Research Article

Lyapunov-Type Inequality for a Class of Discrete Systems with Antiperiodic Boundary Conditions

Xin-Ge Liu and Mei-Lan Tang
School of Mathematics and Statistics, Central South University, Changsha 410083, China
Correspondence should be addressed to Mei-Lan Tang; csutmlang@163.com

Received 23 June 2013; Accepted 16 August 2013
Academic Editor: XianHua Tang
Copyright © 2013 X.-G. Liu and M.-L. Tang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A class of higher-order 3-dimensional discrete systems with antiperiodic boundary conditions is investigated. Based on the existence of the positive solution of linear homogeneous system, several new Lyapunov-type inequalities are established.

1. Introduction

Lyapunov-type inequalities have been proved to be very useful in oscillation theory, disconjugacy, eigenvalue problems, and numerous other applications in the theory of differential and difference equations [1-3]. In recent years, there are many literatures which improved and extended the classical Lyapunov inequality including continuous and discrete cases [46]. Guseinov and Kaymakçalan [7] considered the following discrete Hamiltonian system:

$$
\begin{gather*}
\Delta x(t)=a(t) x(t+1)+b(t) u(t) \\
\Delta u(t)=-c(t) x(t+1)-a(t) u(t) \tag{1}
\end{gather*}
$$

where Δ denotes the forward difference operator, with the coefficients $a(t)$ satisfying the condition $1-a(t) \neq 0, t \in$ Z. They [7] presented some Lyapunov-type inequalities for discrete linear scalar Hamiltonian systems when the coefficient $c(t)$ is not necessarily nonnegative value. Applying these inequalities, they [7] obtained some stability criteria for discrete Hamiltonian systems.

For simplicity, the following assumptions are introduced:

$$
\begin{equation*}
1-\alpha(n)>0, \quad \forall n \in Z \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& x(a)=0, \quad \text { or } \quad x(a) x(a+1)<0, \\
& x(b)=0, \quad \text { or } \quad x(b) x(b+1)<0, \tag{3}\\
& \max _{a \leq n \leq b}|x(n)|>0, \quad a, b \in Z
\end{align*}
$$

Recently, Zhang and Tang [8] also considered the discrete linear Hamiltonian system:

$$
\begin{gather*}
\Delta x(n)=\alpha(n) x(n+1)+\beta(n) y(n) \tag{4}\\
\Delta y(n)=-\gamma(n) x(n+1)-\alpha(n) y(n)
\end{gather*}
$$

where $\alpha(n), \beta(n)$, and $\gamma(n)$ are real-valued functions defined on Z and Δ denotes the forward difference operator defined by $\Delta x(n)=x(n+1)-x(n), \beta(n) \geq 0$. They [8] obtained the following interesting Lyapunov-type inequality.

Theorem A. Suppose that (2) holds, and let $a, b \in Z$ with $a<$ $b-1$. Assume (4) has a real solution $(x(n), y(n))$ such that (3) holds. Then one has the following inequality:

$$
\begin{equation*}
\sum_{n=a}^{b-1}|\alpha(n)|+\left[\sum_{n=a}^{b} \beta(n) \sum_{n=a}^{b-1} \gamma^{+}(n)\right]^{1 / 2} \geq 2 \tag{5}
\end{equation*}
$$

In 2012, the following assumptions are introduced in [9].
(H1) $r_{1}(n), r_{2}(n), f_{1}(n)$, and $f_{2}(n)$ are real-valued functions, and $r_{1}(n)>0$, and $r_{2}(n)>0$.
(H2) $1<p_{1}, p_{2}<\infty, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}>0$ satisfy $\alpha_{1} / p_{1}+$ $\alpha_{2} / p_{2}=1$ and $\beta_{1} / p_{1}+\beta_{2} / p_{2}=1$.
(H3) $r_{i}(n)$ and $f_{i}(n)$ are real-valued functions and $r_{i}(n)>0$ for $i=1,2, \ldots, m$. Furthermore, $1<p_{i}<\infty$ and $\alpha_{i}(n)>0$ satisfy $\sum_{i=1}^{m}\left(\alpha_{i} / p_{i}\right)=1$.

Under the boundary value conditions, Zhang and Tang [9] considered the following quasilinear difference systems with hypotheses (H1) and (H2):

$$
\begin{align*}
& -\Delta\left(r_{1}(n)|\Delta u(n)|^{p_{1}-2} \Delta u(n)\right) \\
& \quad=f_{1}(n)|u(n+1)|^{\alpha_{1}-2}|v(n+1)|^{\alpha_{2}} u(n+1), \tag{6}\\
& -\Delta\left(r_{2}(n)|\Delta v(n)|^{p_{1}-2} \Delta v(n)\right) \\
& \quad=f_{2}(n)|u(n+1)|^{\beta_{1}}|v(n+1)|^{\beta_{2}-2} v(n+1),
\end{align*}
$$

and the quasilinear difference systems involving the (p_{1}, p_{2}, \ldots, p_{m})-Laplacian:

$$
\vdots
$$

$$
\begin{align*}
& -\Delta\left(r_{1}(n)\left|\Delta u_{1}(n)\right|^{p_{1}-2} \Delta u_{1}(n)\right) \\
& =f_{1}(n)\left|u_{1}(n+1)\right|^{\alpha_{1}-2} \\
& \quad \times\left|u_{2}(n+1)\right|^{\alpha_{2}} \cdots\left|u_{m}(n+1)\right|^{\alpha_{m}} u_{1}(n+1) \\
& \\
& -\Delta\left(r_{2}(n)\left|\Delta u_{2}(n)\right|^{p_{2}-2} \Delta u_{2}(n)\right) \\
& = \\
& \quad f_{2}(n)\left|u_{1}(n+1)\right|^{\alpha_{1}} \\
& \quad \times\left|u_{2}(n+1)\right|^{\alpha_{2}-2} \cdots\left|u_{m}(n+1)\right|^{\alpha_{m}} u_{2}(n+1) \\
& -\Delta\left(r_{m}(n)\left|\Delta u_{m}(n)\right|^{p_{m}-2} \Delta u_{m}(n)\right) \tag{7}\\
& \quad=f_{m}(n)\left|u_{1}(n+1)\right|^{\alpha_{1}} \\
& \quad \times\left|u_{2}(n+1)\right|^{\alpha_{2}} \cdots\left|u_{m}(n+1)\right|^{\alpha_{m}-2} u_{m}(n+1) .
\end{align*}
$$

Some Lyapunov-type inequalities are established in [9].
Recently, antiperiodic problems have received considerable attention as antiperiodic boundary conditions appear in numerous situations [10-12]. For the sake of convenience, in this paper, one will only consider the following higher-order 3dimensional discrete system:

$$
\begin{align*}
& \left|\Delta^{m} x(n)\right|^{p_{1}-2} \Delta^{m} x(n) \\
& \quad+f_{1}(n) \psi_{q_{1,1}}(x(n)) \psi_{q_{1,2}}(y(n)) \psi_{q_{1,3}}(z(n))=0 \\
& \left|\Delta^{m} y(n)\right|^{p_{2}-2} \Delta^{m} y(n) \tag{8}\\
& \quad+f_{2}(n) \psi_{q_{2,1}}(x(n)) \psi_{q_{2,2}}(y(n)) \psi_{q_{2,3}}(z(n))=0 \\
& \left|\Delta^{m} z(n)\right|^{p_{3}-2} \Delta^{m} z(n) \\
& \quad+f_{3}(n) \psi_{q_{3,1}}(x(n)) \psi_{q_{3,2}}(y(n)) \psi q_{3,3}(z(n))=0
\end{align*}
$$

where $1<p_{k}<+\infty$ for $k=1,2,3 ; q_{i, j}$ are nonnegative constants for $i, j=1,2,3 ; \psi_{q}(u)=|u|^{q-1} u$ for $q>0$ with $\psi_{0}(u)=\operatorname{sign}(u)= \pm 1$ for $q=0$.

Obviously, the results obtained in [9] required that $\alpha_{1} / p_{1}+$ $\alpha_{2} / p_{2}=1$ and $\beta_{1} / p_{1}+\beta_{2} / p_{2}=1$ or $\sum_{i=1}^{m}\left(\alpha_{i} / p_{i}\right)=1$. The
order of the quasilinear difference systems considered in [9] is less than 3. In this paper, one will remove the unreasonably severe constraints $\alpha_{1} / p_{1}+\alpha_{2} / p_{2}=1$ and $\beta_{1} / p_{1}+\beta_{2} / p_{2}=1$ or $\sum_{i=1}^{m}\left(\alpha_{i} / p_{i}\right)=1$ in [9]. one will introduce the antiperiodic boundary conditions instead of boundary conditions in [9]. In this paper, one will establish some new Lyapunov-type inequalities for higher-order 3-dimensional discrete system (8) by a method different from that in [9] under the following antiperiodic boundary conditions:

$$
\begin{align*}
\Delta^{i} x(a)+\Delta^{i} x(b)= & \Delta^{i} y(a)+\Delta^{i} y(b) \\
= & \Delta^{i} z(a)+\Delta^{i} z(b)=0 \tag{9}\\
& \quad i=0,1, \ldots, m-1
\end{align*}
$$

The similar results for higher-order m-dimensional discrete system are easy to obtain.

Throughout this paper, $p_{i}>1$ and p_{i}^{\prime} is a conjugate exponent; that is, $1 / p_{i}+1 / p_{i}^{\prime}=1, i=1,2,3$.

2. Main Results

Theorem 1. Let $a<b$, and assume that there exists a positive solution (e_{1}, e_{2}, e_{3}) of the following linear homogeneous system:

$$
\begin{align*}
& \left(q_{1,1}+1-p_{1}\right) e_{1}+q_{2,1} e_{2}+q_{3,1} e_{3}=0 \\
& q_{1,2} e_{1}+\left(q_{2,2}+1-p_{2}\right) e_{2}+q_{3,2} e_{3}=0 \tag{10}\\
& q_{1,3} e_{1}+q_{2,3} e_{2}+\left(q_{3,3}+1-p_{3}\right) e_{3}=0
\end{align*}
$$

If $(x(n), y(n), z(n))$ is a nonzero solution of (8) satisfying the antiperiodic boundary conditions (9), then

$$
\begin{align*}
& \prod_{k=1}^{3}\left(\sum_{n=a}^{b-1}\left|f_{k}(n)\right|^{p_{k} /\left(p_{k}-1\right)}\right)^{\left(1-1 / p_{k}\right) e_{k}} \tag{11}\\
& \quad \geq(b-a)^{\sum_{i=1}^{3} \sum_{j=1}^{3}\left(q_{i, j} / p_{j}\right) e_{i}}\left(\frac{2}{b-a}\right)^{m \sum_{i=1}^{3}\left(p_{i}-1\right) e_{i}} .
\end{align*}
$$

Proof. Let $(x(n), y(n)$, and $z(n))$ be a nonzero solution of (8). By the antiperiodic boundary conditions (9), $x(a)+x(b)=0$. For $n \in Z[a, b]$, we have

$$
\begin{align*}
x(n) & =\frac{1}{2} \sum_{k=a}^{n-1}[x(k+1)-x(k)]-\frac{1}{2} \sum_{k=n}^{b-1}[x(k+1)-x(k)] \\
& =\frac{1}{2} \sum_{k=a}^{n-1} \Delta x(k)-\frac{1}{2} \sum_{k=n}^{b-1} \Delta x(k) . \tag{12}
\end{align*}
$$

Using discrete Hölder inequality gives

$$
\begin{align*}
|x(n)| & \leq \frac{1}{2} \sum_{k=a}^{b-1}|\Delta x(k)| \\
& \leq \frac{1}{2}(b-a)^{1 / p_{1}^{\prime}}\left(\sum_{k=a}^{b-1}|\Delta x(k)|^{p_{1}}\right)^{1 / p_{1}} . \tag{13}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left|\Delta^{i} x(n)\right| & \leq \frac{1}{2} \sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right| \\
& \leq \frac{1}{2}(b-a)^{1 / p_{1}^{\prime}}\left(\sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right|^{p_{1}}\right)^{1 / p_{1}} . \tag{14}
\end{align*}
$$

Then

$$
\begin{equation*}
\left|\Delta^{i} x(n)\right|^{p_{1}} \leq\left(\frac{1}{2}\right)^{p_{1}}(b-a)^{p_{1} / p_{1}^{\prime}}\left(\sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right|^{p_{1}}\right) . \tag{15}
\end{equation*}
$$

Summing (15) from a to $b-1$, we have

$$
\begin{align*}
& \sum_{n=a}^{b-1}\left|\Delta^{i} x(n)\right|^{p_{1}} \\
& \quad \leq(b-a)\left(\frac{1}{2}\right)^{p_{1}}(b-a) \frac{p_{1}}{p_{1}^{\prime}}\left(\sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right|^{p_{1}}\right) \tag{16}
\end{align*}
$$

that is,

$$
\begin{equation*}
\left(\sum_{k=a}^{b-1}\left|\Delta^{i} x(k)\right|^{p_{1}}\right)^{1 / p_{1}} \leq \frac{b-a}{2}\left(\sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right|^{p_{1}}\right)^{1 / p_{1}} \tag{17}
\end{equation*}
$$

So

$$
\begin{align*}
|x(n)| & \leq \frac{1}{2}(b-a)^{1 / p_{1}^{\prime}}\left(\sum_{k=a}^{b-1}|\Delta x(k)|^{p_{1}}\right)^{1 / p_{1}} \\
& \leq \frac{1}{2}(b-a)^{1 / p_{1}^{\prime}}\left(\frac{b-a}{2}\right)^{m-1}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p_{1}}\right)^{1 / p_{1}} . \tag{18}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& |y(n)| \leq \frac{1}{2}(b-a)^{1 / p_{2}^{\prime}}\left(\frac{b-a}{2}\right)^{m-1}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} y(k)\right|^{p_{2}}\right)^{1 / p_{2}} \tag{19}\\
& |z(n)| \leq \frac{1}{2}(b-a)^{1 / p_{3}^{\prime}}\left(\frac{b-a}{2}\right)^{m-1}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} z(k)\right|^{p_{3}}\right)^{1 / p_{3}} . \tag{20}
\end{align*}
$$

Multiplying the first equation of (8) by $\Delta^{m} x(n)$ and using inequalities (18)-(20), we have

$$
\begin{aligned}
& \left|\Delta^{m} x(n)\right|^{p_{1}} \\
& =\left|-f_{1}(n) \psi_{q_{1,1}}(x(n)) \psi_{q_{1,2}}(y(n)) \psi_{q_{1,3}}(z(n)) \Delta^{m} x(n)\right| \\
& =\left|f_{1}(n)\right||x(n)|^{q_{1,1}}|y(n)|^{q_{1,2}}|z(n)|^{q_{1,3}}\left|\Delta^{m} x(n)\right| \\
& \leq \\
& \quad\left[\frac{1}{2}(b-a)^{1 / p_{1}^{\prime}}\left(\frac{b-a}{2}\right)^{m-1}\right. \\
& \left.\quad \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p_{1}}\right)^{1 / p_{1}}\right]^{q_{1,1}} \\
& \quad \times\left[\frac{1}{2}(b-a)^{1 / p_{2}^{\prime}}\left(\frac{b-a}{2}\right)^{m-1}\right. \\
& \left.\quad \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} y(k)\right|^{p_{2}}\right)^{1 / p_{2}}\right]^{q_{1,2}} \\
& \quad \times\left[\frac{1}{2}(b-a)^{1 / p_{3}^{\prime}}\left(\frac{b-a}{2}\right)^{m-1}\right.
\end{aligned}
$$

$$
\left.\times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} z(k)\right|^{p_{3}}\right)^{1 / p_{3}}\right]^{q_{1,3}}
$$

$$
\begin{equation*}
\times\left|f_{1}(n)\right|\left|\Delta^{m} x(n)\right| \tag{21}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \sum_{n=a}^{b-1}\left|\Delta^{m} x(n)\right|^{p_{1}} \\
& \quad \leq(b-a)^{-\sum_{j=1}^{3}\left(q_{1, j} / p_{j}\right)}\left(\frac{b-a}{2}\right)^{m\left(\sum_{j=1}^{3} q_{1, j}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p_{1}}\right)^{q_{1,1} / p_{1}}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} y(k)\right|^{p_{2}}\right)^{q_{1,2} / p_{2}} \\
& \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} z(k)\right|^{p_{3}}\right)^{q_{1,3} / p_{3}} \sum_{n=a}^{b-1}\left|f_{1}(n)\right|\left|\Delta^{m} x(n)\right| \\
\leq & (b-a)^{-\sum_{j=1}^{3}\left(q_{1, j} / p_{j}\right)}\left(\frac{b-a}{2}\right)^{m\left(\sum_{j=1}^{3} q_{1, j}\right)} \\
& \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p_{1}}\right)^{q_{1,1} / p_{1}}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} y(k)\right|^{p_{2}}\right)^{q_{1,2} / p_{2}}
\end{aligned}
$$

$$
\begin{align*}
& \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} z(k)\right|^{p_{3}}\right)^{q_{1,3} / p_{3}}\left(\sum_{n=a}^{b-1}\left|f_{1}(n)\right|^{p_{1}^{\prime}}\right)^{1 / p_{1}^{\prime}} \\
& \times\left(\sum_{n=a}^{b-1}\left|\Delta^{m} x(n)\right|^{p_{1}}\right)^{1 / p_{1}} \tag{22}
\end{align*}
$$

So

$$
\begin{align*}
& \left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p_{1}}\right)^{\left(q_{1,1}+1\right) / p_{1}-1}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} y(k)\right|^{p_{2}}\right)^{q_{1,2} / p_{2}} \\
& \quad \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} z(k)\right|^{p_{3}}\right)^{q_{1,3} / p_{3}}\left(\sum_{n=a}^{b-1}\left|f_{1}(n)\right|^{p_{1}^{\prime}}\right)^{1 / p_{1}^{\prime}} \tag{23}\\
& \quad \geq(b-a)^{\sum_{j=1}^{3}\left(q_{1, j} / p_{j}\right)}\left(\frac{2}{b-a}\right)^{m\left(\sum_{j=1}^{3} q_{1, j}\right)}
\end{align*}
$$

For the second and third equations of (8), we also have

$$
\begin{align*}
& \left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p_{1}}\right)^{q_{2,1} / p_{1}}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} y(k)\right|^{p_{2}}\right)^{\left(q_{2,2}+1\right) / p_{2}-1} \\
& \quad \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} z(k)\right|^{p_{3}}\right)^{q_{2,3} / p_{3}}\left(\sum_{n=a}^{b-1}\left|f_{2}(n)\right|^{p_{2}^{\prime}}\right)^{1 / p_{2}^{\prime}} \tag{24}\\
& \quad \geq(b-a)^{\sum_{j=1}^{3}\left(q_{2, j} / p_{j}\right)}\left(\frac{2}{b-a}\right)^{m\left(\sum_{j=1}^{3} q_{2, j}\right)}, \\
& \left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p_{1}}\right)^{q_{3,1} / p_{1}}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} y(k)\right|^{p_{2}}\right)^{q_{3,2} / p_{2}} \\
& \quad \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} z(k)\right|^{p_{3}}\right)^{\left(q_{3,3}+1\right) / p_{3}-1}\left(\sum_{n=a}^{b-1}\left|f_{3}(n)\right|^{p_{3}^{\prime}}\right)^{1 / p_{3}^{\prime}} \\
& \geq(b-a)^{\sum_{j=1}^{3}\left(q_{3, j} / p_{j}\right)}\left(\frac{2}{b-a}\right)^{m\left(\sum_{j=1}^{3} q_{3, j}\right)} . \tag{25}
\end{align*}
$$

Raising both sides of inequalities (23)-(25) to the powers e_{1}, e_{2}, and e_{3}, respectively, and multiplying the resulting inequalities give

$$
\begin{aligned}
& \left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p_{1}}\right)^{\left(\sum_{i=1}^{3} q_{i, 1} e_{i}\right) / p_{1}+\left(1-p_{1}\right) e_{1} / p_{1}} \\
& \quad \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} y(k)\right|^{p_{2}}\right)^{\left(\sum_{i=1}^{3} q_{i, 2} e_{i}\right) / p_{2}+\left(1-p_{2}\right) e_{2} / p_{2}}
\end{aligned}
$$

$$
\begin{align*}
& \times\left(\sum_{k=a}^{b-1}\left|\Delta^{m} z(k)\right|^{p_{3}}\right)^{\left(\sum_{i=1}^{3} q_{i, 3} e_{i}\right) / p_{3}+\left(1-p_{3}\right) e_{3} / p_{3}} \\
& \times \prod_{k=1}^{3}\left(\sum_{n=a}^{b-1}\left|f_{k}(n)\right|^{p_{k}^{\prime}}\right)^{e_{k} / p_{k}^{\prime}} \\
\geq & (b-a)^{\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\left(q_{i, j} / p_{j}\right) e_{i}\right)}\left(\frac{2}{b-a}\right)^{m\left(\sum_{i=1}^{3} \sum_{j=1}^{3} q_{i j} e_{i}\right)} \tag{26}
\end{align*}
$$

Since $\left(e_{1}, e_{2}, e_{3}\right)$ is a positive solution of the linear homogeneous system (10), then

$$
\begin{align*}
& \prod_{k=1}^{3}\left(\sum_{n=a}^{b-1}\left|f_{k}(n)\right|^{p_{k}^{\prime}}\right)^{e_{k} / p_{k}^{\prime}} \tag{27}\\
& \quad \geq(b-a)^{\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\left(q_{i, j} / p_{j}\right) e_{i}\right)}\left(\frac{2}{b-a}\right)^{m\left(\sum_{i=1}^{3} \sum_{j=1}^{3} q_{i, j} e_{i}\right)}
\end{align*}
$$

Summing both sides of linear homogeneous system (10) yields

$$
\begin{equation*}
\sum_{i=1}^{3} \sum_{j=1}^{3} q_{i, j} e_{i}=\sum_{i=1}^{3}\left(p_{i}-1\right) e_{i} . \tag{28}
\end{equation*}
$$

Noting that $1 / p_{k}+1 / p_{k}^{\prime}=1, k=1,2,3$, we have

$$
\begin{align*}
& \prod_{k=1}^{3}\left(\sum_{n=a}^{b-1}\left|f_{k}(n)\right|^{p_{k} /\left(p_{k}-1\right)}\right)^{\left(1-1 / p_{k}\right) e_{k}} \tag{29}\\
& \quad \geq(b-a)^{\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\left(q_{i, j} / p_{j}\right) e_{i}\right)}\left(\frac{2}{b-a}\right)^{m \sum_{i=1}^{3}\left(\left(p_{i}-1\right) e_{i}\right)}
\end{align*}
$$

Corollary 2. Let $a<b$ and assume

$$
\begin{align*}
& \left(q_{1,1}+1-p_{1}\right)+q_{2,1}+q_{3,1}=0 \\
& q_{1,2}+\left(q_{2,2}+1-p_{2}\right)+q_{3,2}=0 \tag{30}\\
& q_{1,3}+q_{2,3}+\left(q_{3,3}+1-p_{3}\right)=0
\end{align*}
$$

If $(x(n), y(n), z(n))$ is a nonzero solution of (8) satisfying the antiperiodic boundary conditions (9), then

$$
\begin{align*}
& \prod_{k=1}^{3}\left(\sum_{n=a}^{b-1}\left|f_{k}(n)\right|^{p_{k} /\left(p_{k}-1\right)}\right)^{\left(1-1 / p_{k}\right)} \tag{31}\\
& \quad \geq(b-a)^{\sum_{i=1}^{3} \sum_{j=1}^{3}\left(q_{i, j} / p_{j}\right)}\left(\frac{2}{b-a}\right)^{m \sum_{i=1}^{3}\left(p_{i}-1\right)}
\end{align*}
$$

Acknowledgments

This work is partly supported by NSFC under Granst nos. 61271355 and 61070190, the ZNDXQYYJJH under Grant no. 2010QZZD015, and NFSS under Grant no. 10BJL020.

References

[1] D. Çakmak, "Lyapunov-type integral inequalities for certain higher order differential equations," Applied Mathematics and Computation, vol. 216, no. 2, pp. 368-373, 2010.
[2] D. Çakmak and A. Tiryaki, "On Lyapunov-type inequality for quasilinear systems," Applied Mathematics and Computation, vol. 216, no. 12, pp. 3584-3591, 2010.
[3] N. Parhi and S. Panigrahi, "Liapunov-type inequality for higher order differential equations," Mathematica Slovaca, vol. 52, no. 1, pp. 31-46, 2002.
[4] X. Yang, "On Liapunov-type inequality for certain higher-order differential equations," Applied Mathematics and Computation, vol. 134, no. 2-3, pp. 307-317, 2003.
[5] X. Yang and K. Lo, "Lyapunov-type inequality for a class of even-order differential equations," Applied Mathematics and Computation, vol. 215, no. 11, pp. 3884-3890, 2010.
[6] X. Yang, Y. Kim, and K. Lo, "Lyapunov-type inequality for a class of odd-order differential equations," Journal of Computational and Applied Mathematics, vol. 234, no. 10, pp. 2962-2968, 2010.
[7] G. SH. Guseinov and B. Kaymakçalan, "Lyapunov inequalities for discrete linear Hamiltonian systems," Computers \& Mathematics with Applications, vol. 45, no. 6-9, pp. 1399-1416, 2003.
[8] Q.-M. Zhang and X. H. Tang, "Lyapunov inequalities and stability for discrete linear Hamiltonian systems," Applied Mathematics and Computation, vol. 218, no. 2, pp. 574-582, 2011.
[9] Q.-M. Zhang and X. H. Tang, "Lyapunov-type inequalities for the quasilinear difference systems," Discrete Dynamics in Nature and Society, vol. 2012, Article ID 860598, 16 pages, 2012.
[10] Y. Yin, "Anti-periodic solutions of some semilinear parabolic boundary value problems," Dynamics of Continuous, Discrete and Impulsive Systems, vol. 1, no. 2, pp. 283-297, 1995.
[11] Z. Luo, J. Shen, and J. J. Nieto, "Antiperiodic boundary value problem for first-order impulsive ordinary differential equations," Computers \& Mathematics with Applications, vol. 49, no. 2-3, pp. 253-261, 2005.
[12] Y. Wang, "Lyapunov-type inequalities for certain higher order differential equations with anti-periodic boundary conditions," Applied Mathematics Letters, vol. 25, no. 12, pp. 2375-2380, 2012.

