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This paper studies the indefinite stochastic LQ control problem with quadratic and mixed terminal state equality constraints,
which can be transformed into a mathematical programming problem. By means of the Lagrangian multiplier theorem and Riesz
representation theorem, the main result given in this paper is the necessary condition for indefinite stochastic LQ control with
quadratic and mixed terminal equality constraints. The result shows that the different terminal state constraints will cause the
endpoint condition of the differential Riccati equation to be changed. It coincides with the indefinite stochastic LQ problem with
linear terminal state constraint, so the result given in this paper can be viewed as the extension of the indefinite stochastic LQ
problem with the linear terminal state equality constraint. In order to guarantee the existence and the uniqueness of the linear
feedback control, a sufficient condition is also presented in the paper. A numerical example is presented at the end of the paper.

1. Introduction

Linear quadratic (LQ) control is an extremely important class
of control problems in both theory and application. It is
pioneered by Kalman [1] for deterministic systems and was
extended to stochastic systems by Wonham [2]. In recent
years, extensive research has been carried out in the so-
called indefinite stochastic LQ control, in which the cost
weighting matrices are allowed to be indefinite; refer to
[3–6] for detailed accounts. A basic assumption in the LQ
theory, both for deterministic and stochastic cases, is that the
variable is unconstrained except for the differential equations
constraint. As far as we know, very few results for con-
strained deterministic LQ can be found compared with the
unconstrained one, not to mention the stochastic LQ control
[7]. While in many real applications, constrained LQ con-
trol problem (such as nonnegativity and bound constraints
for state and control variables) is a well-posed problem,
constrained stochastic LQ control problem has a concrete
application background, but the conventional LQ approach
would collapse in the presence of any constraints. Study on
the constrained stochastic LQ control will contribute to both
theory and application a lot.

Huang and Zhang [8] studied the indefinite stochastic
LQ control problem with linear terminal state equality
constraints. Necessary and sufficient conditions for indefinite
stochastic LQ control problems were investigated based on
the Lagrangian multiplier theorem and Riesz representation
theorem. The result showed that the linear feedback optimal
control can be obtained by solving systems of algebraic and
differential equations. The previous results on unconstrained
indefinite stochastic LQ can be viewed as a specified case of
the main theorem in that paper.

This paper studied the indefinite stochastic LQ control
problem with quadratic terminal equality constraints and
mixed constraints, which can be viewed as the extension
of [8]. When the terminal state constraint is quadratic,
the feasible region defined by the terminal constraint is
nonconvex and multiple local minima abound, which makes
the problem more complex to locate the optimum consis-
tently. Developing a deeper understanding of the problems,
as well as efficient algorithms for solving them, will have
a big impact in many applications. Another reason for
the study of this problem is that the methods used for
solving this type of problem can be used to solve more
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general constrained optimal control problems. By means of
the Lagrangian multiplier theorem and Riesz representation
theorem, the main result in this paper is the necessary
condition for indefinite stochastic LQ control with quadratic
terminal constraints and mixed terminal constraints. The
result showed that the difference of the terminal state con-
straints will cause the endpoint condition to be changed in
the differential equationswe obtained for the linear constraint
control problem, which coincides with the reality. In order
to guarantee the existence and the uniqueness of the linear
feedback control, a sufficient condition is also presented in
the paper. Numerical example is presented at the end of this
paper.

For the convenience, we make use of the following basic
notation in this paper. 𝑅𝑛 is the 𝑛-dimensional real column
vector, 𝑥(𝑡) = (𝑥

1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
󸀠 is the 𝑛-dimensional state-

ment column vector, 𝑢(𝑡) ∈ 𝑅𝑚 is the control input vector,
𝜔(⋅) is the one-dimensional Brownian motion defined on
filtered probability (Ω, 𝐹, 𝑃; 𝐹

𝑙
)with a standard 𝐹

𝑙
-adapted on

[0, 𝑇], and𝐹
𝑙
= 𝜎(𝜔(𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇) is an information fluid

produced by Brownianmotion. 𝑢(𝑡) belongs to the admissible
control set 𝑈ad = {𝑢(𝑡) ∈ 𝑅

𝑚

, 𝑢(𝑡) ∈ 𝐿
2

𝐹
(0, 𝑇; 𝑅

𝑚

)} is the
adapted stochastic process which satisfies 𝐸∫𝑇

0

|𝑢
2

(𝑡)|𝑑𝑡 <

+∞ and the corresponding 𝑥(𝑡) satisfies (3), 𝜉
𝑖
is the given

𝐹
𝑇
measurable, integrable random variable; that is, 𝐸(𝜉

𝑖
) <

+∞, and 𝑖 = 1, 2, . . . , 𝑙 + 𝑞 is a known number. 𝐴, 𝐶 ∈

𝐿
∞

(0, 𝑇; 𝑆
𝑛×𝑛

),𝑄 ∈ 𝐿
∞

(0, 𝑇; 𝑆
𝑛×𝑛

), 𝐵, 𝐷 ∈ 𝐿
∞

(0, 𝑇; 𝑅
𝑛×𝑚

),
𝑅 ∈ 𝐿

∞

(0, 𝑇; 𝑆
𝑚×𝑚

), 𝑅𝑚×𝑚 is 𝑚 row 𝑛 column matrix, and
𝑆
𝑛×𝑛 is an 𝑛 × 𝑛 symmetric matrix.𝑀

𝑙
∈ 𝑅
𝑙×𝑛 is the terminal

state linear constraint coefficientmatrix, and𝑀
𝑞
∈ 𝑅
𝑞×𝑛 is the

terminal state quadratic constraint matrix. Two assumptions
are given in this paper.

𝐻
1
: 𝑀
𝑙
, 𝑀
𝑞
(the coefficient matrix for terminal linear

and quadratic constraints respectively in Problem 1 to
Problem 21) are full row rank and the set defined by
the terminal state constraints is not empty;

𝐻
2
: 𝐿∞(0, 𝑇;𝑋) := {𝑓(𝑡) : 𝑓(𝑡) is an𝐹

𝑙
-adapted,𝑋-valued

measurable process on [0, 𝑇], and 𝐸∫𝑇
0

‖𝑓(𝑡)‖
2

𝑋
𝑑𝑡 <

+∞}.

The rest of this paper is organized as follows. Section 2
gives the problem statement and some preliminaries,
Section 3 presents the main results of this paper. Numerical
example is given in Section 4. Finally, Section 5 concludes
this paper.

2. Problem Statement and Preliminaries

Problem 1. We study the following indefinite stochastic LQ
control problem:

inf {𝐽 (𝑥
0
, 𝑢) := 𝐸∫

𝑇

0

𝑥
󸀠

𝑄𝑥 + 𝑢
󸀠

𝑅𝑢𝑑𝑡} (1)

s.t.
𝑑𝑥 (𝑡) = (𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡))

+ (𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)) 𝑑𝜔 (𝑡) ,

(2)

𝑥 (0) = 𝑥
0
,

𝑚
11
𝑥
2

11
(𝑇) + 𝑚

12
𝑥
2

12
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

1𝑛
𝑥
2

1𝑛
(𝑇) = 𝜉

1
,

𝑚
21
𝑥
2

21
(𝑇) + 𝑚

22
𝑥
2

22
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

2𝑛
𝑥
2

2𝑛
(𝑇) = 𝜉

2
,

...

𝑚
𝑞1
𝑥
2

𝑞1
(𝑇) + 𝑚

𝑞2
𝑥
2

𝑞2
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

𝑞𝑛
𝑥
2

𝑞𝑛
(𝑇) = 𝜉

𝑞
.

(3)

Suppose that the feasible set defined by the quadratic con-
straint is not empty. We investigate the necessary condition
under the linear feedback optimal control

𝑢 (𝑡) = 𝐾 (𝑡) 𝑥 (𝑡) , (4)

in which 𝐾(𝑡) ∈ 𝐶
𝑚×𝑛

[0, 𝑇]. The cost weight matrix in
Problem 1 is not necessarily positive, which usually causes
Problem 1 to be called indefinite stochastic LQ control
problem with terminal constraint. First, we present some
definitions and lemmas that will be used and then transform
the optimal control Problem 1 into a deterministic control
problem.

Definition 2 (Gateaux differential). Let 𝑋 be a vector space,
let 𝑌 be a normed space, and let 𝑇 be a (possibly nonlinear)
transformation defined on a domain𝐷 ⊆ 𝑋 with a range 𝑅 ⊆
𝑌. Given 𝑥 ∈ 𝐷 ⊂ 𝑋, and ℎ is an arbitrary vector in 𝑋. If the
limit

𝛿𝑇 (𝑥; ℎ) = lim
𝛼→0

1

𝛼
[𝑇 (𝑥 + 𝛼ℎ) − 𝑇 (𝑥)] (5)

exists, then it is called Gateaux differential at 𝑥 with an
increment ℎ. If the limit exists for arbitrary ℎ ∈ 𝑋, the
transformation 𝑇 is called Gateaux differentiable at 𝑥.

Definition 3 (Frechet differential). Let 𝑋 and 𝑌 be normed
linear spaces and let𝑇 be a transformation defined on an open
domain𝐷 ⊂ 𝑋 with a range 𝑅 ⊂ 𝑌. If, for a fixed 𝑥 ∈ 𝐷 ⊂ 𝑋,
there exist 𝛿𝑇(𝑥; ℎ) ∈ 𝑌, which is linear and continuous with
respect to ℎ such that

lim
‖ℎ(𝑡)‖→0

‖𝑇 (𝑥 + ℎ) − 𝑇 (𝑥) − 𝛿𝑇 (𝑥; ℎ)‖

‖ℎ (𝑡)‖
= 0, (6)

then 𝑇 is said to be Frechet differentiable at 𝑥, and 𝛿𝑇(𝑥; ℎ) is
said to be the Frechet differential of 𝑇 at 𝑥 with an increment
ℎ.

Definition 4 (Frechet derivative and continuously Frechet dif-
ferentiable). Suppose that a transformation 𝑇 defined on an
open domain 𝐷 ⊂ 𝑋 is Frechet differentiable on 𝐷. The
Frechet differential 𝛿𝑇(𝑥; ℎ) = 𝑇

󸀠

(𝑥)ℎ for a fixed 𝑥 ∈ 𝐷,
where 𝑇󸀠(𝑥) is a bounded linear operator from 𝑋 to 𝑌, one
calls 𝑇󸀠(𝑥) the derivative of 𝑇(𝑥). If the derivative 𝑇󸀠(𝑥) is
continuous on some open ball 𝑆, then 𝑇 is continuously
Frechet differentiable on 𝑆.

Definition 5 (regular point of transformation). Let 𝑇(𝑥) be a
transformation defined on a Banach space 𝑋 with a range 𝑌,
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which is also a Banach space. 𝑇(𝑥) is continuously Frechet
differentiable if, for a given 𝑥

0
∈ 𝑋, 𝛿𝑇(𝑥

0
; ℎ) is an onto

mapping from𝑋 onto 𝑌; then 𝑥
0
is called a regular point.

Considering Problem 1 under the linear feedback optimal
control, substituting 𝑢(𝑡) in Problem 1 with

𝑢 (𝑡) = 𝐾 (𝑡) 𝑥 (𝑡) . (7)

And taking the place of 𝑢(𝑡) in (2), we have

𝑑𝑥 = (𝐴 + 𝐵𝐾) 𝑥𝑑𝑡 + (𝐶 + 𝐷𝐾) 𝑥𝑑𝜔. (8)

According to the Itô integrals formula for 𝑥𝑥󸀠, in which 𝑥(𝑡)
is the solution of (8), we have

𝑑 (𝑥𝑥
󸀠

) = [(𝐴 + 𝐵𝐾) 𝑥𝑥
󸀠

+ 𝑥𝑥
󸀠

(𝐴 + 𝐵𝐾)
󸀠

+ (𝐶 + 𝐷𝐾) 𝑥𝑥
󸀠

(𝐶 + 𝐷𝐾)] 𝑑𝑡.

(9)

Define 𝐸(𝑥𝑥󸀠) = 𝑋; it is obvious that 𝑋 is a symmetric
matrix. Integrate both sides of (9) from 0 to 𝑡 with variable 𝑡,
then compute the derivatives of both sides of (9) after taking
the expectation, then get the following matrix differential
equation with the initial condition:

𝑋̇ = (𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
󸀠

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
󸀠

,

𝑋 (0) = 𝑋
0
= 𝑥
0
𝑥
󸀠

0
.

(10)

Substituting 𝑢(𝑡) with 𝑢(𝑡) = 𝐾(𝑡)𝑥(𝑡) in (1) to

inf {𝐽 (𝑋,𝐾) = tr∫
𝑇

0

[𝑄𝑋 (𝑡) + 𝐾
󸀠

(𝑡) 𝑅𝐾 (𝑡)𝑋 (𝑡)] 𝑑𝑡} ,

(11)

(“tr” is the trace of a matrix, 𝐸(𝜉
𝑖
) = 𝑙
𝑖
, 𝑖 = 1, 2, . . . , 𝑞), the

quadratic constraints are

tr (𝑄
1
𝑋(𝑇)) = 𝑙

1
, tr (𝑄

2
𝑋 (𝑇)) = 𝑙

2
, . . . , tr (𝑄

𝑞
𝑋(𝑇)) = 𝑙

𝑞
,

(12)

where 𝑄
𝑖
= diag[𝑚

𝑖1
, 𝑚
𝑖2
, . . . , 𝑚

𝑖𝑛
], 𝑖 = 1, 2, . . . , 𝑞, and 𝐿 =

(𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑞
)
󸀠. Then Problem 1 can be transformed into the

following deterministic optimal control Problem 6.

Problem 6. Consider

inf {𝐽 (𝑋,𝐾) = tr∫
𝑇

0

[𝑄𝑋 (𝑡) + 𝐾
󸀠

(𝑡) 𝑅𝐾 (𝑡)𝑋 (𝑡)] 𝑑𝑡}

(13)

s.t.

𝑋̇ = (𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
󸀠

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
󸀠

,

(14)

𝑋(0) = 𝑋
0
= 𝑥
0
𝑥
0
, (15)

tr (𝑄
1
𝑋 (𝑇)) = 𝑙

1
,

tr (𝑄
2
𝑋 (𝑇)) = 𝑙

2
,

⋅ ⋅ ⋅

tr (𝑄
𝑞
𝑋 (𝑇)) = 𝑙

𝑞
.

(16)

Remark 7. It is obvious that if Problem 1 has the optimal linear
feedback control 𝑢

∗
(𝑡) = 𝐾

∗
(𝑡)𝑥(𝑡), then 𝐾

∗
(𝑡) must be the

solution of Problem 6, while the inverse does not hold.
Take the objective functional 𝐽(𝑋,𝐾) as a functional

defined on the space 𝐶𝑛×𝑛[0, 𝑇] × 𝐶𝑛×𝑛[0, 𝑇], in which
𝐶
𝑛×𝑛

[0, 𝑇] is an 𝑛 × 𝑛 square matrix space, the element in this
space is the continuous function defined on [0, 𝑇]:

𝐻(𝑋,𝐾) (𝑡) = 𝑋 (𝑡) − 𝑋 (0)

− ∫

𝑡

0

[ (𝐴 + 𝐵𝐾)𝑋 + 𝑋 (𝐴 + 𝐵𝐾)

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
󸀠

] 𝑑𝑡,

(17)

and terminal state constraints (16) defines a transformation
𝐺(𝑋) from 𝐶𝑛×𝑛[0, 𝑇] to 𝑅𝑞 :

𝐺 (𝑥 (𝑇)) = (

tr (𝑄
1
𝑋 (𝑇))

...
tr (𝑄
𝑞
𝑋(𝑇))

) . (18)

By the virtue of (17)-(18), constraints (14)–(16) can be refor-
mulated as

𝐻(𝑋,𝐾) (𝑡) = 0, 𝐺 (𝑋 (𝑇)) = 𝐿, ∀𝑡 ∈ [0, 𝑇] . (19)

Lemma8. Functional 𝐽(𝑋,𝐾),𝐻(𝑋,𝐾),𝐺(𝑋) are continuous
Frechet differentiable functionals and have Frechet derivative

𝛿𝐽
𝑋
(𝑋,𝐾; Δ𝑋) = tr∫

𝑇

0

(𝑄 + 𝐾
󸀠

𝑅𝐾)Δ𝑋𝑑𝑡, (20)

𝛿𝐽
𝐾
(𝑋,𝐾; Δ𝐾) = tr∫

𝑇

0

(Δ𝐾
󸀠

𝑅𝐾𝑋 + 𝐾
󸀠

𝑅Δ𝐾𝑋)𝑑𝑡, (21)

𝛿𝐻
𝑋
(𝑋,𝐾; Δ𝑋) (𝑡)

= Δ𝑋 (𝑡) − ∫

𝑡

0

[ (𝐴 + 𝐵𝐾)Δ𝑋 + Δ𝑋 (𝐴 + 𝐵𝐾)

+ (𝐶 + 𝐷𝐾)Δ𝑋(𝐶 + 𝐷𝐾)
󸀠

] 𝑑𝑡,

(22)

𝛿𝐻
𝐾
(𝑋,𝐾; Δ𝐾) (𝑡)

= −∫

𝑡

0

[𝐵Δ𝐾𝑋 + 𝑋Δ𝐾
󸀠

𝐵
󸀠

+ (𝐶 + 𝐷𝐾)𝑋 (𝐷Δ𝐾)

+𝐷Δ𝐾𝑋(𝐶 + 𝐷𝐾)
󸀠

] 𝑑𝑡,

(23)

𝛿𝐺
𝑋
(𝑋; Δ𝑋 (𝑇)) = (

tr (𝑄
1
Δ𝑋 (𝑇))

...
tr (𝑄
𝑞
Δ𝑋 (𝑇))

) . (24)
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Proof. The proof is mainly based on Definition 2. Apply
Definition 2 to the functional constraints (19); the proofs for
the first three results are the same to those in [8], and we only
need the proof of (24) here:

Δ𝐺 (𝑋; Δ𝑋) = lim
𝛼→0

𝐺 (𝑋;𝑋 + 𝛼Δ𝑋 − 𝐺 (𝑋))

𝛼
,

𝐺 (𝑋;𝑋 + 𝛼𝑋) − 𝐺 (𝑋)

= (

tr (𝑄
1
𝑋 (𝑇) + 𝛼Δ𝑋 (𝑇))

...
tr (𝑄
𝑞
𝑋(𝑇) + 𝛼Δ𝑋 (𝑇))

) −(

tr (𝑄
1
𝑋(𝑇))

...
tr (𝑄
𝑞
𝑋 (𝑇))

) ,

𝛿𝐺 (𝑋, Δ𝑋) = lim
𝛼→0

𝐺 (𝑋;𝑋 + Δ𝑋) − 𝐺 (𝑋)

𝛼

= (

tr (𝑄
1
Δ𝑋)

...
tr (𝑄
𝑞
Δ𝑋)

) .

(25)

Lemma 9. Constraint (19) satisfies the regular condition; that
is,

𝛿𝐻 (𝑋,𝐾; Δ𝑋, Δ𝐾) , 𝛿𝐺 (𝑋; Δ𝑋 (𝑇)) (26)

are onto mapping when

Δ𝑋 × Δ𝐾 ∈ 𝐶
𝑛×𝑛

× 𝐶
𝑚×𝑛

. (27)

Proof. The proof of the onto mapping for 𝛿𝐻(𝑋,𝐾; Δ𝑋, Δ𝐾)
has been given in [8]; we only need to prove that 𝛿𝐺(𝑋; Δ𝑋)
is a onto mapping when Δ𝑋 varies. For a given 𝑌 ∈ 𝑅𝑞, the
following equation has a solution:

(

tr (𝑄
1
Δ𝑋)

...
tr (𝑄
𝑞
Δ𝑋)

) = 𝑌. (28)

Because the coefficient matrix for quadratic terminal state
constraints is full row rank (Assumption𝐻

1
), equation

(

𝑚
11
⋅ ⋅ ⋅ 𝑚

1𝑛

...
...

...
𝑚
𝑞1
⋅ ⋅ ⋅ 𝑚

𝑞𝑛

)(

Δ𝑋
11

...
Δ𝑋
𝑞𝑛

) = 𝑌, (29)

exists a solution, which finishes the proof.

Definition 10 (the well-posedness). The LQ optimal control
problem is to minimize the cost functional 𝐽(𝑥

0
, 𝑢) over

𝑢 ∈ 𝑈ad. Define the optimal value function as 𝑉(𝑥
0
) =

inf
𝑢∈𝑈ad

𝐽(𝑥
0
, 𝑢). The LQ problem is called well posed if

−∞ < 𝑉 (𝑥
0
) < +∞, ∀𝑥

0
∈ 𝑅
𝑛

. (30)

A well-posed problem is called attainable (with respect to 𝑥
0
)

if there is a 𝑢
∗
(⋅) control that achieves 𝑉(𝑥

0
).

Theorem 11 (Lagrange multiplier theorem). If the continu-
ously Frechet differentiable real functional𝑓 defined on Banach
space has a local extremum under the constraint 𝐻(𝑥) = 0 at
the regular point𝑥

0
,𝐻(𝑥) is amapping from space𝑋 to Banach

space𝑍, and then there exists an element 𝑧∗
0
∈ 𝑍
∗ such that the

Lagrangian functional

𝐿 (𝑥) = 𝑓 (𝑥) + 𝑧
∗

0
𝐻(𝑥) (31)

is stationary at 𝑥
0
; that is,

𝛿𝑓 (𝑥
0
; ℎ) + 𝑧

∗

0
𝛿𝐻 (𝑥

0
; ℎ) = 0 (32)

for each ℎ ∈ 𝑋.

Theorem 12 (Riesz representation theorem). Let 𝑓(𝑥) be a
bounded linear functional on 𝑋 = 𝐶[𝑎, 𝑏], and then there is a
bounded variation function ] on [𝑎, 𝑏] such that, for all 𝑥 ∈ 𝑋,

𝑓 (𝑥) = ∫

𝑏

𝑎

𝑥 (𝑡) 𝑑] (𝑡) , (33)

where the norm of 𝑓(𝑥) is the total variation on [𝑎, 𝑏]. Con-
versely, every function of bounded variation on [𝑎, 𝑏] defines a
bounded linear function on𝑋 in this way.

3. Main Results

Lemma 13 (see [9]). If 𝛼(𝑡) is continuous in [𝑡
1
, 𝑡
2
] and

∫
𝑡
2

𝑡
1

𝛼(𝑡)𝑑ℎ(𝑡) = 0 for every ℎ ∈ 𝐷[𝑡
1
, 𝑡
2
] (set of all continuously

differentiable functions on [𝑡
1
, 𝑡
2
])with ℎ(𝑡

1
) = ℎ(𝑡

2
) = 0, then

𝛼(𝑡) = 0 on [𝑡
1
, 𝑡
2
].

Lemma 14 (see [9]). If 𝛼(𝑡) is continuous in [𝑡
1
, 𝑡
2
] and

∫
𝑡
2

𝑡
1

𝛼(𝑡)𝑑ℎ(𝑡) = 0 for every ℎ ∈ 𝐷[𝑡
1
, 𝑡
2
] with ℎ(𝑡

1
) = ℎ(𝑡

2
) =

0, then 𝛼(𝑡) = 𝑐 in [𝑡
1
, 𝑡
2
], where 𝑐 is a constant.

Lemma 15 (see [9]). If 𝛼(𝑡) and 𝛽(𝑡) are continuous in [𝑡
1
, 𝑡
2
]

and

∫

𝑡
2

𝑡
1

[𝛼 (𝑡) ℎ (𝑡) + 𝛽 (𝑡) ℎ
󸀠

(𝑡)] 𝑑𝑡 = 0 (34)

for every ℎ ∈ 𝐷[𝑡
1
, 𝑡
2
] with ℎ(𝑡

1
) = ℎ(𝑡

2
) = 0, then 𝛽 is differ-

entiable and ̇𝛽(𝑡) = 𝛼(𝑡) in [𝑡
1
, 𝑡
2
].

We make use of NBV𝑛×𝑛[0, 𝑇] (nonnegative bounded
variation functional on [0, 𝑇]) to express the matrix space
with the element in [0, 𝑇]. The space is a bounded variation
right continuous function that function takes value 0 at the
point at the point 𝑡 = 0. Based on the Lagragian theorem and
the Riesz representation theorem, we obtained a necessary
condition for Problem 1.

3.1. Necessary Condition

Theorem 16 (necessary condition for indefinite stochastic LQ
with quadratic constraints). Suppose the set defined by the
terminal state constraint is not empty and the optimal control
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Problem 6 exists an optimal feedback control matrix 𝐾
∗
; then

there must exist a symmetric matrix 𝑃 ∈ 𝑁𝐵𝑉𝑛×𝑛[0, 𝑇] and a
vector 𝜆 ∈ 𝑅𝑞 such that for all 𝑡 ∈ [0, 𝑇], 𝑃 and 𝜆 satisfy the
following equations:

−𝑃̇ = (𝑄 + 𝐾
󸀠

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
)

+ (𝐴 + 𝐵𝐾
∗
)
󸀠

𝑃 + (𝐶 + 𝐷𝐾
∗
)
󸀠

𝑃 (𝐶 + 𝐷𝐾
∗
) ,

(35)

𝑃 (𝑇) =

𝑞

∑

𝑖=1

𝜆
𝑖
𝑄
𝑖
, (36)

𝐾
󸀠

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
󸀠

𝑃𝐷 = 0. (37)

Proof. From Remark 7, we know that 𝐾
∗
is the solution of

deterministic optimal control Problem 6; take 𝑋 and 𝐾 in
Problem 6 as the variables. Suppose that (𝑋

∗
, 𝐾
∗
) is the

optimal solution for Problem 6; according to Lemmas 14 and
15, Problem 6 satisfies the conditions of Lagrange multiplier
theorem, and then there exists a symmetric matrix 𝑃 ∈

NBV𝑛×𝑛[0, 𝑇] and 𝜆 ∈ 𝑅𝑞 such that

tr∫
𝑇

0

(𝑄 + 𝐾
∗
𝑅𝐾
∗
) Δ𝑋𝑑𝑡

+ tr∫
𝑇

0

(Δ𝑋 − ∫

𝑡

0

(𝐴 + 𝐵𝐾
∗
) Δ𝑋 + Δ𝑋 (𝐴 + 𝐵𝐾

∗
)

+ (𝐶 + 𝐷𝐾
∗
) Δ𝑋(𝐶 + 𝐷𝐾

∗
)
󸀠

𝑑𝑡) 𝑑𝑃

+ 𝜆
󸀠

(

tr (𝑄
1
𝑋)

...
tr (𝑄
𝑞
𝑋)

) = 0,

(38)

tr∫
𝑇

0

(Δ𝐾
󸀠

𝑅𝐾
∗
𝑋
∗
+ 𝐾
󸀠

∗
𝑅Δ𝐾𝑋

∗
) 𝑑𝑡

− tr∫
𝑇

0

(∫

𝑡

0

𝐵Δ𝐾𝑋
∗
+ 𝑋
∗
Δ𝐾
󸀠

𝐵
󸀠

+ (𝐶 + 𝐷𝐾
∗
)𝑋
∗

× (𝐷Δ𝐾
󸀠

) + (𝐷Δ𝐾)𝑋
∗
(𝐶 + 𝐷𝐾

∗
) 𝑑𝑡) 𝑑𝑃

= 0.

(39)

The second parts of (38) and (39) are from Riesz representa-
tion theorem. In general, we take that𝑃(𝑇) = 0, and then (38)
becomes

tr∫
𝑇

0

(𝑄 + 𝐾
󸀠

∗
𝑅𝐾
∗
) Δ𝑋𝑑𝑡 + tr∫

𝑇

0

Δ𝑋𝑑𝑃

+ tr∫
𝑇

0

(𝑃 [ (𝐴 + 𝐵𝐾
∗
) Δ𝑋 + Δ𝑋 (𝐴 + 𝐵𝐾

∗
)

+ (𝐶 + 𝐷𝐾
∗
) Δ𝑋(𝐶 + 𝐷𝐾

∗
)
󸀠

])

+ tr (𝜆
1
𝑄
1
𝑋 + ⋅ ⋅ ⋅ + 𝜆

𝑞
𝑄
𝑞
𝑋) = 0.

(40)

It is obvious that there is no jump in interval [0, 𝑇) for
function 𝑃(𝑡), otherwise we can choose Δ𝑋 that makes
tr∫𝑇
0

Δ𝑋𝑑𝑃 be far more than the other parts in the equality.
But 𝑃(𝑡) has jump at the point 𝑡 = 𝑇, and the height is

(𝜆
1
, . . . , 𝜆

𝑞
)(

tr (𝑄
1
𝑋 (𝑇))

...
tr (𝑄
𝑞
𝑋 (𝑇))

) . (41)

Because the previous equalities (38) and (39) hold for all con-
tinuous functions Δ𝑋, for specified function which has con-
tinuous derivative and Δ𝑋(𝑇) = 0, all the previous equalities
also hold, and then

∫

𝑇

0

Δ𝑋𝑑𝑃 = 𝑃Δ𝑋|
𝑇

0
− ∫

𝑇

0

𝑃Δ𝑋̇𝑑𝑡

= 𝑃 (𝑇) Δ𝑋 (𝑇) − 𝑃 (0) Δ𝑋 (0) − ∫

𝑇

0

𝑃Δ𝑋̇𝑑𝑡

= 𝑃 (𝑇) Δ𝑋 (𝑇) − ∫

𝑇

0

𝑃Δ𝑋̇𝑑𝑡.

(42)

Because 𝑃(𝑇) = 0, then

∫

𝑇

0

Δ𝑋𝑑𝑃 = −∫

𝑇

0

𝑃Δ𝑋̇𝑑𝑡, (43)

and we have the following from (38)

tr∫
𝑇

0

(𝑄 + 𝐾
󸀠

∗
𝑅𝐾
∗
) Δ𝑋 + 𝑃 (𝐴 + 𝐵𝐾

∗
) Δ𝑋 + (𝐴 + 𝐵𝐾

∗
)
󸀠

× 𝑃Δ𝑋 + (𝐶 + 𝐷𝐾
∗
)
󸀠

𝑃 (𝐶 + 𝐷𝐾
∗
) Δ𝑋 − 𝑃Δ𝑋̇𝑑𝑡 = 0.

(44)

According to Lemma 15, we have

−𝑃̇ = (𝑄 + 𝐾
󸀠

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
)

+ (𝐴 + 𝐵𝐾
󸀠

∗
) 𝑃 + (𝐶 + 𝐷𝐾

∗
)
󸀠

𝑃 (𝐶 + 𝐷𝐾
∗
) .

(45)

We take the integral by parts of the second part of (39), and
then

tr∫
𝑇

0

[𝐾
󸀠

∗
𝑅 (Δ𝐾)𝑋

∗
+ 𝑃𝐵 (Δ𝐾𝑋

∗
)

+(𝐶 + 𝐷𝐾
∗
)
󸀠

𝑃𝐷 (Δ𝐾𝑋
∗
)] 𝑑𝑡 = 0.

(46)

Based on Lemma 13, we have

𝐾
󸀠

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
󸀠

𝑃𝐷 = 0. (47)

Change the endpoint conditions 𝑃(𝑇) = 0 with 𝑃(𝑇) =
𝜆
1
𝑄
1
+ ⋅ ⋅ ⋅ + 𝜆

𝑞
𝑄
𝑞
; that is, (36) holds.

Remark 17. The necessary condition in Theorem 16 (35)–
(37) and the constraints (14)–(16) in Problem 6 have 2𝑛 one
order differential equations, 2𝑛 bound conditions, 𝑞 terminal
state conditions, and 𝑚 algebra equations, and then we can
determine𝑋

∗
(𝑡), 𝐾

∗
(𝑡), 𝑃(𝑡), and 𝜆, respectively.
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Remark 18. The result inTheorem 12 is the same as that in [8]
except for the terminal conditions.

3.2. Sufficient Condition. Wehave pointed out that the neces-
sary conditions (14)–(16) and (35)–(37) are not sufficient for
the existence and the uniqueness of the solution in Problem
6. In order to guarantee the uniqueness of 𝜆 and 𝑃(𝑡), the
conditions must be strengthened to

𝑃 + 𝐷
󸀠

𝑃𝐷 > 0; (48)

that is, the matrix 𝑅 + 𝐷󸀠𝑃𝐷must be positive.

Theorem 19 (sufficient condition for stochastic LQ problem
with quadratic constraints). If (14)–(16), (35)–(37), and (39)
exist solutions𝑋

∗
(𝑡),𝐾
∗
(𝑡),𝑃(𝑡) , and 𝜆, then Problem 6 is well

posed and the optimal feedback control is

𝑢
∗
(𝑡) = −(𝑅 + 𝐷

󸀠

𝑃𝐷)
−1

(𝐵
󸀠

𝑃 + 𝐷
󸀠

𝑃𝐶) 𝑥 (𝑡) ; (49)

the optimal cost value is

𝑉 (𝑥
0
) = inf

𝑢(⋅)∈𝑈ad
𝐽 (𝑥
0
, 𝑢 (𝑡)) = 𝑥(0)

󸀠

𝑃 (0) 𝑥 (0) − 𝜆
󸀠

𝐿.

(50)

Proof. Suppose that 𝐾
∗
(𝑡), 𝑃(𝑡), and 𝜆 are the solutions that

satisfy (14)–(16), (35)–(37), and (48), and from (37), we have

𝐾
∗
(𝑡) = −(𝑅 + 𝐷

󸀠

𝑃𝐷)
−1

(𝐵
󸀠

𝑃 + 𝐷
󸀠

𝑃𝐶) . (51)

Substitute𝐾
∗
(𝑡) in (35), and then

𝑃̇ + 𝑃𝐴 + 𝐴
󸀠

𝑃 + 𝐶
󸀠

𝑃𝐶 + 𝑄

− (𝑃𝐵 + 𝐶
󸀠

𝑃𝐷) (𝑅 + 𝐷
󸀠

𝑃𝐷)
−1

(𝑃𝐵 + 𝐶
󸀠

𝑃𝐷) = 0,

𝐽 (𝑥
0
, 𝑢 (⋅))

= 𝐸∫

𝑇

0

[𝑥
󸀠

𝑄𝑥 + 𝑢
󸀠

𝑅𝑢] 𝑑𝑡 + 𝑑 (𝑥
󸀠

𝑃𝑥) − 𝑑 (𝑥
󸀠

𝑃𝑥) .

(52)

Apply Itô’s formula again, so

= 𝑥
󸀠

(0) 𝑃 (0) 𝑥 (0) − 𝐸 (𝑥
󸀠

(𝑇) 𝑃 (𝑇) 𝑥 (𝑇))

+ 𝐸∫

𝑇

0

𝑥
󸀠

(𝑃̇ + 𝑃𝐴 + 𝐴
󸀠

𝑃 + 𝐶
󸀠

𝑃𝐶 + 𝑄)𝑥

+ 2𝑢
󸀠

(𝐵
󸀠

𝑃 + 𝐷
󸀠

𝑃𝐶) 𝑥 + 𝑢
󸀠

(𝑅 + 𝐷
󸀠

𝑃𝐷) 𝑢𝑑𝑡

= 𝑥
󸀠

(0) 𝑃 (0) 𝑥 (0) − 𝜆
󸀠

(

tr (𝑄
1
𝑋(𝑇))

...
tr (𝑄
𝑞
𝑋 (𝑇))

)

+ 𝐸∫

𝑇

0

𝑥
󸀠

[𝑃̇ + 𝑃𝐴 + 𝐴
󸀠

𝑃 + 𝐶
󸀠

𝑃𝐶 + 𝑄 − (𝑃𝐵 + 𝐶
󸀠

𝑃𝐷)

× (𝑅 + 𝐷
󸀠

𝑃𝐷)
−1

(𝑃𝐵 + 𝐶
󸀠

𝑃𝐷)
󸀠

] 𝑥𝑑𝑡

+ 𝐸∫

𝑇

0

[𝑢 + (𝑅 + 𝐷
󸀠

𝑃𝐷)
−1

(𝐵
󸀠

𝑃 + 𝐷
󸀠

𝑃𝐶) 𝑥]

󸀠

× (𝑅 + 𝐷
󸀠

𝑃𝐷) [𝑢 + (𝑅 + 𝐷
󸀠

𝑃𝐷)
−1

× (𝐵
󸀠

𝑃 + 𝐷
󸀠

𝑃𝐶) 𝑥] 𝑑𝑡

= 𝑥
󸀠

(0) 𝑃 (0) 𝑥 (0) − 𝜆
󸀠

(

tr (𝑄
1
𝑋 (𝑇))

...
tr (𝑄
𝑞
𝑋(𝑇))

)

+ 𝐸∫

𝑇

0

[𝑢 + (𝑅 + 𝐷
󸀠

𝑃𝐷)
−1

(𝐵
󸀠

𝑃 + 𝐷
󸀠

𝑃𝐶) 𝑥]

󸀠

× (𝑅 + 𝐷
󸀠

𝑃𝐷) [𝑢 + (𝑅 + 𝐷
󸀠

𝑃𝐷)
−1

× (𝐵
󸀠

𝑃 + 𝐷
󸀠

𝑃𝐶) 𝑥] 𝑑𝑡,

(53)

where the last equality is from (52). It is obvious that linear
feedback control (49) has the minimum cost 𝐽(𝑥

0
, 𝑢(𝑡)), and

the cost value is

𝑥
󸀠

(0) 𝑃 (0) 𝑥 (0) − 𝜆
󸀠

(

tr (𝑄
1
𝑋 (𝑇))

⋅ ⋅ ⋅

tr (𝑄
𝑞
𝑋(𝑇))

) . (54)

3.3. Necessary Conditions for Stochastic LQ with Mixed Ter-
minal State Constraint. We study the following indefinite
stochastic LQ control problem with mixed constraints.

Problem 20. Consider

inf {𝐽 (𝑥
0
, 𝑢) := 𝐸∫

𝑇

0

𝑥
󸀠

𝑄𝑥 + 𝑢
󸀠

𝑅𝑢𝑑𝑡} (55)

s.t.

𝑑𝑥 (𝑡) = (𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡))

+ (𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)) 𝑑𝜔 (𝑡) ,

𝑥 (0) = 𝑥
0
,

𝑚
1,1
𝑥
1,1
(𝑇) + 𝑚

1,2
𝑥
1,2
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

1,𝑛
𝑥
1,𝑛
(𝑇) = 𝜉

1
,

𝑚
2,1
𝑥
2,1
(𝑇) + 𝑚

2,2
𝑥
2,2
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

2,𝑛
𝑥
2,𝑛
(𝑇) = 𝜉

2
,

⋅ ⋅ ⋅

𝑚
𝑙,1
𝑥
𝑙,1
(𝑇) + 𝑚

𝑙,2
𝑥
𝑙,2
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

𝑙,𝑛
𝑥
𝑙,𝑛
(𝑇) = 𝜉

𝑙
,

𝑚
𝑙+1,1
𝑥
𝑙+1,1
2 (𝑇) + 𝑚

𝑙+1,2
𝑥
2

𝑙+1,2
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

𝑙+1,𝑛
𝑥
2

𝑙+1,𝑛
(𝑇)

= 𝜉
𝑙+1
,

𝑚
𝑙+2,1
𝑥
𝑙+2,1
2 (𝑇) + 𝑚

𝑙+2,2
𝑥
2

𝑙+2,2
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

𝑙+2,𝑛
𝑥
2

𝑙+2,𝑛
(𝑇)

= 𝜉
𝑙+2
,
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⋅ ⋅ ⋅

𝑚
𝑙+𝑞,1
𝑥
𝑙+𝑞,1
2 (𝑇) + 𝑚

𝑙+𝑞,2
𝑥
2

𝑙+𝑞,2
(𝑇) + ⋅ ⋅ ⋅ + 𝑚

𝑙+𝑞,𝑛
𝑥
2

𝑙+𝑞,𝑛
(𝑇)

= 𝜉
𝑙+𝑞
.

(56)

Using the same method as the above, the stochastic LQ con-
trol problem with linear and quadratic terminal constraints
can be transformed into the following Problem 21.

Problem 21. Consider

inf 𝐽 (𝑋,𝐾) = tr∫
𝑇

0

[𝑄𝑋 (𝑡) + 𝐾
󸀠

(𝑡) 𝑅𝐾 (𝑡)𝑋 (𝑡)] 𝑑𝑡 (57)

s.t.

𝑋̇ = (𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
󸀠

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
󸀠

,

𝑋 (0) = 𝑋
0
= 𝑥
0
𝑥
0
,

𝑀
𝑙
𝑋 (𝑇)𝑀

󸀠

𝑙
= 𝑁,

tr (𝑄
1
𝑋 (𝑇)) = 𝑙

1
,

tr (𝑄
2
𝑋 (𝑇)) = 𝑙

2
,

⋅ ⋅ ⋅

tr (𝑄
𝑞
𝑋 (𝑇)) = 𝑙

𝑞
.

(58)

Theorem 22 (necessary and sufficient conditions for stochas-
tic LQ problem with mixed constraint). Suppose that the
terminal constraint set defined by the linear and quadratic state
constraints is not empty and the optimal control Problem 6
exists the optimal feedback control matrix𝐾

∗
. Then there must

exist a symmetric matrix 𝑃 ∈ 𝑁𝐵𝑉𝑛×𝑛[0, 𝑇] and a vector 𝜆 ∈
𝑅
𝑞, 𝜇 ∈ 𝑅𝑙×𝑙, for all 𝑡 ∈ [0, 𝑇], satisfing the following equalities:

−𝑃̇ = (𝑄 + 𝐾
󸀠

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
) + (𝐴 + 𝐵𝐾

∗
)
󸀠

𝑃

+ (𝐶 + 𝐷𝐾
∗
)
󸀠

𝑃 (𝐶 + 𝐷𝐾
∗
) ,

𝑃 (𝑇) =

𝑞

∑

𝑖=1

𝜆
𝑖
𝑄
𝑖
+𝑀
󸀠

𝑙
𝜇𝑀
𝑙
,

𝐾
󸀠

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
󸀠

𝑃𝐷 = 0.

(59)

If (14)–(16), (35)–(37), and (39) exist solutions 𝑋
∗
(𝑡),

𝐾
∗
(𝑡), 𝑃(𝑡), and 𝜆, then Problem 6 is well posed and the opti-

mal feedback control is

𝑢
∗
(𝑡) = −(𝑅 + 𝐷

󸀠

𝑃𝐷)
−1

(𝐵
󸀠

𝑃 + 𝐷
󸀠

𝑃𝐶) 𝑥 (𝑡) . (60)

The optimal value is

𝑉 (𝑥
0
) = inf

𝑢(⋅)∈𝑈ad
𝐽 (𝑥
0
, 𝑢 (𝑡))

= 𝑥
󸀠

0
𝑃 (0) 𝑥 (0) − 𝜆

󸀠

𝐿
𝑞
− tr (𝜇𝑁) .

(61)

Theproof of the theorem is the same as that ofTheorem 16
except for the terminal condition.

4. Numerical Examples

Let 𝐴 = −1, 𝐵 = 1, 𝐶 = −2, 𝐷 = 0, 𝑀
𝑞
= 1, 𝐿 = 𝑒2, 𝑋

0
= 2,

𝑄 = 0, 𝑅 = 1, and 𝑇 = 1 in Problem 6, according to (35)–(37)
inTheorem 16 and the constraint (14)–(16) in Problem 1, and
then

−𝑃̇ = 𝐾
2

∗
+ 2𝑃 (𝐾

∗
− 1) + 4𝑃,

𝑃 (1) = 𝜆,

𝐾
∗
+ 𝑃 = 0,

𝑋
∗
= 2 (𝐾

∗
− 1)𝑋

∗
+ 4𝑋
∗
,

𝑋 (0) = 2,

𝑋
2

∗
(1) = 𝑒

2

.

(62)

Solve the system equations, and then

𝑋
∗
(𝑡) =

𝑒

𝑒 − 1
+
𝑒 − 2

𝑒 − 1
𝑒
2𝑡

, 𝐾
∗
(𝑡) =

2

(2/𝑒 − 1) 𝑒
2𝑡 − 1

,

𝑃 (𝑡) =
2

1 − (2/𝑒 − 1) 𝑒
2𝑡
, 𝜆 =

2

𝑒2 − 2𝑒 + 1
.

(63)

The optimal control for Problem 6 is 𝑢
∗
(𝑡) = 2𝑒(𝑒−2)𝑒

2𝑡

/((2−

𝑒)(𝑒 − 1)𝑒
2𝑡

− 𝑒(𝑒 − 1)), and the optimal index cost value is

𝐽 (𝑥
0
, 𝑢
∗
(𝑡)) =

2𝑒
2

− 4𝑒

(𝑒 − 1)
2
. (64)

5. Conclusion

This paper studied a class of indefinite stochastic LQ control
problemswith quadratic terminal state constraints andmixed
terminal state constraints. By means of the Lagrange multi-
plier theorem and Riesz representation theorem, this paper
presented a necessary condition for indefinite stochastic LQ
control problems with quadratic terminal state constraints
and mixed terminal state constraints. The result shows that
the necessary condition for quadratic terminal constraints
is the same as for the linear terminal state constraints that
is presented in [8] except for the terminal condition. This
coincides with the reality. A sufficient condition also was
presented for the existence and uniqueness of the optimal
linear feedback control. Numerical example verified themain
theorem in this paper.
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