
exists a constant A > 0 such that

|f .0 = f(t.y)] < Alx -y,
Moreover, f(t,0) € BC(R") and f, = sup,.,|f(t,0)|.

Vx,y €R, t e R". (13)

(Hy) lim, _ oy (8) [P k(2 9)d, g2, ) - 0,
lim, _, . m, () IOOO p(t,s)ds = 0.
(Hg) Consider

Tli_r)n00 {sup {ij(t,s) ds:te IR+H> =0. (14)

(Hy) There exists a positive solution r,, of the inequality
MAr + Mfy+ My (r) + Moy (r) + Fy <r (15)

such that MA < 1, where

B

)
M, = sup {ml (t) L k(t,s)d,g(t,s):t> 0} ,

(16)
M, = sup {mz ) L p(t,s)ds:t> 0}.

Remark 8. There are many examples of function g(t, s) which
verify (H,), such as

(i) g(t,s) =s,

(ii) g(t,s) = sIn(t + 1),

1 , for £>0, 52
(iii) g(t,s) = {é,n((m)m for ngs;g

(iv) g(t,s) = fot(jos plz, y)dy)dz, where p : R* x R" —
R" is a bounded and integrable function.

One can see [2] for more details.

In what follows, we provide some properties of the func-
tion g(t, s).

Lemma 9 (see [9]). Under assumptions (H, ,) and (H, ), the
functions — g(t,s) is nondecreasing on R* for any fixed t €
R*.

Lemma 10 (see [9]). Assume that the function g satisfies the
assumption (H, ,); then for arbitrarily fixed s;,s, € R" such
that s, < s,, the functiont — g(t,s,) — g(t, s,) is nondecreas-
ingon R".

Remark 11. Observe that if , > 0 satisfies (15), then

M, (ro) _ My (”o)'

40 40 40 Ty

17)

Thus, if one of the terms of Mf,, F,, M,, and M, dose not
vanish, then MA < 1 is automatically satisfied.

For the sake of convenience and simplicity, we will use the
following notations in the paper. For fixed T > 0, let

o =supla(t):te[0,T]},

B"=sup{B(t):te0,T]},
myp = inf {m, (t) : t € [0,T]},
(18)
myp = inf {m, () : t € [0, T]},
ml = sup {m, () : ¢ € [0, T},

kr :sup{k(t,s) :t€[0,T],s € [O,ﬁT]}.

The main result of this section is the following theorem.

Theorem 12. Under assumptions (H,)-(H,), (1) has at least
one solution x € BC(R"). Moreover, solutions of (1) are glo-
bally asymptotically stable.

Proof. Consider the operator & defined on BC(R™) by
(Fx)(t) = F <f,f (t, x (« (1)),
B
J u(t,s,x(y(s))d,g (t.s), (19)
0

JOO v(t,s,x (0 (s)))ds) , teR%

0

Taking into account (H,), (H;), and Lemma 9, we deduce that
F is well defined on BC(R™).



First, we show that  maps BC(R") into itself. It is clear
that Fx is continuous on R* for each x € BC(R"). By
(H;)-(Hy) and Lemma 1, for t € R*, one has

[(Fx) (1)l

<

F<t,f(tsx(06 ®))>

B
J u(t,s,x(y(s))d,g (t.s),

0

LOO v(t,s,x (6 (s))) ds)

<

F<t,f(tsx(06 ®))>

B®)
L u(t,s,x(y(s)))d,g(t.s),

JOO v(t,s, x (6 (s))) ds) - F(t,0,0, 0)‘
0
+F(£,0,0,0)

S M|f (it x(a(®)] +m, ()

X

B®)
L u(t,s,x(y(s))dgt,s)

+m, (t) UOOO v(t,s,x (6 (s)))ds| + |F (t0,0,0)|

< MA|x (@ ()| + M |f (£,0)] +m, (t)
B s
< |u<t,s,x(y<s>>)|ds(\/g(t,p)>
0 p=0

oy (8) LOO v (6,5, x (3 ()| ds + |E (£, 0,0,0)|

< MA|x||+ M |f(t, 0)| +my (t)
Bt
<[ k99 (@)D g6

+m2<t)j0 () v (1x (0 () ds + | (£,0,0,0)]

< MA x|l + Mfo + ¢ (I1x1l) m, (2)

B(t)
X J k(t,s)d.g(t,s)
0

(o)

sy () m, (t)j p(ts)ds+ F,

0

< MA||x|l + Mfo + Mo (l1x1)

+ Moy (Ix]l) + Fy,
(20)

By (H,), it is clear that #(B, ) € B, .
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Next, we show that # is continuous on B, . Let ¢ > 0
be given, and since (H;) holds, there exists T' > 0, such that

my (t) ff(t) k(t,s)d,g(t,s) < e and m,(t) IOOO p(t,s)ds < & for
t > T. Consider the following two cases.

Casel. Fort >T,x,y € B, with [[x — y|| <&,

[(Fx) (1) - (Fy) ()|

<

F (t,f(t,x(oc ®))),
B@)
L u(t,s,x(y(s))dsg (t.s),
JOO v(t,s,x (0 (s))) ds)
0
-F (t,f(t,y(oc "))
B(®)
J, utsreNdgw,

J:O v(t,s, y(8(s))) ds)

<M|f (tx@®) ~ f (& y (@@®))|+m, ()

X

B®)
| wesxe)

—u(t,s, y(y(5))]d.g (t.s)

+m, (t) UOOO [v(t,s,x(8(s) —v(ts, y(S(s)]ds

< MAJx (@ (t) = y (@ @®)] +my ()

B(t)
<[ s 2 O) -ulsy GO,
X (\S/g(t,p)> +m, (t)

p=0

x L [v(t,s,x(8(s) = v(t,s, y(5(s))|ds

< MA|x = y|| +my (t)
B®
<[ s @) ultsy () dg @

+my (1) L v (£, (8 ()l ds

(o]

+m, (t) J [v(t,s, y (8(s)))|ds

0
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< MA ||x - y” +my (t)
B(t)
<[ k9Pl O dg 9
B(t)
rmy (1) L k(6,9 (|y (v (5)]) deg (& 5)
(0| P69y (x @ O)ds

£y (2) jo P65y (ly 3 (s)]) ds

< MA|jx = y| + ¢ (lxl) m, (8)

B(®)
X L k(t,s)dsg (t,s) + @ (||y]) m, ()

B(t)
X j k(t,s)d.g(t,s)
0

(o]

+y (Ixl) my <t>j p(t.s)ds

0
+y ([y]) m, (6) L p(t,s)ds

< MA|x = y| + 29 (ry) my (£)
B(t)
X J k(t,s)dg(t,s)
0

+ 2y (ry) m, (t) L p(ts)ds
< MAe+2¢(ry) e+ 2y (rp) &
(21)

Case2.Fort € [0,T],x, y € B, with [ x—y| < &, by Lemmas 9
and 10, one has

(Fx) (1) = (Fy) ()]
<M|f (tx(@(®) ~ f (& y (@@®))|+m, ()

B#)
|, s

X

—u(t,s,y(y(s))]deg (t,5) | +m, (t)

X

L [v(t,s,x(8(s)) = v(t,s, ¥ (8 (s))] ds

< MAJx (@ (t) = y (@ @®)] +my (¢)

B(t)
<[ s xGO) -ultsy ),

X (\S/g (t,p)) +m, (t)

p=0

x J-o [v(t,s,x(8(5) —v(t,s, y(8(5))|ds

< MA|x = y| +m, (1)
B(t)
<[ s @) - u sy () dg @
+m, (t) .[o Pty (|x(8(s) -y (S (s))|)ds
B(t)
< MAe + mlTw (u,€) J t d,g(t,s)
0

v (lx=sm o [ pe.ods
< MAe +m] w (u, €)

x (g (6B (1) - g(t,0)) + Myy (¢)
< MAe +mj| @ (u, €)

x (g (T, B(®)) - g(T,0)) + Myy (e)
< MAe +m] w (u, €)

(g (T.p") - g(T.0)) + Myy (e),

(22)
where
w(u,e) =sup{lu(t,s,x) —u(t,s,y)|:t€[0,T],
s¢€ [0’ /3T] %,y € [=1o,15] s (23)
|-y <}
By (21) and (22),

|(F2) @) - (Fy) 0]
< max {M)Ls +20 (ry) € + 2v (ry) & MAe + m| @ (u, €)

x(9(T.6") - g (T,0) + Myy (0)}.
(24)

Note that w(u, &) — 0,y(e) — Oase — 0,and F is contin-
uous on B, by (24).

Now, and let X be a nonempty set of B, and x € X, fix
arbitrarily T > O and € > 0, let t;,¢, € [0, T] such thatt, < ¢,
andt, —t, <e¢,

|(Fx) (t,) - (Fx) (1)

F(tz, Fltnx(a(1)),

<

B(ty)
L Uty 5% (y(9)) dig (£555) »
Joo ) (tz’ S, X (8 (S))) d5>
0
F(f Fltpx(a(t)),
B(ty)
L u(ty,sx(y(9))dig (t1,5)

JOOO v(ty, s x(8(s))) ds)




SF(%prxWUQD,
B(ty)
[, s x (@) dglens).
JOOO v(ty, s x(8(s))) ds)
- F (1 (x (@(1).
B(ty)
j) (5% (y () dyg (£:5)

JOO v(ty, s, x(8(s))) ds>
0

F(afupxmao»,
B(ty)
| s x () dg (e9),
LOO vty s, % (3 (5))) ds)

_p(%fapxman»,

B(t)
J, s x (@) dg s,

LOO v(ty, 5 x(8(s))) ds)

F(%fﬁprOJD,
B(ty)
L u(ty,s,x(y(s)))dg (t>s),

LOO v(ty 5 x(8(s))) ds)

_F (tz,f(tl,x(oc (1)),

B(ty)
L u(t;,sx(y(9) dig (t1,5)

LOO v(t,s x(8(s))) ds)

F(%fapxmao»,

B(t))
[, sy ©)dg (.9,

LOO vt 5% (3 (5))) ds>
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(0 (x a0,

B(ty)
L u(t;,sx(y(9) dig (t1,5)

Lmv(tl,s,x(a (s)))ds)
< M| f (tyx (a(85))) = f (£, % (e (£1)))]

Bit2)
), s x (@) da (69

+my

Bt1)
S GRS TR ERICH

JOO v(ty s x(8(s))ds
0

T
+m,

- JOO v(t, s x(8(s))ds
0

+ erO (F,¢)

= MY, + mlTSI + mZSZ + wz; (F¢),
(25)

where

9 = |f (tyx(a(ty))) = f (t1 x (« (tl)))l >

B(t)
=] wlesx O da 9

B(t))
[ s x @) ).

9, = IL v(ty, s, x(8(s))ds

- joo v(t, s x(8(s))ds|,
0

ero (F, ¢) (26)

= sup { |F (tz,x,y, Z) - F(tl,x,y, Z)I
bt € [0,T]L | -t <&

€ [=Arg = fo, Arg + fol,
[ ‘P("o Ml % To)M

JAS

zZ €

el
szf(ro) sz/ o
Moreover, [ ]}
9 = |f (tyx(a(ty))) = f (t1, x (a(t))))]
< |f (tx (a(ty))) = f (t2 x (a(t))))]
+|f (tx (a(t)))) = f (t1ox (a (t))))]
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< Ax(a(ty)) = x (e« (t)))] < Jﬁ(tz)) e 2 (O] g ()

+|f (tr x (a(£1))) = f (1 x (e (11)))] L0
< ' (x, o’ (ax, e)) + wz; (f, €), . J’[;(tl) |u (b5 (y (5)))
(27) 0
where —u (t1> S X (V (5)))| d,g (tz’ 5)
T (x, w" Bt,)
@ {T’" ) T [ s x O
=sup{|x(6,) —x(6,)]:6,,0, € |0, |, 0
’ l:006s < [0 (g (t5) - 9 (6,9)
|02 —61| <w (oc,s)},
(28) Bt)
o () <, IRICEHCIENERCD
= sup{lf (t,x) - f(tl’x)| tty,t, € [0,T], B
|ty —t:| < &.x € [~rg, 1]} * Jo @, (4:6)d: (t2:5)
By Lemma 1, one has B(t)
yhemme Lo [ ke (2D,
9, = u(ty, s, x(y(s)))dsg(tys
[ wtestrondatas <(9(t29) - 9(6,9)
Blty) B(ty)
[ s @) g9 <krp(n) || d.g(t9
ﬁ(tz) ty
< L u(ty 5 x(y(s)) deg (t25) + 0y (1,e) Jﬁ( )dsg (t,,5)
B(ty) B(ty)
-] s x (@) dg (69 +krp () [ (969 -9 (419)
B(t,) = T > 2)) — 2 1
[ sty st b ) 966 0 5)
o +w, (ue)[g(t, B(11)) - g(t2,0)]
-L u(ty,sx(y(s))deg (2 9) + ko (1) ([g (2, B(t1)) = g (11, B (11))]
Bt,) ~[g9(t,,0) - g (t,0)])
|l s g < ke (1) [9 (T A1) - 9 (T, B (1)
ﬁ(tl)
_L u(ty,s,x(y(s) dg (t,,9) +w, (ue)[g (T, B(t,)) - g(T,0)]
B(t,) +kro (1) ([9 (tz’ﬁT) -9 (tl’ /3T)]
- J/s(tl) ity @) +]g(£,0) - 9(1,,0)])
: <krgp(rg) @' (9(1,),0" (Be)
X( \/ g(t, P)> . ( . )
p=B(t)) +w, (u,¢€) [g (T,ﬁ ) -g(T, 0)]
[ s x @) s x e +hap () [ (9(67) )
s +0' (9(-0),¢)],
x <\/g (Q)P))
= where
ﬁ( 1) T T
[ s sl o (o047 (6.0)
<\S/[ () ( )]> :sup{lg(T,Oz)—g(T,91)| 10,0, € [0’/3T]’
x typ)— gty
p=0 7 gk |92 - 91| <’ (B 5)} >

(29)
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w;ro (u,€)
= sup { [u(ty,s,x) —u(ty, s, x)| : ty,t, € [0,T],
s¢€ [O,ﬁT] -t <exe [—ro,ro]}.
(30)
By (H,), one has

9, = IJO v(ty, s x(8(s))ds

- JOO v(t,s x(8(s))ds
0

< JOO v (5, 5,x (8 (5))) ds
0

—v(t;,8x(8(s)|ds
T

< J [V (2,5, % (8 ())) ds
0
—v(t,5,x(8(5)))| ds

" JTOO 7 (6255 @ () ds —v (5, x @] ds 3
< T (ve) + ro v (5, (8 (5)))] ds
T
+J [v(t),s,x (8 (s)))| ds
T
< T (ve) + L p(6,5)y (1% (5 (s)]) ds

t [Py (@ eDds
T

< Twz; (v, €)

+ 2 sup “Toop(t,s)ds ‘te IR*} -y (ry),
where
w,To (v, €)
=sup {|[v(tp 5, %) = v(t, s, x)| 1 t),t,,€ [0,T], (32)
s€[0,T],|t, - t;]| < &x € [-ro 1]}
By (25), (27), (29), and (31), one has
W' (Fx,6) < MAw' (x,0" (a,€)) + Mw, (fe)
tmikrg () @' (9(T.), 0" (Be))
+miwy () [g(T.8") =g (T, 0]
+mikrg (ro) [ (9 (~B") €)
+0' (g(-0),¢)]
+ mgTwZ; (v,€) + 2ml v (r,)
xsupH:op(t,s)ds ‘te R+} +w, (Fe),
(33)
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and then
w' (FX,¢) < Mlw” (X, w' (o, s))

+ May, (f.€) +mikro (ry) "
x(g(T,),0" (B.¢))

+miw; (ue)[g(T.") - g(T,0)]

+ i kg (1)

[0 (g (= B").€) + ' (9(~0),¢)]

+my Tw, (v,€) +2my y (r,)

X sup U:Op(t,s)ds te R*} +w3; (F,e).

(34)

By the uniform continuity of the functions f, g, 8, u, v,and F
on compact set, one has

w,TO (fre) — 0, w;ro (u,€) — 0,
ero (v,e) — 0, erO (F,e) — 0, ase—0,

W' (g(1,7),0" (Be)) — 0,

wT(g("ﬁT)’e) — 0, “’T(g('>0),€) — 0, ase—0,

(35)
)
wp (FX) < MAw} (X) +2my (1)
0 (36)
X sup {JT pt,s)ds:te IR+} ,
and then, by (Hy),
wy (FX) < MAw,y (X). (37)

On the other hand, take arbitrary x, y € X and fixt € R*; one
has

[(Fx) () - (Fy) ®)]
SM|f (tx(a(®) = f(ty(@®))] +m, (t)

X

B(t)
J, WsxO)-usy (@) dgs

-y (8) U:O [t 5,2 (3(5)) = v (6,5, y (3 (5)))] ds

< MA|x (@ (1)) = y (a(t))] + my (£)

Bt)
<[ s ©) -usy (@l

X(Qg@m>

p=0

+m, (t) L [v(t,s,x(8(5) —v(t,s, y(8(s)|ds
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< MAdiam X (¢) + my (t)
B®)
x L k(t,s) g (|x(y(s)]) dog (£, 5)

B)
+my (t) j k(699 (y () deg (t:5)

o0

+m2<t>j 26,9y (X (3 () ds

0

(1) jo Pty |y G (s)])ds

< MAdiam X (¢) + 29 (ry) m, (£)

B®)
X J k(t,s)d,g(t,s)
0

(o]

+ 29 (rg) my (1) L p(t,s)ds,
(38)
and hence
diam (FX) (t) < MA diam X (t)
+ 29 (ro) my (t)
(39)

B(t)
X J k(t,s)d.g(t,s)
0

+ 2y (ry) m, (t) L p(t,s)ds.

By (H,), one has

lim sup diam (FX) (t) < MAlim sup diam X (¢) . (40)
t— 00

t— 00
By (37) and (40), one has
U(FX) < Miu(X), (41)

where y is the measure of noncompactness defined in (7).
Hence, in view of Theorem 7, we conclude that # has at least
one fixed-point x € B, , which is a solution of (1). Moreover,
taking into account the description of sets belonging to ker y
(see Remark 4), we deduce that the solutions of (1) are glo-
bally asymptotically stable. This completes the proof. O

Remark 13. Equation (1) is quite general and includes
some nonlinear integral equations studied earlier by various
authors as special cases. For example, we have the following.

(1) If f(t,x) = x, g(t,s) = s, at) = Bt) = yt) = () =
t, (1) reduces to the nonlinear functional integral
equation which studied by [7], that is,

x(t)=F (t,x ®), J: u(t,s,x(s))ds,
(42)

ro v (t, s,x(s))ds), teR".
0

(i) If F(t, x, y, 2) = q(t) + xy, a(t) = B(t) = y(£) = 8(¢) =
t, v(t, s, x) = 0, (1) reduces to the nonlinear quadratic
integral equation of Volterra-Stieltjes type which is
studied by the author of [2], that is,

x () =q@)+ f (tx ()

t (43)
X J u(t,s,x(s)dyg(ts), teR".
0

(iil) If F(t, x, y,2) = q(t) + xz, g(t,s) = s, a(t) = Bt) =
p(t) = 8(t) = t, u(t,s, x) = 0, (1) reduces to the quad-
ratic Urysohn integral equation which is studied by
the author of [22], that is,

x(t) = q(t) + f (tx (1)

(44)

xJ v(t,s,x(s)ds, teR".
0

For more detail, one can see Table 1.

4. Examples

In this section, we present some examples to illustrate our
main result.

Example 14. Consider the nonlinear functional integral equa-
tion of Volterra-Stieltjes type

x(t) = f (tx(a ()
B() (45)
+ J u(t,s,x(y(s))dg(ts), teR".
0

Equation (45) is a special case of (1), where F(t, x, y,z) =
x+y,v(t,s,x) =0,8(t) = 0. Since F(t, x, y,z) = x+ y, (Hs) is
satisfied with M = m,(t) = 1, my(t) = 0, and F, = 0. By
Theorem 12, one has the following.

Theorem 15. Assume that (H,)-(H;), (Hy), (H;), and (Hy)
hold; then (45) has at least one solution in BC(R™) which is glo-
bally asymptotically stable.

Remark 16. When g(t,s) = s, (45) is investigated by [3], and
if g(t,s) = s, a(t) = P(t) = p(t) = t, it is investigated by
the author of [6], see Table 1 for more details. Theorem 15
improves, and generalizes the results of [3, 6].

Remark 17. If F(t, x, y, z) = q(t) + xy, the following quadratic
nonlinear functional integral equation of Volterra-Stieltjes

type:
x(t)=q )+ f(tx ()

B(6) (46)
X J u(t,s,x(y(s))dg(ts), teR".
0

When «a(t) = B(t) = p(t) = t in (46), it is investigated by
the authors of [2]. For (46), by Theorem 12, one has a similar
result. Here we omit it.
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TABLE 1: Some of papers studied earlier as special cases, where g, y, ¢, k, h are suitable continuous functions.
F(t,x, y,z) f(t,x) g(t,s) a(t), B(t), y(t), (1) u(t, s, x) v(t, s, x) Reference
x s (1]
x s t (7]
x s t 0 [8,11]
x s 0 (12]

s 0 [13]

N s t 0 [6]
x+y s 0 (3]
x+vy(y) s 0 (14]
q@)+y 0 s 0 (15]

0 s t 0 [16]
q (t) +z 0 S 0 [17]
xy s t 0 (8, 18]

s 0 19
q(t)+xy ¢ 0 [[2]]

s t 0 k(t,s)h(s, x 20, 21
4(0)+ x2 : t 0 (£, 9)h (s, %) [[22]]
x+¢(tz) s 0 (23]
x(q®)+y) s 0 (4]
q(®) +xy (y) s 0 [24]

Example 18. Consider the quadratic Urysohn functional inte-
gral equation

x(t) = q (@) + f (& x (« (1))

X JOO v(t, s, x(8(s))ds teR". (32
0

Equation (47) is a special case of (1), where F(¢, x, y,2) =
q(t) + xz, u(t,s, x) = 0, and B(t) = y(t) = 0. By Theorem 12,
one has the following theorem.

Theorem 19. Assume that (H,) and (H,)-(Hy) hold, and (47)
has at least one solution in BC(R") which is globally asymptot-
ically stable.

Finally, we provide an example of concrete nonlinear
functional integral equation of (1) which satisfies all the
assumptions of Theorem 12.

Example 20. Consider the functional integral equation

1 p 42

x(t)= —e +———x(2t

® 32 32(12+1) @)

1 (! 2

+ J X (5) ds (48)

14122 )0 1+t*+s2

1., joo
+ —sin"t

4 0

x(s) eds, teR*.

Observe that (48) is a special case of (1), where
F(t, x, ,2) = x+(1/(1+£2) y+zsin’t, f(t,x) = (1/32)e”" +
(2 +2)/BG2( + D))x, u(t, s, x) = x* /(A + 2 +5%), v(t, s, x) =
(1/4)xefsgt, g(t,s) = s, alt) = 2t, B(t) = t*, and p(t) = 8(t) =
t. Then

1 2
lu(t, s, x)| < T;Sztx , ()
[v(t,s,x) —v(ts y)| < A—}efse |x = |,

so k(t,s) = 1/(1 +t* + 5%), p(t,s) = (1/4)6_58, ¢(x) = x%, and
y(x) = x, and then (H,)-(H,) hold.

By F(t,x, y,z) = x + (1/(1 + tz))y + zsin’t and f(t,x) =
(1/32)e‘t2 +((t% +2)/(32(t* + 1)))x, it is easy to see that (Hs)
and (Hj) are satisfied with M = 1,m,(t) = 1/(1 + %), my(t) =
sin’t, A = 1/16,and F; = 0, f, = 1/32. Since

1 1
S >
1+ttt +s2 7 1+5s?

(50)
JOO (t,s)ds = left
0 p > 4 >
which implies that
o R R
lim J k(t,s)d.g(t,s) < lim J sds = =,
t—00 Jo t—oo Jg 1+s 2 (51)

limj p(t,s)ds =0,
t—o0 Jy

so (H;) holds. It can be easily seen that p(t, s) satisfies (Hg).
Moreover,

£ 1 s
M, =su ds:t>20p < —,
! p{1+t2L 1+1t*+ g2 } 2
1 O
M, = sup{zsinztj e ds:tzo} (52)
0

1 . 2 1
sup{—e sin t:tZO} < -,
4 4
then the inequality from (H,) has the following form:

1 1 1
1—6r+—+zr2+—r£r. (53)

32 2 4

Obviously, r, = 1/8 is a positive solution of this inequality for
which MA < 1, and thus (Hy) holds. By Theorem 12, (48) has
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at least one solution in BC(R") which is globally asymptoti-
cally stable.
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