
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 732834, 4 pages
http://dx.doi.org/10.1155/2013/732834

Research Article
The Preconditioned SOR Iterative Method for
Positive Definite Matrices

Yu-Qin Bai, Yan-Ping Xiao, and Wei-Yuan Ma

School of Computer Science and Information Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, China

Correspondence should be addressed to Yu-Qin Bai; yqbai2006@163.com

Received 28 May 2013; Revised 20 August 2013; Accepted 20 August 2013

Academic Editor: Zhongxiao Jia

Copyright © 2013 Yu-Qin Bai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present several iterations for preconditioners introduced by Tarazaga and Cuellar (2009), and study the convergence of the
method for solving a linear system whose coefficient matrix is positive definite matrices, and we also find that they complete very
well with the SOR iteration, which is shown through numerical examples.

1. Introduction

For solving the large sparse linear system

𝐴𝑥 = 𝑏, 𝑥, 𝑏 ∈ 𝑅
𝑛

, (1)

where 𝐴 ∈ 𝑅𝑛×𝑛 is a square nonsingular positive definite
matrix, an iteration method is often considered. For any
splitting, 𝐴 = 𝑀 − 𝑁 with det(𝑀) ̸= 0, the basic iterative
method for system (1) is

𝑥
𝑘+1

= 𝑀
−1

𝑁𝑥
𝑘

+𝑀
−1

𝑏, 𝑘 = 0, 1, . . . . (2)

To improve the convergence rate of the basic iterative
method, transform the original systems (1) into the precon-
ditioner form

𝑃𝐴𝑥 = 𝑃𝑏, (3)

where 𝑃 is called the preconditioner or a preconditioning
matrix. several preconditioned iterative methods have been
proposed [1–6]. Since 𝑃 is nonsingular, (1) and (3) have
the same solutions. We are considering here systems with
a unique solution. It is well known that system (3) can be
transformed by an iteration as follows:

𝑥
𝑘+1

= (𝐼 − 𝑃𝐴) 𝑥
𝑘

+ 𝑃𝑏. (4)

This iteration is called the Richardson iteration for precon-
ditioning system (3). In this paper, we consider the iteration
methods by the following form:

𝑥
𝑘+1

= 𝑇𝑥
𝑘

+ 𝑓, (5)

where 𝑇 represents the iteration matrix.

Lemma 1 (see [7, 8]). For the iteration formula (5) to produce
a sequence converging to (𝐼 − 𝐵)−1𝑏, for any starting point 𝑥0,
it is necessary and sufficient that the spectral radius of 𝐵 be less
than one.

We will use the following notations. A matrix 𝐴 = (𝑎
𝑖𝑗
) is

called a row diagonally dominant if

∑

𝑖 ̸= 𝑗


𝑎
𝑖𝑗


<
𝑎𝑖𝑖
 for 𝑖 = 1, . . . , 𝑛, (6)

and column diagonally dominant if

∑

𝑖 ̸= 𝑗


𝑎
𝑖𝑗


<

𝑎
𝑗𝑗


for 𝑗 = 1, . . . , 𝑛. (7)

The Frobenius inner product of 𝐴 and 𝐵 is defined by

⟨𝐴, 𝐵⟩
𝐹
= trace (𝐴𝑇𝐵) , (8)

where trace (𝐴) denotes the trace of amatrix𝐴, and𝐴𝑇 stands
for the transpose of 𝐴, and the spectral radius of a matrix 𝐴
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is denoted by 𝜌(𝐴). Let 𝐴 be decomposed as 𝐴 = 𝐷 − 𝐿 − 𝑈
in which𝐷 is the diagonal of𝐴, 𝐿 is the strict lower part of𝐴,
and 𝑈 is the strict upper part of 𝐴.

Using the Frobenius norm, the preconditioningmatrix in
[6] is given by

𝑃
𝑓
=

(
(
(
(
(

(

𝑎
11

𝑎1


2

2

𝑎
22

𝑎2


2

2

d
𝑎
𝑛𝑛

𝑎𝑛


2

2

)
)
)
)
)

)

, (9)

where 𝑎
𝑖
stands for the 𝑖th row of the matrix 𝐴.

The second preconditioning matrix is 𝑃
1
= 𝛼𝐼 and 𝛼

is computed to minimize the infinity norm of the iteration
matrix.

The small gap for a matrix 𝐴 is defined by

sg (𝐴) = min
𝑗=1,...,𝑛

(

𝑎
𝑗𝑗


−

𝑛

∑

𝑖 ̸=𝑗


𝑎
𝑖𝑗


) . (10)

Obviously, sg(𝐴) is positive for diagonally dominant matri-
ces. we can also suppose the diagonal entries are positive, else,
it is true by multiplying the corresponding rows with −1.

Then, the preconditioner obtained by minimizing the
infinity norm is given by

𝛼 =
2

‖𝐴‖
∞
+ sg (𝐴)

. (11)

We can easily find that the diagonal preconditioner is con-
stant diagonal. Using the idea in [9], we can obtain the
iterations associated with the preconditioners 𝑃

𝑓
and 𝑃

∞
as

follows.
Solving the iteration

𝑥
𝑘+1

= (𝐼 − 𝜔𝑃
𝑓
𝐴)𝑥
𝑘

+ 𝜔𝑃
𝑓
𝑏, (12)

the matrix 𝐴 is decomposed by 𝐴 = 𝐷 + 𝐿 + 𝑈 and 𝜔𝑃
𝑓
𝐴 is

moved to the left-hand side, we obtain

(𝐼 + 𝜔𝑃
𝑓
𝐿) 𝑥
𝑘+1

= (𝐼 − 𝜔𝑃
𝑓
(𝐷 + 𝑈)) 𝑥

𝑘

+ 𝜔𝑃
𝑓
𝑏. (13)

Because 𝐼 + 𝜔𝑃
𝑓
𝐿 is inverse, we can easily get

𝑥
𝑘+1

= (𝐼 − (𝑃
−1

𝑓
+ 𝜔𝐿)

−1

𝐴)𝑥
𝑘

+ (𝑃
−1

𝑓
+ 𝜔𝐿)

−1

𝜔𝑏 (14)

or

𝑥
𝑘+1

= (𝐼 − 𝜔(𝐼 + 𝜔𝑃
𝑓
𝐿)
−1

𝑃
𝑓
𝐴)𝑥
𝑘

+ (𝐼 + 𝜔𝑃
𝑓
𝐿)
−1

𝜔𝑃
𝑓
𝑏.

(15)

This iteration is considered as sequential Frobenius norm
iteration.

Similarly, we obtained and built the infinity norm itera-
tion associated with 𝑃

∞
as follows:

𝑥
𝑘+1

= (𝐼 − (𝑃
−1

∞
+ 𝜔𝐿)

−1

𝐴)𝑥
𝑘

+ (𝑃
−1

∞
+ 𝜔𝐿)

−1

𝜔𝑏 (16)

or

𝑥
𝑘+1

= (𝐼 − 𝜔(𝐼 + 𝜔𝑃
∞
𝐿)
−1

𝑃
∞
𝐴)𝑥
𝑘

+ (𝐼 + 𝜔𝑃
∞
𝐿)
−1

𝜔𝑃
∞
𝑏.

(17)

Now, we have set two preconditioned SOR iterative methods
which use 𝑃

𝑓
and 𝑃

∞
as a preconditioner.

In this paper, first in Section 2, we discuss the conver-
gence of the preconditioned SOR iterative method which
uses 𝑃

𝑓
and 𝑃

∞
as a preconditioner. In Section 3, we provide

numerical experiments to illustrate the theoretical results
obtained in Section 2, and we find if we choose the set of
parameters; then our method has smaller spectral radii of
the iterative matrices than the SOR method, which is shown
through numerical examples.

2. Main Results

2.1. The Sequential Frobenius Norm Iteration

Theorem 2. Suppose 1 ≤ 𝜔 < 2 and𝐴 is positive definite; then
the iteration

𝑥
𝑘+1

= (𝐼 − (𝑃
−1

𝑓
+ 𝜔𝐿)

−1

𝐴)𝑥
𝑘

+ (𝑃
−1

𝑓
+ 𝜔𝐿)

−1

𝜔𝑏, (18)

converges for any starting point 𝑥0.

Proof. By simple calculation, the iteration matrix can be
written as

(𝑃
−1

𝑓
+ 𝜔𝐿)

−1

(𝑃
−1

𝑓
− (𝐷 + 𝑈) + (𝜔 − 1) 𝐿) , (19)

let 𝜆 be corresponding eigenvalue; then

(𝑃
−1

𝑓
− (𝐷 + 𝑈) + (𝜔 − 1) 𝐿) 𝑥 = 𝜆 (𝑃

−1

𝑓
+ 𝜔𝐿) 𝑥 (20)

or

(𝑃
−1

𝑓
− 𝐴 + 𝐿 + (𝜔 − 1) 𝐿) 𝑥 = 𝜆 (𝑃

−1

𝑓
+ 𝜔𝐿) 𝑥, (21)

we get that

−𝐴𝑥 = (𝜆 − 1) (𝑃
−1

𝑓
+ 𝜔𝐿) 𝑥, (22)

then

−𝑥
∗

𝐴𝑥 = (𝜆 − 1) 𝑥
∗

(𝑃
−1

𝑓
+ 𝜔𝐿) 𝑥. (23)

The following proof is similar in [9], so we omit it; then the
theorem is obtained.

2.2. The Sequential Infinity Norm Iteration

Theorem 3. Suppose 1 ≤ 𝜔 < 2 and 𝐴 is positive definite. If
every diagonal entry of 𝐴 satisfies

‖𝐴‖
∞
+ sg (𝐴) > 𝜔𝑎

𝑖𝑖
, (24)

then the iteration

𝑥
𝑘+1

= (𝐼 − (𝑃
−1

∞
+ 𝜔𝐿)

−1

𝐴)𝑥
𝑘

+ (𝑃
−1

∞
+ 𝜔𝐿)

−1

𝜔𝑏, (25)

converges for any starting point 𝑥0.
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Figure 1: Spectral radius for random PSD matrices 𝐴𝑇𝐴 + diag(rand(𝑛, 1)) of size 𝑛 = 50 (a), 𝐴𝑇𝐴 + 10 ∗ diag(rand(𝑛, 1)) of size 𝑛 = 50 (b)
and 𝐴𝑇𝐴 + 30 ∗ diag(rand(𝑛, 1)) (c) of size 𝑛 = 150.

Proof. The proof of this theorem is similar to the previous
one. We notice the diagonal entries of the matrix 2𝑃−1

∞
− 𝜔𝐷

are

‖𝐴‖
∞
+ sg (𝐴) − 𝜔𝑎

𝑖𝑖
, (26)

by the assumption ‖𝐴‖
∞
+ sg (𝐴) > 𝜔𝑎

𝑖𝑖
, so the diagonal

entries of matrix 2𝑃−1
∞
−𝜔𝐷 are positive which completes the

proof.

Now, we modify the infinity norm preconditioner for
diagonally dominant matrices. Since the eigenvalues of a
positive definite matrix 𝐴 lie in the interval (0, 𝜔‖𝐴‖

∞
+ 𝜖)

for arbitrarily small number 𝜖, the preconditioning matrix 𝑃
is defined by

�̂�
∞
=
2

𝜔‖𝐴‖
∞
+ 𝜖
, (27)

for any 𝜖 > 0. Especially, 𝜖 = 0 if 𝜌(𝐴) < ‖𝐴‖
∞
.

Theorem 4. For any 𝜖 > 0, if 𝐴 is positive definite; then the
iteration

𝑥
𝑘+1

= (𝐼 − (𝑃
−1

∞
+ 𝜔L)

−1

𝐴)𝑥
𝑘

+ (𝑃
−1

∞
+ 𝜔L)

−1

𝜔𝑏, (28)

converges for any starting point 𝑥0, where 1 ≤ 𝜔 < 2.

Proof. The proof is similar to Theorem 2, we notice the con-
dition of

2𝑃
−1

∞
− 𝜔𝐷 + 𝜔𝐴 ≻ 𝐴 (29)

or 2𝑃−1
∞
− 𝜔𝐷 ≻ 0, and the diagonal entries are

2 (
𝜔‖𝐴‖
∞
+ 𝜖

2
) − 𝜔𝑎

𝑖𝑖
= 𝜔‖𝐴‖

∞
+ 𝜖 − 𝜔𝑎

𝑖𝑖
> 0. (30)

Hence, we obtain this result.

Next, we will obtain a general result for previously
positive definite preconditioners.
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Figure 2: Spectral radius of random PSD matrices 𝐴𝑇𝐴 + 10 ∗
diag(rand(𝑛, 1)) with nearly half of the entries of 𝐴 negative and
𝑛 = 50.

Theorem 5. Suppose positive definite matrices of 𝐴 and 𝑃 sat-
isfy

2𝑃
−1

− 𝜔𝐷 ≻ 0, (31)

where𝐷 is the diagonal of 𝐴 and 1 ≤ 𝜔 < 2; then the iteration

𝑥
𝑘+1

= (𝐼 − (𝑃
−1

+ 𝜔𝐿)
−1

𝐴)𝑥
𝑘

+ (𝑃
−1

+ 𝜔𝐿)
−1

𝜔𝑏, (32)

converges for any starting point 𝑥0.

Remark 6. In Theorem 5, the matrix 𝑃 just satisfies the
condition needed in the proof of Theorem 2; hence, this
theorem is a general result for previous preconditioners.

3. Numerical Experiments

In this section, we provide numerical experiments to illus-
trate the theoretical results obtained in Section 2. All numeri-
cal experiments are carried out usingMATLAB 7.1.The spec-
tral radii of various iteration matrices are shown in Figures
1 and 2. For simplicity of comparison, suppose that all of
𝜔 = 1.9. Let (𝑜) denote the spectral radii of the SOR iteration
matrices, let (⋅) denote the spectral radii of the Frobenius
norm preconditioner iteration matrices, let (∗) denote the
spectral radii of the infinity norm preconditioner, and let (∇)
denote the spectral radii of the infinity-𝜖 preconditioner with
𝜖 = 0.1.

Remark 7. The previous numerical experiments indicate that
the spectral radii of iterative matrices with three proposed
preconditioners achieve significant improvement over the
spectral radii of SOR iterative matrices.

Remark 8. As the proportion of negative to positive entries
is increased, the spectral radius of random positive PSD
matrices 𝐴𝑇𝐴 + 10 ∗ diag(rand(𝑛, 1)) with half of the entries
of𝐴 negative with infinity norm preconditioner (∗) becomes

larger than 1. But both of infinity norm preconditioners have
faster convergence rates than SOR method.

Remark 9. Here, wemaintain both of infinity norm iterations
because there are cases when 𝑃

∞
= (2/(‖𝐴‖

∞
+ sg(𝐴)))(∗)

works better than �̂�
∞
= (2/(𝜔‖𝐴‖

∞
+ 𝜖))(∇).
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