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By use of the properties of themodified Riemann-Liouville fractional derivative, some newGronwall-Bellman-type inequalities are
researched. First, we derive some new explicit bounds for the unknown functions lying in these inequalities, which are of different
forms from some existing bounds in the literature.Then, we apply the results established to research the boundedness, uniqueness,
and continuous dependence on the initial value for the solution to a certain fractional differential equation.

1. Introduction

During the past decades, a lot of integral and difference
inequalities have been discovered, which play an important
role in the research of the theory of differential, integral,
and difference equations. In these inequalities, the Gronwall-
Bellman inequality and their generalizations have been
paid much attention by many authors (e.g., see [1–22]), as
such inequalities provide explicit bounds for the unknown
functions concerned and can be used as a handy tool in
the research of boundedness, global existence, uniqueness,
stability, and continuous dependence of solutions to differ-
ential and integral equations as well as difference equations.
However, most of the Gronwall-Bellman-type inequalities
established so far can only be used in the research of
differential equations of integer order, while in order to fulfill
qualitative and quantitative analysis for solutions to some
certain differential equations of fractional order, the earlier
inequalities established are inadequate. So it is necessary to
establish new inequalities so as to obtain the desired analysis
for fractional differential equations.

In this paper, we establish some new Gronwall-Bellman-
type inequalities. Based on some basic properties of the
modified Riemann-Liouville fractional derivative, we derive
explicit bounds for unknown functions concerned in these
inequalities. The presented inequalities can be used as a
handy tool in the qualitative as well as quantitative analysis
of solutions to fractional differential equations.

The modified Riemann-Liouville fractional derivative,
defined by Jumarie in [23–26], has many excellent charac-
ters in handling many fractional calculus problems. Many
authors have investigated various applications of themodified
Riemann-Liouville fractional derivative (e.g., see [27–33]).
We now list the definition for it as follows.

Definition 1. The modified Riemann-Liouville derivative of
order 𝛼 is defined by the following expression:

𝐷
𝛼

𝑡
𝑓 (𝑡)

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1

Γ (1 − 𝛼)

𝑑

𝑑𝑡

×∫

𝑡

0

(𝑡 − 𝜉)
−𝛼

× (𝑓 (𝜉) − 𝑓 (0)) 𝑑𝜉, 0 < 𝛼 < 1,
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(𝑛)
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(1)

Definition 2. The Riemann-Liouville fractional integral of
order 𝛼 on the interval [0, 𝑡] is defined by
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Some important properties for the modified Riemann-
Liouville derivative and fractional integral are listed as follows
(the interval concerned below is always defined by [0, 𝑡]):

(a) 𝐷𝛼
𝑡
𝑡
𝑟

= (Γ(1 + 𝑟)/Γ(1 + 𝑟 − 𝛼))𝑡
𝑟−𝛼,

(b) 𝐷𝛼
𝑡
(𝑓(𝑡)𝑔(𝑡)) = 𝑔(𝑡)𝐷

𝛼

𝑡
𝑓(𝑡) + 𝑓(𝑡)𝐷

𝛼

𝑡
𝑔(𝑡),

(c) 𝐷𝛼
𝑡
𝑓[𝑔(𝑡)] = 𝑓



𝑔
[𝑔(𝑡)]𝐷

𝛼

𝑡
𝑔(𝑡) = 𝐷

𝛼

𝑔
𝑓[𝑔(𝑡)](𝑔



(𝑡))
𝛼,

(d) 𝐼𝛼(𝐷𝛼
𝑡
𝑓(𝑡)) = 𝑓(𝑡) − 𝑓(0),

(e) 𝐼𝛼(𝑔(𝑡)𝐷𝛼
𝑡
𝑓(𝑡)) = 𝑓(𝑡)𝑔(𝑡) − 𝑓(0)𝑔(0) − 𝐼

𝛼

(𝑓(𝑡)

𝐷
𝛼

𝑡
𝑔(𝑡)).

The next part of this paper is organized as follows.
In Section 2, we present some new Gronwall-Bellman-type
inequalities, and based on themwe derive explicit bounds for
unknown functions lying in these inequalities. In Section 3,
for illustrating the validity of the established results, we apply
them to research boundedness, uniqueness, and continuous
dependence on initial data for the solution to a certain frac-
tional differential equation, where the fractional derivative
is defined in the sense of the modified Riemann-Liouville
derivative. Finally, some summary comments are presented
in Section 4.

2. Main Results

Theorem 3. Suppose that 𝑢(𝑡), 𝑎(𝑡), and 𝑏(𝑡) are nonnegative
continuous functions defined on 𝑡 ≥ 0. If the following
inequality satisfies:

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑏 (𝑡)

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0, (3)

then, one has the following explicit estimate for 𝑢(𝑡):

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡)
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× exp[∫
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𝛼
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× ∫
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𝑡 ≥ 0.

(4)

Proof. Let V(𝑡) = (1/Γ(𝛼)) ∫𝑡
0

(𝑡 − 𝑠)
𝛼−1

𝑢(𝑠)𝑑𝑠. Then, we have

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) V (𝑡) , 𝑡 ≥ 0. (5)

Furthermore, as 𝑢(𝑡) is continuous, there exists𝑀 such that
|𝑢(𝑡)| ≤ 𝑀 for 𝑡 ∈ [0, 𝑇], where 𝑇 > 0. So, for 𝑡 ∈ [0, 𝑇],
we have |V(𝑡)| ≤ (𝑀/Γ(𝛼)) ∫𝑡

0

(𝑡 − 𝑠)
𝛼−1
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𝛼

/𝛼),
which implies that V(0) = 0. So,
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Then, by the properties (b) and (c), we get that
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(7)

Since by (a) it holds that 𝐷𝛼
𝑡
(𝑡
𝛼

/Γ(1 + 𝛼)) = 1, then
furthermore, we have
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(8)

Substituting 𝑡with 𝜏 and fulfilling fractional integral of order
𝛼 for (8) with respect to 𝜏 from 0 to 𝑡 we deduce that
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which implies that
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(10)

Combining (5) and (10), we get (4).
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Remark 4. In Theorem 3, we note that the bound for 𝑢(𝑡)
established in (4) is essentially different from that in [34,
Theorem 1]. The bound in [34, Theorem 1] is expressed in
a series, whose convergence has not been proved in fact,
while the bound in (4) here is more explicit and easy to
use. Moreover, the function 𝑏(𝑡) here is not necessarily
nondecreasing, which is a generalization of the condition in
[34, Theorem 1]. Besides, the result established here has been
derived based on the modified Riemann-Liouville derivative,
which is also different from [34].

Theorem 5. Suppose that 𝑢(𝑡), 𝑎(𝑡), and 𝑏(𝑡) are defined as
in Theorem 3. If the following inequality satisfies:

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑏 (𝑡)

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑠
1−𝛼

𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0, (11)

then, one has the following explicit estimate for 𝑢(𝑡):

𝑢 (𝑡) ≤ 𝑎 (𝑡)

+ 𝑏 (𝑡)

1

Γ (𝛼)

exp[(Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜏
1−𝛼

𝑎 (𝜏)

× exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝜏
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠] 𝑑𝜏,

𝑡 ≥ 0.

(12)

Proof. Let V(𝑡) = (1/Γ(𝛼)) ∫𝑡
0

(𝑡 − 𝑠)
𝛼−1

𝑠
1−𝛼

𝑢(𝑠)𝑑𝑠. Then, we
have

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) V (𝑡) , 𝑡 ≥ 0. (13)

Considering that V(𝑡) = (1/Γ(𝛼)) ∫𝑡
0

(𝑡 − 𝑠)
𝛼−1

𝑠
1−𝛼

𝑢(𝑠)𝑑𝑠 =

(1/Γ(𝛼))𝑡 ∫

1

0

(1 − 𝑧)
𝛼−1

𝑧
1−𝛼

𝑢(𝑡𝑧)𝑑𝑧 and 𝑢(𝑡) is continuous
satisfying |𝑢(𝑡)| ≤ 𝑀, 𝑡 ∈ [0, 𝑇], where 𝑀 is a positive
constant, we obtain

|V (𝑡)| ≤
𝑀

Γ (𝛼)

𝑡











∫

1

0

(1 − 𝑧)
𝛼−1

𝑧
1−𝛼

𝑑𝑧











= 𝑀Γ (2 − 𝛼) 𝑡,

𝑡 ∈ [0, 𝑇] .

(14)

So, we have V(0) = 0, and furthermore,

𝐷
𝛼

𝑡
V (𝑡) = 𝑡

1−𝛼

𝑢 (𝑡) ≤ 𝑡
1−𝛼

𝑎 (𝑡) + 𝑏 (𝑡) 𝑡
1−𝛼

V (𝑡) , 𝑡 ≥ 0.

(15)

Multiplying exp[−(Γ(1 + 𝛼))(1−𝛼)/𝛼 ∫𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

𝑏((𝑠Γ(1 +

𝛼))
1/𝛼

)𝑑𝑠] on both sides of (15), we get that

𝐷
𝛼

𝑡
{V (𝑡) exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]}

= exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]𝐷
𝛼

𝑡
V (𝑡)

+ V (𝑡) 𝐷
𝛼

𝑡
{exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]}

= exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]𝐷
𝛼

𝑡
V (𝑡)

− 𝑡
1−𝛼

𝑏 (𝑡) V (𝑡) exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]

× 𝐷
𝛼

𝑡
(

𝑡
𝛼

Γ (1 + 𝛼)

) .

(16)
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Since𝐷𝛼
𝑡
(𝑡
𝛼

/Γ(1 + 𝛼)) = 1, then furthermore, we have

𝐷
𝛼

𝑡
{V (𝑡) exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]}

= exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]

× [𝐷
𝛼

𝑡
V (𝑡) − 𝑡

1−𝛼

𝑏 (𝑡) V (𝑡)]

≤ 𝑡
1−𝛼

𝑎 (𝑡) exp[− (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠] .

(17)

Using V(0) = 0, substituting 𝑡 with 𝜏, and fulfilling fractional
integral of order 𝛼 for (17) with respect to 𝜏 from 0 to 𝑡, we
deduce that

V (𝑡) exp[−(Γ (1 + 𝛼))(1−𝛼)/𝛼 ∫
𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]

≤

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜏
1−𝛼

𝑎 (𝜏)

× exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝜏
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠] 𝑑𝜏,

(18)

which implies that

V (𝑡) ≤
1

Γ (𝛼)

exp[(Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜏
1−𝛼

𝑎 (𝜏)

× exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝜏
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠] 𝑑𝜏.

(19)

Combining (13) and (19), we get (12).

Theorem 6. Suppose that 𝑢(𝑡), 𝑎(𝑡), and 𝑏(𝑡) are defined as
in Theorem 3, and furthermore, assume that 𝑎(𝑡) and 𝑏(𝑡) are
both nondecreasing. 𝑚(𝑡) is nonnegative continuous on 𝑡 ≥ 0.
If the following inequality satisfies:

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

𝑚(𝑠) 𝑢 (𝑠) 𝑑𝑠

+

𝑏 (𝑡)

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0,

(20)

then, for 𝑡 ≥ 0, one has the following explicit estimate for 𝑢(𝑡):

𝑢 (𝑡) ≤ exp(∫
𝑡

0

𝑚(𝑠) 𝑑𝑠)

× {𝑎 (𝑡) + 𝑏 (𝑡) exp(∫
𝑡

0

𝑚(𝜏) 𝑑𝜏)

1

Γ (𝛼)

× exp[∫
𝑡
𝛼

/Γ(1+𝛼)

0

exp(∫
(𝑠Γ(1+𝛼))

1/𝛼

0

𝑚(𝜏) 𝑑𝜏)

× 𝑏 ([𝑠Γ (1 + 𝛼)]
1/𝛼

) 𝑑𝑠]

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑎 (𝜏)

× exp[ − ∫
𝜏
𝛼

/Γ(1+𝛼)

0

exp(∫
(𝑠Γ(1+𝛼))

1/𝛼

0

𝑚(𝜉) 𝑑𝜉)

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠] 𝑑𝜏} .

(21)
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Proof. Denote 𝑧(𝑡) = 𝑎(𝑡) + (𝑏(𝑡)/Γ(𝛼)) ∫𝑡
0

(𝑡 − 𝑠)
𝛼−1

𝑢(𝑠)𝑑𝑠.
Then,

𝑢 (𝑡) ≤ 𝑧 (𝑡) + ∫

𝑡

0

𝑚(𝑠) 𝑢 (𝑠) 𝑑𝑠. (22)

Since 𝑎(𝑡) and 𝑏(𝑡) are both nondecreasing, then 𝑧(𝑡) is also
nondecreasing, and so, we obtain that

𝑢 (𝑡) ≤ 𝑧 (𝑡) exp(∫
𝑡

0

𝑚(𝑠) 𝑑𝑠) . (23)

So,

𝑧 (𝑡) ≤ 𝑎 (𝑡) +

𝑏 (𝑡)

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑧 (𝑠)

× exp(∫
𝑠

0

𝑚(𝜏) 𝑑𝜏) 𝑑𝑠

≤ 𝑎 (𝑡) +

𝑏 (𝑡)

Γ (𝛼)

exp(∫
𝑡

0

𝑚(𝜏) 𝑑𝜏)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑧 (𝑠) 𝑑𝑠.

(24)

Notice that the structure of (24) is similar to that of inequality
(3). So, a suitable application ofTheorem 3 to (24) yields that

𝑧 (𝑡) ≤ 𝑎 (𝑡)

+ 𝑏 (𝑡) exp(∫
𝑡

0

𝑚(𝜏) 𝑑𝜏)

1

Γ (𝛼)

× exp[∫
𝑡
𝛼

/Γ(1+𝛼)

0

exp(∫
(𝑠Γ(1+𝛼))

1/𝛼

0

𝑚(𝜏) 𝑑𝜏)

× 𝑏 ([𝑠Γ (1 + 𝛼)]
1/𝛼

) 𝑑𝑠]

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑎 (𝜏)

× exp[−∫
𝜏
𝛼

/Γ(1+𝛼)

0

exp(∫
(𝑠Γ(1+𝛼))

1/𝛼

0

𝑚(𝜉) 𝑑𝜉)

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠] 𝑑𝜏.

(25)

Combining (23) and (25), we can obtain the desired result.

Theorem 7. Suppose that 𝑢(𝑡), 𝑎(𝑡), and 𝑏(𝑡) are defined as
in Theorem 3, and furthermore, assume that 𝑎(𝑡) and 𝑏(𝑡) are
both nondecreasing. 𝑚(𝑡) is nonnegative continuous on 𝑡 ≥ 0.
If the following inequality satisfies:

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

𝑚(𝑠) 𝑢 (𝑠) 𝑑𝑠

+

𝑏 (𝑡)

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑠
1−𝛼

𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0,

(26)

then, for𝛼 ≥ 1 and 𝑡 ≥ 0, one has the following explicit estimate
for 𝑢(𝑡):

𝑢 (𝑡) ≤ exp(∫
𝑡

0

𝑚(𝑠) 𝑑𝑠)

× {𝑎 (𝑡) + 𝑏 (𝑡) exp(∫
𝑡

0

𝑚(𝜏) 𝑑𝜏)

1

Γ (𝛼)

× exp[(Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝑡
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× exp(∫
(𝑠Γ(1+𝛼))

1/𝛼

0

𝑚(𝜏) 𝑑𝜏)

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠]

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜏
1−𝛼

𝑎 (𝜏)

× exp[ − (Γ (1 + 𝛼))(1−𝛼)/𝛼

× ∫

𝜏
𝛼

/Γ(1+𝛼)

0

𝑠
(1−𝛼)/𝛼

× exp(∫
(𝑠Γ(1+𝛼))

1/𝛼

0

𝑚(𝜉) 𝑑𝜉)

× 𝑏 ((𝑠Γ (1 + 𝛼))
1/𝛼

) 𝑑𝑠] 𝑑𝜏} .

(27)

The proof of Theorem 7 is similar to that of Theorem 6,
except that Theorem 5 instead of Theorem 3 is applied at the
end of the proof.

3. Applications

In this section, we will show that the inequalities established
above are useful in the research of boundedness, uniqueness,
and continuous dependence on the initial value for solutions
to fractional differential equations. Consider the following
fractional differential equation:

𝐷
0.5

𝑡
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ≥ 0, (28)

with the initial condition 𝑢(0) = 𝐶, where 𝑓 ∈ 𝐶(𝑅 × 𝑅, 𝑅).

Theorem 8. Suppose that 𝑢(𝑡) is a solution of (28). If
|𝑓(𝑡, 𝑢)| ≤ √𝑡|𝑢|, then one has the following estimate for 𝑢(𝑡):

|𝑢 (𝑡)| ≤ |𝐶| [1 + Γ (1.5) exp( 𝑡

2Γ (1.5)

) 𝑡] , 𝑡 ≥ 0. (29)
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Proof. Similar to [24, Equation (5.1)], we can obtain the
equivalent integral form of (28) with the initial condition
𝑢(0) = 𝐶 as follows:

𝑢 (𝑡) = 𝐶 +

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠. (30)

So,

|𝑢 (𝑡)| ≤ |𝐶| +

1

Γ (0.5)

∫

𝑠

0

(𝑡 − 𝑠)
−0.5

√𝑠 |𝑢 (𝑠)| 𝑑𝑠. (31)

Then, a suitable application of Theorem 5 to (31) (with 𝛼 =
0.5) yields

|𝑢 (𝑡)| ≤ |𝐶| +

|𝐶|

Γ (0.5)

exp( 𝑡

2Γ (1.5)

)

× ∫

𝑡

0

(𝑡 − 𝜏)
−0.5

√𝜏 exp(− 𝜏

2Γ (1.5)

) 𝑑𝜏,

𝑡 ≥ 0.

(32)

Since exp(−𝜏/2Γ(1.5))𝑑𝜏 ≤ 1, then furthermore, we have

|𝑢 (𝑡)| ≤ |𝐶| +

|𝐶|

Γ (0.5)

exp( 𝑡

2Γ (1.5)

)∫

𝑡

0

(𝑡 − 𝜏)
−0.5

√𝜏𝑑𝜏

= |𝐶| +

|𝐶|

Γ (0.5)

exp( 𝑡

2Γ (1.5)

) 𝐵 (1.5, 0.5) 𝑡

≤ |𝐶| [1 + Γ (1.5) exp( 𝑡

2Γ (1.5)

) 𝑡] , 𝑡 ≥ 0,

(33)

which is the desired result.

Remark 9. In Theorem 8, if 𝑓(𝑡, 𝑢) satisfies |𝑓(𝑡, 𝑢)| ≤ 𝐾𝑢
instead, then one can apply Theorem 3 instead of Theorem 5
in the proof and obtain the following estimate for 𝑢(𝑡):

𝑢 (𝑡) ≤ |𝐶| {1 +

1

Γ (0.5)

exp(
√𝑡

Γ (1.5)

)

×∫

𝑡

0

(𝑡 − 𝜏)
−0.5 exp [− √𝜏

Γ (1.5)

] 𝑑𝜏} , 𝑡 ≥ 0.

(34)

Furthermore, we have

𝑢 (𝑡) ≤ |𝐶| [1 +

2

Γ (0.5)

√𝑡 exp(
√𝑡

Γ (1.5)

)] , 𝑡 ≥ 0. (35)

Theorem 10. If |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ √𝑡|𝑢 − V|, then (28) has a
unique solution.

Proof. Suppose that (28) has two solutions 𝑢
1
(𝑡) and 𝑢

2
(𝑡).

Then, similar to Theorem 8, we can obtain

𝑢
1
(𝑡) = 𝐶 +

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

𝑓 (𝑠, 𝑢
1
(𝑠)) 𝑑𝑠,

𝑢
2
(𝑡) = 𝐶 +

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

𝑓 (𝑠, 𝑢
2
(𝑠)) 𝑑𝑠.

(36)

Furthermore,

𝑢
1
(𝑡) − 𝑢

2
(𝑡) =

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

× [𝑓 (𝑠, 𝑢
1
(𝑠)) − 𝑓 (𝑠, 𝑢

2
(𝑠))] 𝑑𝑠,

(37)

which implies that





𝑢
1
(𝑡) − 𝑢

2
(𝑡)




≤

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

×




𝑓 (𝑠, 𝑢

1
(𝑠)) − 𝑓 (𝑠, 𝑢

2
(𝑠))




𝑑𝑠

≤

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

√𝑠




𝑢
1
(𝑠) − 𝑢

2
(𝑠)




𝑑𝑠.

(38)

Treating |𝑢
1
(𝑡) − 𝑢

2
(𝑡)| as one independent function and

applying Theorem 5 to (38) (with 𝛼 = 0.5), we get that
|𝑢
1
(𝑡) − 𝑢

2
(𝑡)| ≤ 0, which implies that 𝑢

1
(𝑡) ≡ 𝑢

2
(𝑡). So, the

proof is complete.

Now we research the continuous dependence on the
initial value for the solution of (28).

Theorem 11. Under the conditions of Theorem 10, the solution
of (28) depends continuously on the initial value of 𝑡 ∈ [0, 𝑇],
where 𝑇 is arbitrarily large.

Proof. Let 𝑢(𝑡) be the solution of (28), and let �̃�(𝑡) be the
solution of the following fractional differential equation:

𝐷
0.5

𝑡
�̃� (𝑡) = 𝑓 (𝑡, �̃� (𝑡)) , 𝑡 ≥ 0, (39)

with the initial condition �̃�(0) = 𝐶.
Similar to Theorem 8, we get that

�̃� (𝑡) = 𝐶 +

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

𝑓 (𝑠, �̃� (𝑠)) 𝑑𝑠. (40)

So, we have

𝑢 (𝑡) − �̃� (𝑡) = 𝐶 − 𝐶

+

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

× [𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, �̃� (𝑠))] 𝑑𝑠,

(41)
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which implies that

|𝑢 (𝑡) − �̃� (𝑡)| ≤






𝐶 − 𝐶







+

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
− 0.5

×




𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, �̃� (𝑠))





𝑑𝑠

≤






𝐶 − 𝐶







+

1

Γ (0.5)

∫

𝑡

0

(𝑡 − 𝑠)
−0.5

√𝑠 |𝑢 (𝑠) − �̃� (𝑠)| 𝑑𝑠.

(42)

Applying Theorem 5 to (42), after some basic computation,
we can get that

|𝑢 (𝑡) − �̃� (𝑡)| ≤






𝐶 − 𝐶






[1 +

Γ (1.5)

Γ (2)

exp( 𝑡

2Γ (1.5)

) 𝑡] .

(43)

From (43), one can see that small change in the initial value
leads to small change in the solution on the closed interval
[0, 𝑇]. So, the proof is complete.

4. Conclusions

We have presented some new Gronwall-Bellman-type
inequalities, and based on them we derived explicit bounds
for the unknown functions concerned, which are different
from the existing bounds in the literature. As one can see,
the results established are useful in fulfilling qualitative and
quantitative analyses such as the boundedness, uniqueness,
and continuous dependence on the initial value and
parameter for solutions to certain fractional differential
equations. Finally, we note that themethod used inTheorems
3 and 5 is of generality and can be used to establish other
Gronwall-Bellman-type inequalities with more complicated
and general forms, which are expected to further research.
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