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A novel modeling method for population dynamics is developed. Based on the classical Lotka-Volterra model, we construct a new
predator-preymodel with unknown parameters to simulate the behaviors of predator and prey. Using a the approximation property
and the machine learning approach of artificial neural networks, a tuning algorithm of unknown parameters is obtained and the
factual data of predator-prey can be asymptotically stabilized using a neural network controller. Numerical examples and analysis
of the results are presented.

1. Introduction

A mathematical model of population is an abstract model
that uses mathematical language to describe the behavior
between population and the relationships of populations.
Mathematical models are extremely powerful because they
usually enable explanation and prediction to be made about
population. Soon after Lotka and Volterra’s pioneering works
[1, 2], many scholars established a large number of math-
ematical models to simulate the evolution of population.
The theories and applications of mathematical ecology are
attended by the most momentous results. Particularly, in the
seventies of the last century, the new theories and methods
of differential equations and dynamical systems have been
widely used in study of population genetics, neurobiology,
epidemiology, immunology, physiology, and environmental
pollution, and so forth. See the monographs of Murray [3],
Chen [4], Freedman [5], and Murray [6] for a detailed
description of a population and for various mathematical
methods for analyzing population models.

One of themost basic and importantmodels is the Lotka-
Volterra type model. In the last decades, considerable work
on the permanence, the extinction, and the global asymptotic
stability of autonomous or nonautonomous Lotka-Volterra
type models have been studied extensively, for example, [7–
11] and the references therein. In addition to these, the books

of Takeuchi [9], Gopalsamy [12], and Kuang [13] are good
sources for the dynamical behavior of Lotka-Volterramodels.

Unfortunately, we can never make a completely precise
model of a population system, and there are always phenom-
ena which we will not be able to model. Thus, there will
always be model errors or model uncertainties. For example,
in the establishment of the mathematical model, we ignored
a number of secondary factors in order to make an analysis
of mathematical reasoning. However, with the rapid progress
of science and technology, especially the fast development
of computer and network, more information on biological
population can be obtained. A large amount of information
shows that the existing models are not able to precisely
simulate the developmental process of the population. In
other words, those secondary factors have been ignored in
the modeling process but they played an important role
in the development process of populations. Therefore, the
traditional models cannot simulate the real dynamic of
population and the traditional modeling technique is not
perfect.

On the other hand, we note that an artificial neural
network (ANN), usually called neural network (NN), is a
mathematical model or computational model that is inspired
by the structual and/or functional aspects of biological
neural networks. In most cases, ANN is an adaptive system
that changes its structure based on external or internal
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information that flows through the network during the
learning phase. For this very reason, ANN is found in
almost every domain of applied science, such as pattern
recognition, data classification, medicine, sales forecasting,
industrial process control, customer research, data validation,
risk management, and target marketing.

ANNbased on biological neural systems has been studied
for years, and their properties of learning and adaptation,
classification, function approximation, feature extraction,
andmore havemade themof extreme use in signal processing
and system identification applications. These are open-loop
applications, and the theory of ANN has been very well-
developed in this area. The applications of ANN in closed-
loop feedback control systems have only recently been rigor-
ously studied, and a foundation for neural networks in control
has been provided in seminal results by Narendra et al. [14–
17] and others. Several researchers have studied ANN control
and managed to prove stability [18–20]. In particularly, Jiang
[21] presented a neural network control scheme for tracking
a nonlinear system using trajectory tracking, and an iterative
training law described by a positive definite discrete kernel is
also presented. Hayakawa [22] considered a neural network
hybrid adaptive control framework for nonlinear uncertain
hybrid dynamical systems.

Motivated by these considerations, in this paper, we will
propose a new modeling method, using machine learning
of the ANN theory to amend Lotka-Volterra predator-prey
model such that the revised model can better simulate or
control the development of populations.

This paper is organized as follows. Using machine learn-
ing of the ANN theory, a new predator-prey model is intro-
duced in Section 2. In Section 3, we give some functional-link
neural network (FLNN) weight tuning algorithms for this
model. In Section 4, some specific examples are given to illus-
trate our results. Finally, Section 5 presents the conclusions.

2. Model Description and Preliminaries

It is well known that Lotka-Volterra models are fundamental
population models. For example, the following classical
autonomous model is used to model the interaction of the
prey and predator:
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Along with the development of technology, more infor-
mation on biological population can be obtained. We find
that the model (1) could not simulate the real dynamic
behavior of predator and prey. Therefore, according to the
traditional Lotka-Volterra predator-preymodel, we construct
a new predator-prey model to simulate the states of predator
and prey. The model takes the following form:
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where 𝜏 = (𝜏
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𝑇 is an unknown function.

Next, wewill use themachine learning of theANN theory
to approximate the unknown function 𝜏, such that model (2)
can better simulate the behaviors of predator and prey.
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By differentiating (3) and invoking (2), it is seen that the
model is expressed in the terms of a tracking error as
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Let 𝑆 be a compact, simply connected set of𝑅4 and𝑝(⋅) : 𝑆 →
𝑅
2. Define 𝐶2(𝑆) as a space of continuous functions 𝑝(⋅). The

universal approximation theorem claims that, for real valued
function 𝑝(𝑦), there exists an ideal approximating weight𝑊
such that
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weight is unknown and not even unique. Assume that ideal
weight is a constant and bounded so that
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with the bounded𝑊
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known, where ‖ 𝑊‖

𝐹
= √tr(𝐴𝑇𝐴) is

the Frobenius norm of𝑊 and tr(⋅) is the matrix trace, that is,
sum of diagonal elements. For more details, we refer to [23,
24].

Then, an estimate of function 𝑝(𝑦) is given by

𝑝 (𝑦) = �̂�
𝑇
𝜙 (𝑦) (13)

with �̂� as the current actual values of the one-layer
functional-link neural network (FLNN) controller weights
as provided by the tuning algorithm to be specified. It is
necessary to show how to tune the ANNweight �̂� on-line so
as to guarantee stable tracking. The tuning algorithm found
will presumably modify the actual weight �̂� so that they
become close to the ideal weight 𝑊, which is unknown.

We choose a general sort of approximation-based function,
which is derived by setting

𝜏 (𝑡) = −�̂�
𝑇
𝜙 (𝑦) − 𝐾V𝑒, (14)

where 𝐾V𝑒 is an outer proportional-plus-derivative tracking
loop. Using this controller, system (6) is rewritten by the
following form:
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where �̃� = 𝑊 − �̂� is the function approximation error.

3. FLNN Weight Tuning Algorithms for
Model (2)

In this section, we give some FLNNweight tuning algorithms
that guarantee the tracking stability of model (15). It is
required to demonstrate that the tracking error 𝑒(𝑡) is suitably
small and that the FLNN weights �̂� remain bounded, for
that, the unknown function 𝜏(𝑡) is bounded.

3.1. Ideal Case. In this subsection, we detail the behavior in
the idealized case, where net functional reconstruction error
𝜀 is zero.The following theorem derives the ANN control 𝜏(𝑡)
that asymptotically stabilized the predator-prey model about
its desired trajectory 𝑥

𝑑
(𝑡).
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1
) holds and 𝜀

𝑌
in (10)

is equal to zero. Suppose that the unknown function 𝑝(𝑦) be
given by (9) and ANN weight tuning provided by
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𝑇
, (16)

where 𝐹 = 𝐹𝑇 > 0 is a constant design parameter matrix.
Then the tracking error 𝑒(𝑡) goes to zero with 𝑡 and the weight
estimates �̂� are bounded.
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Proof. Under the ideal case, the error system is
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Since𝑉(𝑡) > 0 and𝑑𝑉/𝑑𝑡 ≤ 0, this shows stability in the sense
of Liapunov so that 𝑒(𝑡) and �̃� (and hence �̂�) are bounded.
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and the right-hand side of (16) verifies the boundedness
of 𝑑𝑒/𝑑𝑡 and hence of 𝑑2𝑉/𝑑𝑡2 and therefore the uniform
continuity of 𝑑𝑉/𝑑𝑡. This allows us to invoke Barbalat’s
Lemma in connection with (23) to conclude that 𝑑𝑉/𝑑𝑡 goes
to zero with 𝑡 and hence that 𝑒(𝑡) vanishes as 𝑡 → ∞. The
proof is complete.

On model (2), we have Theorem 2 that is a direct
consequence of Theorem 1.
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1
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Remark 3. From Theorem 2, we note that the solution of
model (2) goes to the factual data 𝑥

𝑑
. So, model (2) can better

simulate the dynamical behaviors of predator and prey.

3.2. The Nonideal Case. It has just been seen that there is no
ANN functional approximation error under the ideal case. In
this subsection, it will be seen that if the ANN approximation
errors are not zero but bounded, then the tracking errors
do not vanish but are bounded by small enough values to
guarantee good tracking performance.
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where 𝐹 = 𝐹𝑇 > 0 is a constant design parameter matrix.Then
the tracking error 𝑒(𝑡) is uniform ultimate boundedness and the
weight estimates �̂� are bounded.Moreover, 𝑒(𝑡)may be kept as
small as desired by increasing the gain 𝐾V.
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Calculating the derivative of𝑉(𝑒) along the error system (15),
it follows that

𝑑𝑉

𝑑𝑡
= 𝑒
𝑇𝑑𝑒

𝑑𝑡
+ tr{�̃�𝐹−1 𝑑�̃�

𝑑𝑡
}

= − 𝑒
𝑇
(𝐷 + 𝐾V) 𝑒

+ tr{�̃�(𝐹−1 𝑑�̃�
𝑑𝑡
+ 𝜙 (𝑦) 𝑒

𝑇
)} + 𝑒

𝑇
𝜀.

(26)

Since �̃� = 𝑊− �̂� and𝑊 is constant, from (24) it yields that

𝑑�̃�

𝑑𝑡
= −𝐹𝜙 (𝑦) 𝑒

𝑇
. (27)

From this and (26), it follows that

𝑑𝑉

𝑑𝑡
≤ −𝜆min‖𝑒‖

2
+ 𝜀
𝑌 ‖𝑒‖ , (28)

where 𝜆min is theminimum singular value ofmatrix (𝐷+𝐾V).
Since 𝜀

𝑌
is constant, 𝑑𝑉/𝑑𝑡 ≤ 0 as long as

‖𝑒‖ >
𝜀
𝑌

𝜆min
:= 𝐿. (29)

Let 𝑆
𝑎
= {𝑒 : 𝑒 ∈ 𝑆

𝑦
, 𝑉(𝑒) ≤ 𝐶

𝑎
}, where 𝐶

𝑎
is the

maximum positive constant such that 𝑆
𝑎
∈ 𝑆
𝑦
; 𝑆
𝑏
= {𝑒 : 𝑒 ∈

𝑆
𝑦
, 𝑉(𝑒) ≤ 𝐶

𝑏
, 𝑑𝑉/𝑑𝑡 > 0}, where𝐶

𝑏
is themaximumpositive

constant such that 𝑆
𝑏
∈ 𝑆
𝑦
. It is obviouse that 𝑆

𝑎
⊂ 𝑆
𝑏
.

Suppose that initial tracking error 𝑒(0) ∈ 𝑆
𝑎
. If 𝑒(0) ∈

𝑆
𝑎
\ 𝑆
𝑏
, 𝑑𝑉/𝑑𝑡 < 0 by the definitions of 𝑆

𝑎
and 𝑆
𝑏
. Therefore,

𝑉 will gradually become smaller until the access to 𝑆
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Figure 2: The trajectory of the prey 𝑥
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= 3.0 and 𝜏 = 0; (b) 𝑏

1
= 3.0, 𝜏 ̸= 0, and 𝑥

𝑑
= (2.5+0.2 sin(𝑡), 2.0+0.2 cos(𝑡)).
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Figure 5:The trajectory of the prey 𝑥
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of model (30) with (a) 𝑏
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Figure 6:The trajectory of error system 𝑒(𝑡): (a) 𝑒
1
(𝑡) with𝐾V1 and𝐾V2, (b) 𝑒2(𝑡) with𝐾V1 and𝐾V2; where𝐾V1 = (

300 5

10 360
) and𝐾V2 = (

500 5

10 560
).

this time, 𝑉 will become bigger from the definition 𝑆
𝑏
. So, it

follows that 𝑒(𝑡)is the asymptotic convergence to the border
of 𝑆
𝑏
. Similarly, if 𝑒(0) ∈ 𝑆

𝑏
, we can obtain the same results.

Now, let 𝑆 = {𝑒 : ‖ 𝑒 ‖< 𝐿}. Then we choose appropriate
𝐾V and 𝜀

∗
< 𝜀
𝑌
such that 𝐿 < 𝜌 for all 𝜀 < 𝜀∗, where 𝜌 is the

diameter of set 𝑆
𝑦
. From this, we have 𝑇 ⊂ 𝑆

𝑦
and 𝑆

𝑏
⊂ 𝑇.

Otherwise, there is a point 𝑒∗ in set 𝑆
𝑦
such that 𝑒∗∈𝑆. Hence,

we have �̇�(𝑒∗) < 0. This is a conflict with the definition of
set 𝑆.

From the above discussion, we get that if 𝑒(0) ∈ 𝑆
𝑎
, then

𝑒(𝑡)is the asymptotic convergence to the border of 𝑆
𝑏
. On

the other hand, since 𝑆
𝑏
∈ 𝑆, it follows that ‖ 𝑒 ‖< 𝐿 as

𝑡 → ∞. Therefore, tracking error 𝑒(𝑡) is uniform ultimate

boundedness and the boundedness 𝐿 may be kept as small
as desired by increasing the gain 𝐾V. This completes the
proof.

FromTheorem 4, on themodel (2), we have the following
Theorem 5.

Theorem 5. Suppose that assumption (𝐴
1
) holds and 𝜀

𝑌
in

(10) is constant. Further, let 𝜏(𝑡) = −�̂�𝑇𝜙(𝑦) − 𝐾V𝑒, where �̂�
satisfies condition (24). Then, the tracking error 𝑒(𝑡) = 𝑥 − 𝑥

𝑑

is uniform ultimate boundedness and the wight estimates �̂�
are bounded. Moreover, 𝑒(𝑡)may be kept as small as desired by
increasing the gain 𝐾V.
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Remark 6. From Theorem 5, we can get that the solution of
model (2) goes to the factual data 𝑥

𝑑
. So, if the conditions

of Theorem 5 hold, then model (2) can better simulate the
behaviors of predator and prey.

4. Example and Numerical Simulation

In this paper, we proposed a new modeling method, using
machine learning of theANN theory to amend the traditional
Lotka-Volterra model such that the revised model can better
simulate or control the behaviors of population.

In order to testify the validity of our results, we consider
the following model:

𝑑𝑥
1

𝑑𝑡
= 𝑥
1
(𝑏
1
− 0.5𝑥

1
− 2𝑥
2
) + 𝜏
1
,

𝑑𝑥
2

𝑑𝑡
= 𝑥
2
(−2 + 2𝑥

1
− 0.2𝑥

2
) + 𝜏
2
,

(30)

where 𝜏 = (𝜏
1
, 𝜏
2
) is an unknown function.

If we choose 𝑏
1
= 1.5 and 𝜏 = 0 in model (30), it is

clear that model (30) has a saddle (0, 0) and a stable nod
(𝑟
1
/𝑎
11
, 0) = (3, 0) which are shown in Figures 2(a) and 3(a).

However, if a factual data of predator-prey is 𝑥
𝑑
(𝑡) =

(𝑥
1𝑑
, 𝑥
2𝑑
) = (1.5, 0.5), then model (30) with 𝑏

1
= 1.5 cannot

simulate the real dynamic of populations. So, in this way,
according to theTheorems 1 and 4, we can choose

𝐹 = (
0.3 0.1

0.1 0.3
) , 𝐾V = (

50 30

30 50
) , (31)

and 𝜙(𝑡) = (𝑥
1
−𝑥
1𝑑
, 𝑥
2
−𝑥
2𝑑
)
𝑇.Then, we note that the factual

data of predator-prey 𝑥
𝑑
(𝑡) is asymptotically stable that is, the

tracking error 𝑒(𝑡) goes to zero as 𝑡 → ∞. That is, if we
choose 𝜏(𝑡) = −�̂�𝑇𝜙(𝑦) − 𝐾V𝑒, then model (30) can better
simulate (or control) the real behaviors of population which
are shown in Figures 2(b) and 3(b).

Further, if we choose 𝑏
1
= 3.0 and 𝜏 = 0 in model (30), it

is easy to demonstrate that model (30) has two saddles (0, 0)
and (6, 0) and one stable focus (4.18, 0.45) which are shown
in Figures 4(a) and 5(a).

If a factual data of predator-prey is

𝑥
𝑑
(𝑡) = (

𝑥
1𝑑

𝑥
2𝑑

) = (
2.5 + 0.2 sin (𝑡)
2.0 + 0.2 cos (𝑡)) , (32)

then model (30) with 𝑏
1
= 3.0 cannot simulate the real

dynamic of populations. So, in this way, according to Theo-
rems 1 and 4, we choose

𝐹 = (
1.5 0.6

0.6 2.0
) , 𝐾V

1

= (
300 5

10 360
) , (33)

and 𝜙(𝑡) = (𝑥
1
− 𝑥
1𝑑
, 𝑥
2
− 𝑥
2𝑑
)
𝑇. Then, we note that the

factual data of predator prey, 𝑥
𝑑
(𝑡), is asymptotically stable

and has asymptotic phase property. That is, if we choose
𝜏(𝑡) = −�̂�

𝑇
𝜙(𝑦) − 𝐾V𝑒, then model (30) can better simulate

(or control) the real behaviors of predator and prey, which are
shown in Figures 4(b) and 5(b). Moreover, the tracking error
𝑒(𝑡)may be kept as small as desired by increasing the gain𝐾V
which is shown in Figures 6(a) and 6(b).

5. Conclusion

According tomore information on biological population that
can be obtained, we find that the traditional models cannot
simulate the real dynamic of populations. Therefore, the tra-
ditional modeling technique is not perfect. So, in this paper,
based on the traditional and most important Lotka-Volterra
model, we developed a newmodelingmethod, usingmachine
learning of the ANN theory to construct a new predator-
prey model to simulate the states of predator and prey. From
the neural networks function approximation property and a
factual data of predator-prey, we proposed a neural network
trajectory tracking strategy, and the tuning algorithm of the
new model is obtained. That is, under general assumptions,
we proved that the tracking error is ultimately uniformly
bounded and that the corresponding ultimate bound can be
sufficiently decreased bymodifying the feedback gainmatrix.
So, the new model can better simulate or control the real
behaviors of populations. Finally, numerical examples were
presented to show that the proposed method is feasible and
efficient.
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