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This paper studies the moving finite element methods for the space-time fractional differential equations. An optimal convergence
rate of the moving finite element method is proved for the space-time fractional differential equations.

1. Introduction

Consider a time-dependent space fractional differential equa-
tion of the following form

0
𝐷
𝛼

𝑡
𝑢 − 𝑝

𝑎
𝐷
𝛽

𝑥
𝑢 − 𝑞
𝑥𝐷
𝛽

𝑏
𝑢 = 𝑓,

𝑥 ∈ Ω := (𝑎, 𝑏) , 𝑡 ∈ 𝐼 := (0, 𝑇] ,

(1)

𝑢 (𝑎, 𝑡) = 0, 𝑢 (𝑏, 𝑡) = 0, 𝑡 ∈ 𝐼, (2)

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ Ω, (3)

where 0 < 𝛼 < 1 and 1 < 𝛽 < 2, 𝑓 and 𝜑 are given functions,
0
𝐷
𝛼

𝑡
and
𝑎
𝐷
𝛽

𝑥
represent left Caputo fractional differential

operators for time and space, respectively, and
𝑥
𝐷
𝛽

𝑏
denotes

right Caputo fractional differential operator, 𝑝 and 𝑞 are two
nonnegative constants satisfying 𝑝 + 𝑞 = 1.

For some nonlinear reaction terms 𝑓 = 𝑓(𝑥, 𝑡, 𝑢), the
above equation has finite-time blowup solution which means
that the solution tends to infinity as time approaching to a
finite time (see e.g., [1]). Moving mesh methods have great
advantages in solving blowup problems (see, e.g., [2–9]).
Therefore it is important to develop moving mesh methods
for solving the fractional differential equations.

Although there are many references for developing and
analyzing numerical methods on fixed mesh for solving

fractional differential equations, the development of moving
mesh methods for fractional differential equations is still
in the early stage. Ma and Jiang [6] develop moving mesh
collocationmethods to solve nonlinear time fractional partial
differential equations with blowup solutions. Jiang and Ma
[10] analyze moving mesh finite element methods for time
fractional partial differential equations and simulate the
blow-up solutions. More recently, Ma et al. [11] provide a
convergence analysis of moving finite element methods for
space fractional differential equationswith integer derivatives
in time.

The convergence rates of moving finite element methods
for integer partial differential equations are established by
Bank et al. [12–14]. However, fractional derivatives in time
will raise much challenge in the convergence analysis of
moving finite elementmethods.The technique using interpo-
lation in the paper [10] is not possible to derive the optimal
convergence rates. In this paper, by introducing a fractional
Ritz-projection operator, we obtain the optimal convergence
rate which is consistent with the numerical predictions in
the paper [10]. Moreover, we study the space-time fractional
differential equations which aremore complex than the time-
fractional differential equations.

Throughout the paper, we use notation 𝐴 ≲ 𝐵 and 𝐴 ≳ 𝐵

to denote 𝐴 ≤ 𝑐𝐵 and 𝐴 ≥ 𝑐𝐵, respectively, where 𝐶 is a
generic positive constant independent of any functions and
numerical discretization parameters.



2 Journal of Applied Mathematics

2. Preliminaries

Define left Riemann-Liouville fractional integral as

𝑎
𝐷
−𝜎

𝑥
𝑢 (𝑥) =

1

Γ (𝜎)
∫

𝑥

𝑎

(𝑥 − 𝜉)
𝜎−1

𝑢 (𝜉) 𝑑𝜉, 𝑥 > 𝑎, 𝜎 > 0,

(4)

where 𝑎 ∈ R or 𝑎 = −∞, and right Riemann-Liouville frac-
tional integral as

𝑥
𝐷
−𝜎

𝑏
𝑢 (𝑥) =

1

Γ (𝜎)
∫

𝑏

𝑥

(𝑥 − 𝜉)
𝜎−1

𝑢 (𝜉) 𝑑𝜉, 𝑥 < 𝑏, 𝜎 > 0,

(5)

where 𝑏 ∈ R or 𝑏 = +∞. The Caputo left and right fractional
derivatives are defined by, respectively,

𝑎
𝐷
𝜇

𝑥
𝑢 (𝑥) =

𝑎
𝐷
−𝜎

𝑥
𝐷
𝑛
𝑢 (𝑥) , 𝜎 = 𝑛 − 𝜇, 𝑛 − 1 ≤ 𝜇 < 𝑛,

𝑥
𝐷
𝜇

𝑏
𝑢 (𝑥) =

𝑥
𝐷
−𝜎

𝑏
𝐷
𝑛
𝑢 (𝑥) , 𝜎 = 𝑛 − 𝜇, 𝑛 − 1 ≤ 𝜇 < 𝑛.

(6)

Define a functional space 𝐻
𝜇

0
(Ω), 𝜇 > 0 as the closure of

𝐶
∞

0
(Ω) under the norm

‖𝑢‖𝐻𝜇(Ω) := (‖𝑢‖
2

𝐿
2
(Ω)

+
󵄩󵄩󵄩󵄩|𝜔|
𝜇
F (𝑢̃)

󵄩󵄩󵄩󵄩

2

𝐿
2
(R)

)
1/2

, (7)

whereF(𝑢̃) denotes the Fourier transform of 𝑢̃, and 𝑢̃ is the
extension of 𝑢 by zero outside ofΩ.

Let 𝛾 := 𝛽/2. Then, the variational form of problem
(1) with boundary conditions (2) and initial condition (3)
is given by the following (see [15] for the derivation). Find
𝑢 ∈ 𝐻

𝛾

0
(Ω) such that

(
0𝐷
𝛼

𝑡
𝑢, V) + 𝐵 (𝑢, V) = 𝐹 (V) , ∀V ∈ 𝐻

𝛾

0
(Ω) , (8)

(𝑢 (𝑥, 0) , V) = (𝜑 (𝑥) , V) , ∀V ∈ 𝐻
𝛾

0
(Ω) , (9)

where
𝐵 (𝑢, V) := 𝑝 ⟨

𝑎
𝐷
𝛾

𝑥
𝑢,
𝑥
𝐷
𝛾

𝑏
V⟩ + 𝑞 ⟨

𝑥𝐷
𝛾

𝑏
𝑢,
𝑎
𝐷
𝛾

𝑥
V⟩ ,

𝐹 (V) := ⟨𝑓, V⟩ ,
(10)

where (𝑢, V) denotes 𝐿
2
inner product, ⟨⋅, ⋅⟩ denotes the

duality pairing of𝐻−𝜇(Ω), and𝐻
𝜇

0
(Ω), 𝜇 ≥ 0.

The properties of the bilinear form 𝐵(⋅, ⋅) are given by the
following Lemma 1 whose proof can be found in [15].

Lemma 1. The bilinear form 𝐵(⋅, ⋅) satisfies the following
coercive and continuous properties over space𝐻𝛾

0
(Ω):

𝐵 (𝑢, 𝑢) ≳ ‖𝑢‖
2

𝐻
𝛾
(Ω)

, ∀𝑢 ∈ 𝐻
𝛾

0
(Ω) , (11)

|𝐵 (𝑢, V)| ≲ ‖𝑢‖𝐻𝛾(Ω)‖V‖𝐻𝛾(Ω), ∀𝑢, V ∈ 𝐻
𝛾

0
(Ω) . (12)

3. Convergence Analysis of Moving Finite
Element Method

Define a temporal mesh

0 ≡ 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑀
≡ 𝑇,

Δ𝑡
𝑛
:= 𝑡
𝑛
− 𝑡
𝑛−1

, 𝑛 = 1, . . . ,𝑀, Δ𝑡 = max
1≤𝑛≤𝑀

Δ𝑡
𝑛
.

(13)

Define spatial mesh (moving mesh) at time 𝑡
𝑛
,

𝑎 ≡ 𝑥
𝑛

0
< 𝑥
𝑛

1
< ⋅ ⋅ ⋅ < 𝑥

𝑛

𝑁
≡ 𝑏, 𝑛 = 0, 1, . . . ,𝑀,

ℎ
𝑛

𝑘
:= 𝑥
𝑛

𝑘
− 𝑥
𝑛

𝑘−1
, 𝑘 = 1, . . . , 𝑁,

ℎ
𝑛
:= max
1≤𝑘≤𝑁

ℎ
𝑛

𝑘
, ℎ

𝑛
:= max
0≤ℓ≤𝑛

ℎ
ℓ
.

(14)

Define a finite element spaceV𝑛 ⊂ 𝐻
𝛾

0
(Ω) on the abovemov-

ing mesh as

V
𝑛
:= {V ∈ 𝐻

𝛾

0
(Ω) ∩ 𝐶

0
(Ω) : V|

[𝑥
𝑛

𝑘−1
,𝑥
𝑛

𝑘
]
∈ 𝑃
𝑚−1

} , (15)

where 𝑃
𝑚−1

denotes the space of polynomials of degree less
than or equal to𝑚 − 1.

Then, themoving finite element method for the proposed
problems is defined as follows: Find 𝑈

𝑛
∈ V𝑛 ⊂ 𝐻

𝛾

0
(Ω), for

𝑛 = 1, . . . ,𝑀, such that

1

Γ (1 − 𝛼)

𝑛

∑

𝑘=1

𝑏
𝑛

𝑘
(𝑈
𝑘
(𝑥) − 𝑈

𝑘−1
(𝑥) , V) + 𝐵 (𝑈

𝑛
(𝑥) , V)

= 𝐹
𝑛
(V) , ∀V ∈ V

𝑛
,

(16)

(𝑈
0
(𝑥) , V) = (𝜑 (𝑥) , V) , ∀V ∈ V

0
, (17)

where 𝐹𝑛(V) := ⟨𝑓(⋅, 𝑡
𝑛
), V⟩ and

𝑏
𝑛

𝑘
=

1

Δ𝑡
𝑘

∫

𝑡𝑘

𝑡𝑘−1

𝑑𝑠

(𝑡
𝑛
− 𝑠)
𝛼
, 1 ≤ 𝑘 ≤ 𝑛. (18)

In the scheme (16), 𝐵(𝑈𝑛, V) is the discretization of 𝐵(𝑢, V),
and

1

Γ (1 − 𝛼)

𝑛

∑

𝑘=1

𝑏
𝑛

𝑘
(𝑈
𝑘
(𝑥) − 𝑈

𝑘−1
(𝑥) , V) (19)

is the discretization of the time-fractional derivative (
0
𝐷
𝛼

𝑡
𝑢, V)

in (8). To do the convergence analysis, we introduce a
fractional Ritz projection operator (an analog of the standard
one in [16]), 𝑅

𝑛
: 𝐻
𝛾

0
(Ω) → V𝑛 defined via, for 𝑢 ∈ 𝐻

𝛾

0
(Ω),

𝐵 (𝑢 − 𝑅
𝑛
𝑢, V) = 0, ∀V ∈ V

𝑛
. (20)

For the fractional Ritz projection operator we have the fol-
lowing estimation—Lemma 2.

Lemma 2. For the fractional Ritz projection operator defined
by (20) and 𝑢 ∈ 𝐻

𝛾

0
(Ω) ∩ 𝐻

𝑟
(Ω) (𝛾 ≤ 𝑟 ≤ 𝑚), one has the fol-

lowing estimation:

󵄩󵄩󵄩󵄩𝑢 − 𝑅
𝑛
𝑢
󵄩󵄩󵄩󵄩𝐿2(Ω)

≲ (ℎ
𝑛
)
𝑟

‖𝑢‖𝐻𝑟(Ω). (21)

Proof. The proof of this lemma can be obtained by simply
modifying the proof for Theorem 4.4 in [15].

Wewill also need the following lemma (see [10]) for prov-
ing our main results.
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Lemma 3. Suppose that positive numbers 𝜀
𝑛
, 𝑛 = 0, 1, . . . ,𝑀,

satisfy

𝑏
𝑛

𝑛
𝜀
𝑛
≤

𝑛

∑

𝑘=2

(𝑏
𝑛

𝑘
− 𝑏
𝑛

𝑘−1
) 𝜀
𝑘−1

+ 𝑏
𝑛

1
𝜇 + 𝜅, 𝑛 = 1, . . . ,𝑀, (22)

where 𝑏𝑛
𝑘
, 𝑘 = 1, . . . , 𝑛, are given by (18), and 𝜅, 𝜇 are positive

numbers. Then we have

𝜀
𝑛
≤ 𝜇 +

𝜅

𝑏
𝑛

1

, 𝑛 = 1, . . . ,𝑀. (23)

Proof. The proof can be found in [10, Lemma 2.4].

Theorem 4. Assume that the solution of (1)–(3) satisfies 𝑢 ∈

𝐻
𝛾

0
(Ω) ∩ 𝐻

𝑟
(Ω) (𝛾 ≤ 𝑟 ≤ 𝑚). Then, the convergence

estimation for the moving finite element method (16)-(17) is
given by, for 𝑛 = 1, . . . ,𝑀,

󵄩󵄩󵄩󵄩𝑢 (⋅, 𝑡𝑛) − 𝑈
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

≲ ℎ
𝑟

𝑛
[max
0≤𝑡≤𝑇

‖𝑢 (𝑥, 𝑡)‖𝐻𝑟(Ω)

+max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡 (𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐻𝑟(Ω)

]

+ (Δ𝑡)
2−𝛼max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡𝑡 (𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω)

.

(24)

Proof. Define the local truncation error as

T
𝑛
(𝑥) :=

1

Γ (1 − 𝛼)

𝑛

∑

𝑘=1

𝑏
𝑛

𝑘
(𝑢 (𝑥, 𝑡

𝑘
) − 𝑢 (𝑥, 𝑡

𝑘−1
)) −
0𝐷
𝛼

𝑡
𝑢,

(25)

where 𝑢(𝑥, 𝑡) is the exact solution. From [10], we can derive
that

󵄩󵄩󵄩󵄩T
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

≲ (Δ𝑡)
2−𝛼max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡𝑡 (𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω)

. (26)

From (8) we have the identity

1

Γ (1 − 𝛼)

𝑛

∑

𝑘=1

𝑏
𝑛

𝑘
(𝑢 (⋅, 𝑡

𝑘
) − 𝑢 (⋅, 𝑡

𝑘−1
) , V) + 𝐵 (𝑢 (⋅, 𝑡

𝑛
) , V)

= (T
𝑛
, V) + 𝐹

𝑛
(V) , ∀V ∈ V

𝑛
.

(27)

Let 𝑒𝑛 = 𝑢(⋅, 𝑡
𝑛
) − 𝑈
𝑛. Then subtracting (16) by (27) gives the

error equation

1

Γ (1 − 𝛼)

𝑛

∑

𝑘=1

𝑏
𝑛

𝑘
(𝑒
𝑘
− 𝑒
𝑘−1

, V) + 𝐵 (𝑒
𝑛
, V) = (T

𝑛
, V) ,

∀V ∈ V
𝑛
.

(28)

Define

𝜎
𝑛
:= 𝑅
𝑛
𝑢 (⋅, 𝑡
𝑛
) − 𝑈
𝑛
, 𝜂

𝑛
:= 𝑅
𝑛
𝑢 (⋅, 𝑡
𝑛
) − 𝑢 (⋅, 𝑡

𝑛
) ,

(29)

where 𝑅
𝑛
is the fractional Ritz projection operator defined by

(20). Then,

𝑒
𝑛
= 𝜎
𝑛
− 𝜂
𝑛
. (30)

Using (20), which tells us that 𝐵(𝜂𝑛, V) = 0 for all V ∈ V𝑛, we
rewrite the error equation (28) as

𝑏
𝑛

𝑛
(𝜎
𝑛
, V) + Γ (1 − 𝛼) 𝐵 (𝜎

𝑛
, V)

=

𝑛

∑

𝑘=2

(𝑏
𝑛

𝑘
− 𝑏
𝑛

𝑘−1
) (𝜎
𝑘−1

, V) + 𝑏
𝑛

1
(𝜎
0
, V)

+

𝑛

∑

𝑘=1

𝑏
𝑛

𝑘
(𝜂
𝑘
− 𝜂
𝑘−1

, V)

+ Γ (1 − 𝛼) (T
𝑛
, V) , ∀V ∈ V

𝑛
.

(31)

Choosing V = 𝜎
𝑛 in (31) and using Cauchy-Schwartz inequal-

ity with noting that 𝐵(𝜎𝑛, 𝜎𝑛) ≥ 0 (see (11)), we get

𝑏
𝑛

𝑛

󵄩󵄩󵄩󵄩𝜎
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

≤

𝑛

∑

𝑘=2

(𝑏
𝑛

𝑘
− 𝑏
𝑛

𝑘−1
)

×
󵄩󵄩󵄩󵄩󵄩
𝜎
𝑘−1󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

+ 𝑏
𝑛

1

󵄩󵄩󵄩󵄩󵄩
𝜎
0󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

+

𝑛

∑

𝑘=1

𝑏
𝑛

𝑘

󵄩󵄩󵄩󵄩󵄩
𝜂
𝑘
− 𝜂
𝑘−1󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

+ Γ (1 − 𝛼)
󵄩󵄩󵄩󵄩T
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

.

(32)

Using Lemma 3, we obtain that
󵄩󵄩󵄩󵄩𝜎
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
󵄩󵄩󵄩󵄩󵄩
𝜎
0󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

+ 𝑇[

𝑛

∑

𝑘=1

𝑏
𝑛

𝑘

󵄩󵄩󵄩󵄩󵄩
𝜂
𝑘
− 𝜂
𝑘−1󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

+ Γ (1 − 𝛼)
󵄩󵄩󵄩󵄩T
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

] .

(33)

Now we estimate the error
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑘
− 𝜂
𝑘−1󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

=
󵄩󵄩󵄩󵄩(𝑅𝑘𝑢 (⋅, 𝑡𝑘) − 𝑢 (⋅, 𝑡

𝑘
)) − (𝑅

𝑘−1
𝑢 (⋅, 𝑡
𝑘−1

)

− 𝑢 (⋅, 𝑡
𝑘−1

))
󵄩󵄩󵄩󵄩𝐿2(Ω)

=
󵄩󵄩󵄩󵄩(𝑅𝑘 (𝑢 (⋅, 𝑡𝑘) − 𝑢 (⋅, 𝑡

𝑘−1
)))

− (𝑢 (⋅, 𝑡
𝑘
) − 𝑢 (⋅, 𝑡

𝑘−1
))

+ (𝑅
𝑘
𝑢 (⋅, 𝑡
𝑘−1

) − 𝑅
𝑘−1

𝑢 (⋅, 𝑡
𝑘−1

))
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
󵄩󵄩󵄩󵄩(𝑅𝑘 (𝑢 (⋅, 𝑡𝑘) − 𝑢 (⋅, 𝑡

𝑘−1
)))

− (𝑢 (⋅, 𝑡
𝑘
) − 𝑢 (⋅, 𝑡

𝑘−1
))
󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩(𝑅𝑘𝑢 (⋅, 𝑡𝑘−1) − 𝑅

𝑘−1
𝑢 (⋅, 𝑡
𝑘−1

))
󵄩󵄩󵄩󵄩𝐿2(Ω)

.

(34)

Using Taylor theorem and Lemma 2, we have
󵄩󵄩󵄩󵄩(𝑅𝑘 (𝑢 (⋅, 𝑡𝑘) − 𝑢 (⋅, 𝑡

𝑘−1
)) − (𝑢 (⋅, 𝑡

𝑘
) − 𝑢 (⋅, 𝑡

𝑘−1
)))

󵄩󵄩󵄩󵄩𝐿2(Ω)

≲ Δ𝑡
𝑘
(ℎ
𝑘
)
𝑟󵄩󵄩󵄩󵄩𝑢𝑡 (⋅, 𝑡𝑘)

󵄩󵄩󵄩󵄩𝐻𝑟(Ω)
.

(35)
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If the fixed spatial mesh is taken, then 𝑅
𝑘
≡ 𝑅
𝑘−1

and thereby
󵄩󵄩󵄩󵄩(𝑅𝑘𝑢 (⋅, 𝑡𝑘−1) − 𝑅

𝑘−1
𝑢 (⋅, 𝑡
𝑘−1

))
󵄩󵄩󵄩󵄩𝐿2(Ω)

= 0. (36)

Therefore, for moving spatial mesh, it is reasonable to assume
that

󵄩󵄩󵄩󵄩(𝑅𝑘𝑢 (⋅, 𝑡𝑘−1) − 𝑅
𝑘−1

𝑢 (⋅, 𝑡
𝑘−1

))
󵄩󵄩󵄩󵄩𝐿2(Ω)

≲ Δ𝑡
𝑘
(ℎ
𝑘
)
𝑟󵄩󵄩󵄩󵄩𝑢 (⋅, 𝑡𝑘−1)

󵄩󵄩󵄩󵄩𝐻𝑟(Ω)
,

(37)

which is verified numerically by examples in the next section.
In addition subtracting (17) by (9) gives that

(𝑒
0
, V) = 0, ∀V ∈ V

0
. (38)

Taking V = 𝜎
0 into (38) we derive that

󵄩󵄩󵄩󵄩󵄩
𝜎
0󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

= (𝜂
0
, 𝜎
0
) ≤

󵄩󵄩󵄩󵄩󵄩
𝜂
0󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

󵄩󵄩󵄩󵄩󵄩
𝜎
0󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

. (39)

Consequently, it follows from Lemma 2 that
󵄩󵄩󵄩󵄩󵄩
𝜎
0󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤‖ 𝜂
0
‖
𝐿
2
(Ω)

≲ (ℎ
0
)
𝑟

‖𝑢 (𝑥, 0)‖𝐻𝑟(Ω). (40)

Combining (26), (34), (35), (37), and (40) into (33) gives that
󵄩󵄩󵄩󵄩𝜎
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

≲ ℎ
𝑟

𝑛
[max
0≤𝑡≤𝑇

‖𝑢 (𝑥, 𝑡)‖𝐻𝑟(Ω) + max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡 (𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐻𝑟(Ω)

]

+ (Δ𝑡)
2−𝛼max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡𝑡 (𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω)

.

(41)

Finally, by applying Lemma 2 and (41) to
󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

≤
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝜎
𝑛󵄩󵄩󵄩󵄩𝐿2(Ω)

, (42)

which is led by the triangle inequality, we complete the proof
of this theorem.

Remark 5. In the above proof, we use assumption (37). Now
we give comments on the assumption. For fixed meshed, the
finite element spaces for time level 𝑡

𝑘−1
and 𝑡

𝑘
are equal.

Therefore, the Ritz-projections of 𝑢 on the finite element
spaces remain unchanged and, thus, the left-hand side of (37)
is zero, that is,

󵄩󵄩󵄩󵄩(𝑅𝑘𝑢 (⋅, 𝑡𝑘−1) − 𝑅
𝑘−1

𝑢 (⋅, 𝑡
𝑘−1

))
󵄩󵄩󵄩󵄩𝐿2(Ω)

= 0. (43)

For moving spatial mesh, the finite element spaces for
time level 𝑡

𝑘−1
and 𝑡

𝑘
are not the same and the different

structure highly depends on the mesh movement. However,
the difference between the adjacent finite element spaces will
not be significant unless the mesh movement is too fast.
Therefore, it is reasonable to assume the inequality (37) holds.

For integer partial differential equations, assumptions on
the mesh movement are generally required for proving the
optimal convergence rates formoving finite elementmethods
(see, e.g., [12–14]) and moving finite difference methods
(see, e.g., [17]). Not surprisingly, conditions on the mesh
movement are needed to prove the optimal convergence
rates for moving mesh methods for the fractional differential
equations. Numerical examples in the next section show that
if the mesh satisfies the condition (44), which is normally
used in the papers addressing the convergence analysis of
movingmeshmethods (see, e.g., [17, 18]), then (37) is verified.

4. Numerical Studies of Fractional
Ritz Projections

In this section, we verify assumption (37) via numerical
examples. To this end, we calculate the fractional Ritz
projection (defined by (20)) for a given function 𝑔(𝑥).

Example 6. Let 𝑔(𝑥) = 𝑥
𝜇1 − 𝑥

𝜇2 , 𝜇
1
, 𝜇
2
> 0, the moving

meshes {𝑥𝑛
𝑘
}
𝑁

𝑘=0
be generated by de Boor’ algorithm [19] based

on equidistribution principle and satisfy
󵄨󵄨󵄨󵄨󵄨
ℎ
𝑛+1

𝑘
− ℎ
𝑛

𝑘

󵄨󵄨󵄨󵄨󵄨
≲ Δ𝑡
𝑛+1

min (ℎ𝑛+1
𝑘

, ℎ
𝑛

𝑘
) , (44)

which is often used in the analysis (see, e.g., [17, 18]). The
bilinear form is given by

𝐵 (𝑢, V) :=
1

2
⟨
0
𝐷
𝛾

𝑥
𝑢,
𝑥
𝐷
𝛾

1
V⟩ +

1

2
⟨
𝑥
𝐷
𝛾

1
𝑢,
0𝐷
𝛾

𝑥
V⟩ . (45)

We calculate the fractional Ritz projection 𝑅
𝑛
𝑔 on the 1st-

order FEM spacesV𝑛 and verify the error estimation (37).

On meshes {𝑥𝑛
𝑘
}
𝑁

𝑘=0
, we construct piecewise linear finite

element spaces

V
𝑛
= span {𝜙𝑛

𝑘
(𝑥) , 𝑘 = 1, . . . , 𝑁 − 1} , (46)

where 𝜙
𝑛

𝑘
(𝑥), 𝑘 = 1, . . . , 𝑁 − 1 are hat functions. So the

fractional Ritz projection of function 𝑔 on the finite element
spacesV𝑛 can be written as

𝑅
𝑛
𝑔 (𝑥) =

𝑁−1

∑

𝑘=1

𝑔
𝑛

𝑘
𝜙
𝑛

𝑘
(𝑥) . (47)

Inserting (47) into (20) gives that

𝐵(𝑔 −

𝑁−1

∑

𝑘=1

𝑔
𝑛

𝑘
𝜙
𝑛

𝑘
(𝑥) , V) = 0, ∀V ∈ V

𝑛
. (48)

Thus, wemay obtain a system of algebraic equations by taking
V = 𝜙
𝑛

𝑖
(𝑥), 𝑖 = 1, . . . , 𝑁 − 1:

Ag𝑛 = b, (49)

for unknown vector

g𝑛 := (𝑔
𝑛

1
, . . . , 𝑔

𝑛

𝑁−1
)
𝑇
, (50)

with matrix A and b given by

A = (

𝐵(𝜙
𝑛

1
, 𝜙
𝑛

1
) ⋅ ⋅ ⋅ 𝐵 (𝜙

𝑛

𝑁−1
, 𝜙
𝑛

1
)

𝐵 (𝜙
𝑛

1
, 𝜙
𝑛

2
) ⋅ ⋅ ⋅ 𝐵 (𝜙

𝑛

𝑁−1
, 𝜙
𝑛

2
)

...
...

...
𝐵 (𝜙
𝑛

1
, 𝜙
𝑛

𝑁−1
) ⋅ ⋅ ⋅ 𝐵 (𝜙

𝑛

𝑁−1
, 𝜙
𝑛

𝑁−1
)

),

b = (𝐵 (𝑔, 𝜙
𝑛

1
) , 𝐵 (𝑔, 𝜙

𝑛

2
) , . . . , 𝐵 (𝑔, 𝜙

𝑛

𝑁−1
))
𝑇
.

(51)

We check the rate (37) in the followingway: For fixed time
meshsize Δ𝑡

𝑛
≡ 1/𝑀 (𝑀 fixed), calculate the space rate for

varying𝑁,

Rate for space :=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log (Error (𝑁) /Error (𝑁 − 1))

log ((𝑁 − 1) /𝑁)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (52)
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Table 1: Rate for space for 𝑔(𝑥) = 𝑥
𝜇1 −𝑥

𝜇2 with 𝜇
1
= 7/2, 𝜇

2
= 7/3

for Example 6 using 1st-order FEM.

𝑁
𝛾 = 0.4 𝛾 = 0.7

Error Rate Error Rate
8 2.2257𝑒 − 3 — 2.3272𝑒 − 3 —
16 4.9491𝑒 − 4 2.1 5.4391𝑒 − 4 2.1
32 1.3344𝑒 − 4 1.9 1.4496𝑒 − 4 1.9
64 3.0457𝑒 − 5 2.1 3.3110𝑒 − 5 2.1
128 7.4518𝑒 − 6 2.0 7.9799𝑒 − 6 2.1
256 1.8840𝑒 − 6 2.0 1.9807𝑒 − 6 2.0

Table 2: Rate for time for 𝑔(𝑥) = 𝑥
𝜇1 − 𝑥

𝜇2 with 𝜇
1
= 7/2, 𝜇

2
= 7/3

for Example 6 using 1st-order FEM.

𝑀
𝛾 = 0.4 𝛾 = 0.7

Error Rate Error Rate
32 7.8436𝑒 − 5 — 7.8611𝑒 − 5 —
64 4.2750𝑒 − 5 0.9 4.2814𝑒 − 5 0.9
128 2.2223𝑒 − 5 0.9 2.2225𝑒 − 5 0.9
256 1.1253𝑒 − 5 1.0 1.1265𝑒 − 5 1.0
512 5.6105𝑒 − 6 1.0 5.6164𝑒 − 6 1.0
1024 2.8238𝑒 − 6 1.0 2.8266𝑒 − 6 1.0

for fixed𝑁, calculate the time rate for varying time meshsize
Δ𝑡
𝑛
= 1/𝑀,

Rate for time :=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log (Error (𝑀) /Error (𝑀 − 1))

log ((𝑀 − 1) /𝑀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (53)

From Tables 1 and 2, we can see that the convergence order
for space is 2 and the convergence order for time is 1, which
are consistent with (37) where 𝑟 = 2 for the use of linear finite
element methods.

Example 7. We calculate the fractional Ritz projection for
function 𝑔(𝑥) = 𝑥

𝜇1 − 𝑥
𝜇2 , 𝜇
1
, 𝜇
2

> 0 on the following
constructed 3rd-order FEM spacesV𝑛. Also, like Example 6,
we restrict the moving meshes {𝑥𝑛

𝑘
}
𝑁

𝑘=0
to satisfy (44) and we

use the bilinear form

𝐵 (𝑢, V) :=
1

2
⟨
0
𝐷
𝛾

𝑥
𝑢,
𝑥
𝐷
𝛾

1
V⟩ +

1

2
⟨
𝑥
𝐷
𝛾

1
𝑢,
0
𝐷
𝛾

𝑥
V⟩ . (54)

On meshes {𝑥𝑛
𝑘
}
𝑁

𝑘=0
, we construct finite element spaces (3rd-

order piecewise polynomials)

V
𝑛
= span {𝜙𝑛

𝑘/3
(𝑥) , 𝑘 = 1, . . . , 3𝑁 − 1} , (55)

where 𝜙𝑛
𝑘/3

(𝑥), 𝑘 = 1, . . . , 3𝑁 − 1 are basis functions defined
by

𝜙
𝑛

𝑘
(𝑥) =

{{

{{

{

ℓ
𝑛

𝑘−1,3
(𝑥) , 𝑥 ∈ [𝑥

𝑛

𝑘−1
, 𝑥
𝑛

𝑘
] ;

ℓ
𝑛

𝑘,0
(𝑥) , 𝑥 ∈ [𝑥

𝑛

𝑘
, 𝑥
𝑛

𝑘+1
] ;

0, otherwise,

𝑘 = 1, . . . , 𝑁 − 1,

𝜙
𝑛

𝑘+𝑗/3
= {

ℓ
𝑛

𝑘,𝑗
(𝑥) , 𝑥 ∈ [𝑥

𝑛

𝑘
, 𝑥
𝑛

𝑘+1
] ;

0, otherwise,

𝑗 = 1, 2, 𝑘 = 0, 1, . . . , 𝑁 − 1,

(56)

where ℓ
𝑛

𝑘,𝑗
(𝑥), 𝑗 = 0, 1, 2, 3, are the cubic Lagrange basis

functions with respect to local mesh points 𝑥𝑛
𝑘
, 𝑥𝑛
𝑘+1/3

, 𝑥𝑛
𝑘+2/3

,
𝑥
𝑛

𝑘+1
, where

𝑥
𝑛

𝑘+1/3
=: 𝑥
𝑛

𝑘
+
(𝑥
𝑛

𝑘+1
− 𝑥
𝑛

𝑘
)

3
,

𝑥
𝑛

𝑘+2/3
=: 𝑥
𝑛

𝑘
+
2 (𝑥
𝑛

𝑘+1
− 𝑥
𝑛

𝑘
)

3
.

(57)

So, the fractional Ritz projection of function 𝑔 on the finite
element spacesV𝑛 can be written as

𝑅
𝑛
𝑔 (𝑥) =

3𝑁−1

∑

𝑘=1

𝑔
𝑛

𝑘/3
𝜙
𝑛

𝑘/3
(𝑥) . (58)

Inserting (58) into (20) gives that

𝐵(𝑔 −

3𝑁−1

∑

𝑘=1

𝑔
𝑛

𝑘/3
𝜙
𝑛

𝑘/3
(𝑥) , V) = 0, ∀V ∈ V

𝑛
. (59)

Thus, wemay obtain a system of algebraic equations by taking
V = 𝜙
𝑛

𝑖/3
(𝑥), 𝑖 = 1, . . . , 3𝑁 − 1:

Ag𝑛 = b, (60)

for unknown vector

g𝑛 := (𝑔
𝑛

1/3
, 𝑔
𝑛

2/3
, . . . , 𝑔

𝑛

(3𝑁−1)/3
)
𝑇

, (61)

with matrix A and b given by

A = (

(

𝐵(𝜙
𝑛

1/3
, 𝜙
𝑛

1/3
) ⋅ ⋅ ⋅ 𝐵 (𝜙

𝑛

(3𝑁−1)/3
, 𝜙
𝑛

1/3
)

𝐵 (𝜙
𝑛

1/3
, 𝜙
𝑛

2/3
) ⋅ ⋅ ⋅ 𝐵 (𝜙

𝑛

(3𝑁−1)/3
, 𝜙
𝑛

2/3
)

...
...

...
𝐵 (𝜙
𝑛

1/3
, 𝜙
𝑛

(3𝑁−1)/3
) ⋅ ⋅ ⋅ 𝐵 (𝜙

𝑛

(3𝑁−1)/3
, 𝜙
𝑛

(3𝑁−1)/3
)

)

)

,

b = (𝐵 (𝑔, 𝜙
𝑛

1/3
) , 𝐵 (𝑔, 𝜙

𝑛

2/3
) , . . . , 𝐵 (𝑔, 𝜙

𝑛

(3𝑁−1)/3
))
𝑇

.

(62)

We check the convergence rate (37) in the same way as
Example 6. From the numerics in Tables 3 and 4, we can see
that the convergence order for space is 4 and the convergence
order for time is 1, which are consistent with (37) where 𝑟 = 4

for the use of 3rd-order finite element methods.
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Table 3: Rate for space for 𝑔(𝑥) = 𝑥
𝜇1 − 𝑥

𝜇2 with 𝜇
1
= 7/2, 𝜇

2
= 7/3

for Example 7 using 3rd-order FEM.

𝑁
𝛾 = 0.4 𝛾 = 0.7

Error Rate Error Rate
4 9.3105𝑒 − 3 — 9.3105𝑒 − 3 —
8 7.2803𝑒 − 4 3.7 7.2803𝑒 − 4 3.8
16 5.0060𝑒 − 5 3.8 5.0059𝑒 − 5 3.9
32 3.2670𝑒 − 6 3.9 3.2670𝑒 − 6 3.9
64 2.0783𝑒 − 7 4.0 2.0783𝑒 − 7 4.0
128 1.3076𝑒 − 8 4.0 1.3083𝑒 − 8 4.0
256 8.4731𝑒 − 10 3.9 7.7842𝑒 − 10 4.0

Table 4: Rate for time for 𝑔(𝑥) = 𝑥
𝜇1 − 𝑥

𝜇2 with 𝜇
1
= 7/2, 𝜇

2
= 7/3

for Example 7 using 3rd-order FEM.

𝑀
𝛾 = 0.4 𝛾 = 0.7

Error Rate Error Rate
16 5.9067𝑒 − 4 — 5.9068𝑒 − 4 —
32 1.1010𝑒 − 4 2.4 1.1011𝑒 − 4 2.4
64 3.2024𝑒 − 5 1.7 3.2025𝑒 − 5 1.7
128 1.3049𝑒 − 5 1.2 1.3049𝑒 − 5 1.2
256 6.4572𝑒 − 6 1.0 6.4572𝑒 − 6 1.0
512 3.1807𝑒 − 6 1.0 3.1808𝑒 − 6 1.0
1024 1.5882𝑒 − 6 1.0 1.5882𝑒 − 6 1.0
2048 7.9375𝑒 − 7 1.0 7.9375𝑒 − 7 1.0

5. Conclusions

This paper studied the moving finite element methods for
space-time fractional differential equations. The proof using
interpolation (see [10]) was not possible to give the optimal
convergence rates. However, using fractional Ritz projection
operator proposed in this paper, the optimal convergence
rates were obtained, although a natural assumption, which
was numerically verified, was used. The proposed moving
finite element methods can be readily implemented and
applied to the nonlinear fractional differential equations with
blowup solutions. These further studies on the applications
will be carried out elsewhere.
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