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By using the bifurcation method of dynamical systems and the method of phase portraits analysis, we consider a two-component
Degasperis-Procesi equation:𝑚

𝑡
= −3𝑚𝑢

𝑥
−𝑚
𝑥
𝑢+𝑘𝜌𝜌

𝑥
, 𝜌
𝑡
= −𝜌
𝑥
𝑢+2𝜌𝑢

𝑥
, the existence of the peakon, solitary wave and smooth

periodic wave is proved, and exact parametric representations of above travelling wave solutions are obtained in different parameter
regions.

1. Introduction

Based on the deformation of bi-Hamiltonian structure of the
hydrodynamic type, Chen et al. [1] obtained a two-compo-
nent Camassa-Holm equation:

𝑚
𝑡
= −2𝑚𝑢

𝑥
− 𝑚
𝑥
𝑢 + 𝑒𝜌𝜌

𝑥
,

𝜌
𝑡
= −𝜌
𝑥
𝑢 − 𝜌𝑢

𝑥
,

(1)

where 𝑚 = 𝑢 − 𝑢
𝑥𝑥

and 𝑒 = ±1. This system is integrable in
the sense that it has Lax pair and it is a generalization form of
the Camassa-Holm equation [2]. A good fact is that it has the
peakon and multikink solutions [3].

A two-component generalization of the Degasperis-
Procesi equation [4, 5] is read as follows:

𝑚
𝑡
= −3𝑚𝑢

𝑥
− 𝑚
𝑥
𝑢 + 𝑘𝜌𝜌

𝑥
,

𝜌
𝑡
= −𝜌
𝑥
𝑢 + 2𝜌𝑢

𝑥
,

(2)

where 𝑚 = 𝑢 − 𝑢
𝑥𝑥
, 𝑘 is a real parameter. When 𝜌 = 0, (2) is

reduced to the Degasperis-Procesi equation [6]. Jin and Guo
[4] analyze some aspects of blowup mechanism, traveling
wave solutions and the persistence properties for (2).The self-
similar solutions of (2) have been obtained by yuen [5].

In the present paper, we will investigate the bifurcation
set of (2) using the bifurcation theory and the method of
phase portraits analysis [7–9] and obtain some exact peakon,
solitary wave and smooth periodic wave solutions.

Let 𝜉 = 𝑥 − 𝑐𝑡, where 𝑐 ̸= 0 is the wave speed. By using the
travelling wave transformation

𝑢 (𝑥, 𝑡) = 𝜙 (𝜉) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = 𝜌 (𝜉) ,

(3)

we reduce (2) to the following ordinary differential equations:

(𝜙 +

1

3

𝑐) 𝜙

+ 3𝜙

𝜙

− 4𝜙𝜙


−

13

3

𝑐𝜙

+ 𝑘𝜌𝜌


= 0,

2𝜌𝜙

− (𝜙 +

1

3

𝑐) 𝜌

= 0,

(4)

where "" is the derivative with respect to 𝜉.
Suppose that

𝜌 = (𝜙 +

4

3

𝑐)

2

+ 𝑎
1
(𝜙 +

4

3

𝑐) + 𝑎
0
, (5)

where 𝑎
1
, 𝑎
0
are constants to be determined later.
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Substituting (5) into the second equation of (4), we have

(2𝑐 + 𝑎
1
) 𝜙𝜙

+ (

8

3

𝑐
2
+

7

3

𝑎
1
𝑐 + 2𝑎

0
)𝜙

= 0. (6)

Integrating (6) once with respect to 𝜉 and setting the
integral constant to zero yield

1

2

(2𝑐 + 𝑎
1
) 𝜙
2
+ (

8

3

𝑐
2
+

7

3

𝑎
1
𝑐 + 2𝑎

0
)𝜙 = 0. (7)

From (7), we obtain

2𝑐 + 𝑎
1
= 0,

8

3

𝑐
2
+

7

3

𝑎
1
𝑐 + 2𝑎

0
= 0. (8)

Solving (8), we find the following set of solutions:

𝑎
1
= −2𝑐, 𝑎

0
= 𝑐
2
. (9)

Substituting (9) into (5), we have

𝜌 = (𝜙 +

1

3

𝑐)

2

. (10)

Substituting (10) into the first equation of (4), integrating
once with respect to 𝜉, and setting the integral constant to
(1/162)𝑘𝑐

4
− (32/9)𝑐

2 yield

(𝜙 +

1

3

𝑐) 𝜙

− (𝜙 +

4

3

𝑐)

× (−

1

2

𝑘𝜙
3
+ (2 −

1

3

𝑘𝑐
2
)𝜙 +

10

27

𝑘𝑐
3
+

5

3

𝑐) +(𝜙

)

2

= 0.

(11)

Letting 𝑦 = 𝑑𝜙/𝑑𝜉, we get the following planar system:

𝑑𝜙

𝑑𝜉

= 𝑦,

𝑑𝑦

𝑑𝜉

= ((𝜙 +

4

3

𝑐)

× (−

1

2

𝑘𝜙
3
+ (2 −

1

3

𝑘𝑐
2
)𝜙 +

10

27

𝑘𝑐
3
+

5

3

𝑐) − 𝑦
2
)

× (𝜙 +

1

3

𝑐)

−1

.

(12)

System (12) is a two-parameter planar dynamical system
depending on the parameter set (𝑐, 𝑘). Since the phase orbits
defined by the vector field of system (12) determine all
travelling wave solutions of (11), we should investigate the
bifurcations of phase portraits of system (12) in (𝜙, 𝑦)-phase
plane as the parameters 𝑐, 𝑘 are changed.

Clearly, on such straight line 𝜙 = −(1/3)𝑐 in the phase
plane (𝜙, 𝑦), system (12) is discontinuous. Such system is
called a singular travelling wave system by one of authors in
[10].

Definition 1 (see [7, 10]). Suppose that 𝜙(𝜉) is a solution of
system (12) for 𝜉 ∈ (−∞,∞). (i) 𝜙(𝜉) is called peakon
solution if 𝜙(𝜉) is smooth locally on either side of 𝜉

0
and

lim
𝜉→𝜉0−0

𝜙(𝜉) = lim
𝜉→𝜉0+0

𝜙(𝜉) = 𝑎 and 𝑎 ̸= 0, 𝑎 ̸= ± ∞.
(ii) 𝜙(𝜉) is called a solitary wave solution if lim

𝜉→+∞
𝜙(𝜉) =

lim
𝜉→−∞

𝜙(𝜉). Usually, a peakon solution of (2) corresponds
to two heteroclinic orbits of system (12) and a solitary wave
solution of (2) corresponds to a homoclinic orbit of system
(12). Similarly, a periodic orbit of system (12) corresponds to
a smooth periodic wave solution of (2).

Thus, to investigate peakons, solitary waves and smooth
periodic waves of (2), we should find all heteroclinic, homo-
clinic, and periodic orbits of system (12) depending on the
parameter space of this system.

The rest of this paper is organized as follows. In Section 2,
we discuss the bifurcations of phase portraits of system
(12), where explicit parametric conditions will be derived. In
Section 3, we give some exact parametric representations of
peakon, solitary wave and smooth periodic wave solutions of
(2). A short conclusion will be given in Section 4.

2. Bifurcation Sets and Phase Portraits of
System (12)

Using the transformation 𝑑𝜉 = (𝜙 + (1/3)𝑐)𝑑𝜏, it carries (12)
into the Hamiltonian system

𝑑𝜙

𝑑𝜏

= (𝜙 +

1

3

𝑐) 𝑦,

𝑑𝑦

𝑑𝜏

= (𝜙 +

4

3

𝑐)

× (−

1

2

𝑘𝜙
3
+ (2 −

1

3

𝑘𝑐
2
)𝜙 +

10

27

𝑘𝑐
3
+

5

3

𝑐) − 𝑦
2
.

(13)

Since both systems (12) and (13) have the same first
integral

(3𝜙 + 𝑐)
2

𝑦
2

+

1

54

𝜙 (81𝑘𝜙
5
+ 162𝑘𝑐𝜙

4
+ 9 (15𝑘𝑐

2
− 52) 𝜙

3

+ 60𝑐 (𝑘𝑐
2
− 27) 𝜙

2
− 2𝑐
2
(114𝑘𝑐

2
+ 891) 𝜙

−80𝑐
3
(2𝑘𝑐
2
+ 9)) = ℎ,

(14)

then two systems above have the same topological phase
portraits except for the line 𝜙 = −(1/3)𝑐. Therefore, we can
obtain the bifurcation phase portraits of system (12) from that
of system (13). We consider the equilibrium points and their
properties for system (13) as follows.

When 𝑘 = 0, it is easy to see that system (13) has two
equilibrium points (−(4/3)𝑐, 0), (−(5/6)𝑐, 0) on 𝜙-axis and
two equilibrium points (−(1/3)𝑐, −𝑐), (−(1/3)𝑐, 𝑐) on the line
𝜙 = −(1/3)𝑐.
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Figure 1: The graphics of the function 𝑓(𝜙) when 𝑐 ̸= 0. (a) 𝑐 < 0, 𝑘 < 0. (b) 𝑐 < 0, 0 < 𝑘 < 𝑘
∗
. (c) 𝑐 < 0, 𝑘 = 𝑘

∗
. (d): 𝑐 < 0, 𝑘 > 𝑘

∗
. (e) 𝑐 > 0,

𝑘 < 0. (f) 𝑐 > 0, 0 < 𝑘 < 𝑘
∗
. (g) 𝑐 > 0, 𝑘 = 𝑘

∗
. (h) 𝑐 > 0, 𝑘 > 𝑘

∗
.

When 𝑘 ̸= 0, let

𝑓 (𝜙) = 𝜙
3
−

2

𝑘

(2 −

1

3

𝑘𝑐
2
)𝜙 −

10

3𝑘

(

2

9

𝑘𝑐
2
+ 1) . (15)

Obviously, (−(4/3)𝑐, 0) is an equilibrium point of system (13)
and (𝜙, 0) is a equilibrium point of system (13) if and only if
𝑓(𝜙) = 0 when 𝜙 ̸= − (4/3)𝑐. Denoting that Ω = (5725 +
1575√14)

1/3, 𝑘
∗
= (Ω
2
−14Ω−125)/6Ω𝑐

2, we draw the graph
of 𝑓 = 𝑓(𝜙) for given 𝑐 ̸= 0 as Figure 1.

From Figure 1 and paying attention to that (−(4/3)𝑐, 0)
is always an equilibrium point of system (13), we have the
following.

(i) If 𝑘 < 0, then system (13) has two equilibrium points
on 𝜙-axis.

(ii) If 0 < 𝑘 < 𝑘
∗
, then system (13) has four equilibrium

points on 𝜙-axis.
(iii) If 𝑘 = 𝑘

∗
, then system (13) has three equilibrium

points on 𝜙-axis.
(iv) If 𝑘 > 𝑘

∗
, then system (13) has two equilibrium points

on 𝜙-axis.

On the other hand, it is also easy to see that if 𝑘 >
−2/𝑐
2, then system (13) has two equilibrium points (−(1/3)𝑐,
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±(√2𝑐/2)√𝑘𝑐
2
+ 2) on the line 𝜙 = −(1/3)𝑐 and if 𝑘 = −2/𝑐2,

then system (13) has one equilibriumpoint (−(1/3)𝑐, 0) on the
line 𝜙 = −(1/3)𝑐.

Let 𝑀(𝜙
𝑒
, 𝑦
𝑒
) be the coefficient matrix of the linearized

system of the system (13) at an equilibrium point (𝜙
𝑒
, 𝑦
𝑒
).

Then, we have

𝑀(𝜙
𝑒
, 𝑦
𝑒
)

= (

𝑦
𝑒

𝜙
𝑒
+
1

3
𝑐

−2𝑘𝜙
3

𝑒
− 2𝑘𝑐𝜙

2

𝑒
+ 2 (2 −

1

3
𝑘𝑐
2
) 𝜙
𝑒
+
1

3
𝑐 (13 −

2

9
𝑘𝑐
2
) −2𝑦

𝑒

),

(16)

and at this equilibrium point, we have

Trace (𝑀 (𝜙
𝑒
, 𝑦
𝑒
)) = −𝑦

𝑒
,

𝐽 (𝜙
𝑒
, 𝑦
𝑒
) = det𝑀(𝜙

𝑒
, 𝑦
𝑒
)

= −2𝑦
2

𝑒
+ 2𝑘𝜙

4

𝑒
+ 𝑘𝑐𝜙

3

𝑒
+ 4 (

1

3

𝑘𝑐
2
− 1) 𝜙

2

𝑒

+

1

3

𝑐 (

8

9

𝑘𝑐
2
− 17) 𝜙

𝑒

+

1

9

𝑐
2
(

2

9

𝑘𝑐
2
− 13) .

(17)

By the theory of planar dynamical systems, we know that
for an equilibrium point (𝜙

𝑒
, 𝑦
𝑒
) of a planar integrable system

if 𝐽(𝜙
𝑒
, 𝑦
𝑒
) < 0, then the equilibrium point is a saddle point.

If 𝐽(𝜙
𝑒
, 𝑦
𝑒
) > 0 and Trace(𝑀(𝜙

𝑒
, 𝑦
𝑒
)) = 0, then it is a

center point. If 𝐽(𝜙
𝑒
, 𝑦
𝑒
) = 0 and the Poincaré index of the

equilibrium point is zero, then it is a cusp.
For a fixed ℎ, the level curve 𝐻(𝜙, 𝑦) = ℎ defined by

(14) determines a set of invariant curves of system (13) which
contains different branches of curves. As ℎ is varied, it defines
different families of orbits of (13) with different dynamical
behaviors.

Using the property of the equilibrium points and bifurca-
tion theory, we obtain the following results.

(i) When 𝑘 = 0, there is one bifurcation line 𝑐 = 0 which
divides the region (−∞,∞) into 2 subregions: 𝐴

1
=

{𝑐 | 𝑐 < 0}, 𝐴
2
= {𝑐 | 𝑐 > 0}.

(ii) When 𝑘 ̸= 0, there are five bifurcation curves as
follows:

𝐿
1
: 𝑐 = 0, 𝐿

2
: 𝑘 = 0, 𝐿

3
: 𝑘 =

𝜇

𝑐
2
,

𝐿
4
: 𝑘 =

1

2𝑐
2
, 𝐿

5
: 𝑘 = −

2

𝑐
2
,

(18)

which divide the (𝑐, 𝑘)-parameter plane into 16 subregions as
follows:

𝐵
1
= {(𝑐, 𝑘) | 𝑐 < 0, 𝑘 < −2/𝑐

2
} ,

𝐵
2
= {(𝑐, 𝑘) | 𝑐 < 0, 𝑘 = −2/𝑐

2
} ,

𝐵
3
= {(𝑐, 𝑘) | 𝑐 < 0, −2/𝑐

2
< 𝑘 < 0} ,

𝐵
4
= {(𝑐, 𝑘) | 𝑐 < 0, 0 < 𝑘 < 1/2𝑐

2
} ,

𝐵
5
= {(𝑐, 𝑘) | 𝑐 < 0, 𝑘 = 1/2𝑐

2
} ,

𝐵
6
= {(𝑐, 𝑘) | 𝑐 < 0, 1/2𝑐

2
< 𝑘 < 𝜇/𝑐

2
} ,

𝐵
7
= {(𝑐, 𝑘) | 𝑐 < 0, 𝑘 = 𝜇/𝑐

2
} ,

𝐵
8
= {(𝑐, 𝑘) | 𝑐 < 0, 𝑘 > 𝜇/𝑐

2
} ,

𝐵
9
= {(𝑐, 𝑘) | 𝑐 > 0, 𝑘 < −2/𝑐

2
} ,

𝐵
10
= {(𝑐, 𝑘) | 𝑐 > 0, 𝑘 = −2/𝑐

2
} ,

𝐵
11
= {(𝑐, 𝑘) | 𝑐 > 0, −2/𝑐

2
< 𝑘 < 0} ,

𝐵
12
= {(𝑐, 𝑘) | 𝑐 > 0, 0 < 𝑘 < 1/2𝑐

2
} ,

𝐵
13
= {(𝑐, 𝑘) | 𝑐 > 0, 𝑘 = 1/2𝑐

2
} ,

𝐵
14
= {(𝑐, 𝑘) | 𝑐 > 0, 1/2𝑐

2
< 𝑘 < 𝜇/𝑐

2
} ,

𝐵
15
= {(𝑐, 𝑘) | 𝑐 > 0, 𝑘 = 𝜇/𝑐

2
} ,

𝐵
16
= {(𝑐, 𝑘) | 𝑐 > 0, 𝑘 > 𝜇/𝑐

2
} ,

(19)

where 𝜇 = (Ω2 − 14Ω − 125)/6Ω, Ω = (5725 + 1575√14)1/3.
The bifurcation sets and phase portraits of system (13) are

shown in Figures 2 and 3.

3. Exact Parametric Representations of
Peakon, Solitary Wave and Smooth Periodic
Wave Solutions of (2)

In this section, we present all possible exact parametric repre-
sentations of peakon, solitary wave and smooth periodic
wave solutions through some special phase orbits. Next,
we always suppose that ℎ

1
= ((16/9) − (608/243)𝑘𝑐

2
)𝑐
4,

ℎ
2
= (𝑐
4
/23328000)((895537 − 238014√14)Ω

2 + (970075 +
382725√14)Ω − 45865625), 𝜙

𝑠
= −(1/3)𝑐, 𝜙

1
= −(4/3)𝑐,

𝜙
2
= ((1/1500)𝑐)((6√14 − 23)Ω

2
− 5(3√14 + 1)Ω − 625),

andΩ = (5725 + 1575√14)1/3.

3.1. Exact Parametric Representations of Peakon Solutions. (i)
For the given ℎ = (16/9)𝑐4 in Figure 2(a), the level curve is
shown in Figure 4(a). From Figure 4(a), we see that there are
two heteroclinic orbits connecting with saddle points (𝜙

𝑠
, ±𝑐)

and (𝜙
1
, 0) of system (13) when (𝑐, 𝑘) ∈ 𝐴

1
. Their expressions

are

𝑦 = ± (𝜙 − 𝜙
1
) , 𝜙

𝑠
≤ 𝜙 < 𝜙

1
. (20)
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Figure 2: The bifurcation sets and phase portraits of system (13) when 𝑘 = 0. (a) 𝑐 ∈ 𝐴

1
. (b) 𝑐 ∈ 𝐴

2
.

Substituting (20) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it
along the heteroclinic orbits yield

∫

𝜙

𝜙𝑠

𝑑𝑠

𝑠 − 𝜙
1

= −




𝜉




. (21)

Completing the above integral and solving the equation
for 𝜙, it follows that

𝜙 (𝜉) = 𝑐e−|𝜉| − 4
3

𝑐. (22)

Noting that 𝑢(𝑥, 𝑡) = 𝜙(𝑥 − 𝑐𝑡) + (4/3)𝑐, 𝜌(𝑥, 𝑡) = (𝜙(𝜉) +
(1/3)𝑐)

2
, and 𝜉 = 𝑥−𝑐𝑡, we get the parametric representation

of peakon solution as follows:

𝑢 (𝑥, 𝑡) = 𝑐e−|𝑥−𝑐𝑡|,

𝜌 (𝑥, 𝑡) = 𝑐
2
(e−|𝑥−𝑐𝑡| − 1)

2

.

(23)

(ii) For the given ℎ = (16/9)𝑐
4 in Figure 2(b), the

level curve is shown in Figure 4(b). From Figure 4(b), we see
that there are two heteroclinic orbits connecting with saddle
points (𝜙

𝑠
, ±𝑐) and (𝜙

1
, 0) of system (13) when (𝑐, 𝑘) ∈ 𝐴

2
.

Their expressions are

𝑦 = ± (𝜙 − 𝜙
1
) , 𝜙

1
< 𝜙 ≤ 𝜙

𝑠
. (24)

Substituting (24) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it
along the heteroclinic orbits yield

∫

𝜙𝑠

𝜙

𝑑𝑠

𝑠 − 𝜙
1

=




𝜉




. (25)

Completing the above integral, we can get the parametric
representation of peakon solution which is the same as (23).

3.2. Exact Parametric Representations of Solitary Wave Solu-
tions. (i) For the given ℎ = ℎ

1
in Figure 3(d), the level curve

is shown in Figure 4(c). From Figure 4(c), we see that there is
a homoclinic orbit connecting with a saddle point (𝜙

1
, 0) of

system (13) and passing point (𝛽
2
, 0), and at the same time,

there is a homoclinic orbit connecting with the saddle point

(𝜙
1
, 0) and passing point (𝛽

1
, 0) when (𝑐, 𝑘) ∈ 𝐵

4
, and their

expressions are

𝑦 = ±√
𝑘

6

(𝜙 − 𝜙
1
)√(𝛽

1
− 𝜙) (𝜙 − 𝛽

2
) (𝜙 − 𝛽

3
) (𝜙 − 𝛽

4
)

𝜙 − 𝜙
𝑠

,

𝛽
2
≤ 𝜙 < 𝜙

1
,

(26)

𝑦 = ±√
𝑘

6

(𝜙 − 𝜙
1
)√(𝛽

1
− 𝜙) (𝜙 − 𝛽

2
) (𝜙 − 𝛽

3
) (𝜙 − 𝛽

4
)

𝜙 − 𝜙
𝑠

,

𝜙
1
< 𝜙 ≤ 𝛽

1
,

(27)

respectively, where 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝛽

4
(𝛽
4
< 𝛽
3
< 𝛽
2
< 𝛽
1
) are

four real roots of

𝜓
4
−

2

3

𝑐𝜓
3
+

1

3𝑘

(5𝑘𝑐
2
− 18)𝜓

2

−

4𝑐

27𝑘

(17𝑘𝑐
2
+ 27)𝜓 +

2𝑐
2

81𝑘

(38𝑘𝑐
2
− 27) = 0,

(28)

which are obtained by the Cardan formula. For example, 𝛽
1
≈

3.392753049, 𝛽
2
≈ 0.8389789971, 𝛽

3
≈ 0.09041647394, 𝛽

4
≈

−4.988815187 when 𝑐 = −1, 𝑘 = 0.3; 𝛽
1
≈ 1.942359082, 𝛽

2
≈

0.3828621123, 𝛽
3
≈ 0.05356030588, 𝛽

4
≈ −2.712114834

when 𝑐 = −0.5, 𝑘 = 1; and 𝛽
1
≈ 2.712114834, 𝛽

2
≈

−0.05356030588, 𝛽
3
≈ −0.3828621123, 𝛽

4
≈ −1.942359082

when 𝑐 = 0.5, 𝑘 = 1.
Substituting (26) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the homoclinic orbit yield

∫

𝜙

𝛽2

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
1
)√(𝛽

1
− 𝑠) (𝑠 − 𝛽

2
) (𝑠 − 𝛽

3
) (𝑠 − 𝛽

4
)

= −√
𝑘

6





𝜉




.

(29)
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Figure 3: Continued.
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Figure 3: The bifurcation sets and phase portraits of system (13) when 𝑘 ̸= 0. (a) (𝑐, 𝑘) ∈ 𝐵

1
. (b) (𝑐, 𝑘) ∈ 𝐵

2
. (c) (𝑐, 𝑘) ∈ 𝐵

3
. (d) (𝑐, 𝑘) ∈ 𝐵

4
. (e)

(𝑐, 𝑘) ∈ 𝐵
5
(f) (𝑐, 𝑘) ∈ 𝐵

6
. (g) (𝑐, 𝑘) ∈ 𝐵

7
. (h) (𝑐, 𝑘) ∈ 𝐵

8
. (i) (𝑐, 𝑘) ∈ 𝐵

9
. (j) (𝑐, 𝑘) ∈ 𝐵

10
. (k) (𝑐, 𝑘) ∈ 𝐵

11
. (l) (𝑐, 𝑘) ∈ 𝐵

12
. (m) (𝑐, 𝑘) ∈ 𝐵

13
. (n)

(𝑐, 𝑘) ∈ 𝐵
14
. (o) (𝑐, 𝑘) ∈ 𝐵

15
. (p) (𝑐, 𝑘) ∈ 𝐵

16
.

Completing the above integral, we can get the parametric
representation of solitary wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(30)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
2
(𝛽
3
− 𝛽
1
) + 𝛽
3
(𝛽
1
− 𝛽
2
) sn2 (𝜔𝜒,𝑚)

(𝛽
3
− 𝛽
1
) + (𝛽

1
− 𝛽
2
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(𝛼
2
− 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 𝛼2, 𝑚)

+𝜔(𝛼
2

1
−

𝛼
2
(𝛽
2
− 𝜙
1
)

𝜙
𝑠
− 𝜙
1

)𝜒] ,

(31)

where Ω̃ = ((𝜙
𝑠
− 𝜙
1
)/𝜔𝛼
2
(𝛽
2
− 𝜙
1
))√(6/𝑘), 𝛼2 =

(𝜙
1
− 𝛽
3
)(𝛽
1
− 𝛽
2
)/(𝜙
1
− 𝛽
2
)(𝛽
1
− 𝛽
3
), 𝛼2
1
= (𝛽

1
−

𝛽
2
)/(𝛽
1
− 𝛽
3
), 𝜔 = (1/2)√(𝛽

1
− 𝛽
3
)(𝛽
2
− 𝛽
4
), 𝑚 =

√(𝛽
1
− 𝛽
2
)(𝛽
3
− 𝛽
4
)/(𝛽
1
− 𝛽
3
)(𝛽
2
− 𝛽
4
),Π(⋅, ⋅, ⋅) is Legendre’s

incomplete elliptic integral of the third kind, sn(⋅, ⋅) is the
Jacobian elliptic function (see [11]), and 𝜒 is a new variable.

Substituting (27) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it
along the homoclinic orbit yield

∫

𝛽1

𝜙

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
1
)√(𝛽

1
− 𝑠) (𝑠 − 𝛽

2
) (𝑠 − 𝛽

3
) (𝑠 − 𝛽

4
)

= √
𝑘

6





𝜉




.

(32)

Completing the above integral, we can get the parametric
representation of solitary wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(33)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
1
(𝛽
2
− 𝛽
4
) + 𝛽
4
(𝛽
1
− 𝛽
2
) sn2 (𝜔𝜒,𝑚)

(𝛽
2
− 𝛽
4
) + (𝛽

1
− 𝛽
2
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(𝛼
2
− 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 𝛼2, 𝑚)

+𝜔(𝛼
2

1
−

𝛼
2
(𝛽
1
− 𝜙
1
)

𝜙
𝑠
− 𝜙
1

)𝜒] ,

(34)



8 Journal of Applied Mathematics

0

2

y

2
𝜙

−2

(a) 𝑐 < 0, ℎ
∗
= (16/9)𝑐

4

0

2

y

𝜙
−2

−2

(b) 𝑐 > 0, ℎ
∗
= (16/9)𝑐

4

y

𝜙

(c) 𝑐 < 0, ℎ
∗
= ℎ
1

0

y

𝜙

(d) 𝑐 < 0, ℎ
∗
= (128/243)𝑐

4

0

y

𝜙

(e) 𝑐 < 0, ℎ
∗
= ℎ
2

0

y

𝜙

(f) 𝑐 > 0, ℎ
∗
= ℎ
1

0

y

𝜙

(g) 𝑐 > 0, ℎ
∗
= (128/243)𝑐

4

0

y

𝜙

(h) 𝑐 > 0, ℎ
∗
= ℎ
2

Figure 4: The level curves of system (13) defined by ℎ = ℎ
∗
.

where Ω̃ = ((𝜙
𝑠
− 𝜙
1
)/𝜔𝛼
2
(𝜙
1
− 𝛽
1
))√(6/𝑘), 𝛼2 =

(𝜙
1
− 𝛽
4
)(𝛽
1
− 𝛽
2
)/(𝛽
1
− 𝜙
1
)(𝛽
2
− 𝛽
4
), 𝛼2
1
= (𝛽

2
−

𝛽
1
)/(𝛽
2
− 𝛽
4
), 𝜔 = (1/2)√(𝛽

1
− 𝛽
3
)(𝛽
2
− 𝛽
4
), and 𝑚 =

√(𝛽
1
− 𝛽
2
)(𝛽
3
− 𝛽
4
)/(𝛽
1
− 𝛽
3
)(𝛽
2
− 𝛽
4
).

(ii) For the given ℎ = (128/243)𝑐4 in Figure 3(e), the level
curve is shown in Figure 4(d). From Figure 4(d), we see that
there is a homoclinic orbit connecting with a cusp (𝜙

1
, 0) of

system (13) and passing point (𝛽
1
, 0) when (𝑐, 𝑘) ∈ 𝐵

5
, and its

expression is

𝑦 = ±

1

2√3𝑐

×

(𝜙 − 𝜙
1
)√(𝛽

1
− 𝜙) (𝜙 − 𝜙

1
) (𝜙 − 𝛽

2
) (𝜙 − 𝛽

3
)

𝜙 − 𝜙
𝑠

,

𝜙
1
< 𝜙 ≤ 𝛽

1
,

(35)

where 𝛽
1
, 𝛽
2
, and 𝛽

3
(𝛽
3
< 𝛽
2
< 𝛽
1
) are three real roots of

𝜓
3
− 2𝑐𝜓

2
−

23

3

𝑐
2
𝜓 −

8

27

𝑐
3
= 0, (36)

which are obtained by the Cardan formula. For example,
𝛽
1
≈ 1.917558777, 𝛽

2
≈ 0.03905297305, 𝛽

3
≈ −3.956611750
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when 𝑐 = −1; 𝛽
1
≈ 3.956611750, 𝛽

2
− 0.03905297305,

𝛽
3
≈ −1.917558777 when 𝑐 = 1; and 𝛽

1
≈ 0.9587793884,

𝛽
2
≈ 0.01952648653, 𝛽

3
≈ −1.978305875 when 𝑐 = −0.5.

Substituting (35) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it
along the homoclinic orbit yield

∫

𝛽1

𝜙

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
1
)√(𝛽

1
− 𝑠) (𝑠 − 𝜙

1
) (𝑠 − 𝛽

2
) (𝑠 − 𝛽

3
)

= −

1

2√3𝑐





𝜉




.

(37)

Completing the above integral, we can get the parametric
representation of solitary wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(38)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
1
(𝜙
1
− 𝛽
3
) + 𝛽
3
(𝛽
1
− 𝜙
1
) sn2 (𝜔𝜒,𝑚)

(𝜙
1
− 𝛽
3
) + (𝛽

1
− 𝜙
1
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(1 − 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 1, 𝑚)

+𝜔(𝛼
2

1
−

𝛽
1
− 𝛽
3

𝜙
𝑠
− 𝜙
1

)𝜒] ,

(39)

where Ω̃ = 2√3(𝜙
𝑠
− 𝜙
1
)𝑐/𝜔(𝛽

1
− 𝛽
3
), 𝛼2
1
= (𝜙

1
−

𝛽
1
)/(𝜙
1
− 𝛽
3
), 𝜔 = (1/2)√(𝛽

1
− 𝛽
2
)(𝜙
1
− 𝛽
3
), and 𝑚 =

√(𝛽
1
− 𝜙
1
)(𝛽
2
− 𝛽
3
)/(𝛽
1
− 𝛽
2
)(𝜙
1
− 𝛽
3
).

(iii) For the given ℎ = ℎ
2
in Figure 3(g), the level curve is

shown in Figure 4(e). From Figure 4(e), we see that there is a
homoclinic orbit connecting with a cusp (𝜙

2
, 0) of system (13)

and passing point (𝛽
1
, 0) when (𝑐, 𝑘) ∈ 𝐵

7
, and its expression

is

𝑦 = ±
√
675Ω
2
− 9450Ω − 84375

24300𝑐
2
Ω

×

(𝜙
2
− 𝜙)√(𝜙

2
− 𝜙) (𝜙 − 𝛽

1
) (𝜙 − 𝛽

2
) (𝜙 − 𝛽

3
)

𝜙 − 𝜙
𝑠

,

𝛽
1
≤ 𝜙 < 𝜙

2
,

(40)

where 𝛽
1
, 𝛽
2
, and 𝛽

3
(𝛽
3
< 𝛽
2
< 𝛽
1
) are three real roots of

𝑏
0
+ 𝑏
1
𝜓 + 𝑏
2
𝜓
2
− 𝜓
3
= 0, (41)

which are obtained by the Cardan formula, and 𝑏
0
=

(𝑐
3
((486√14 − 1663)Ω

2
− 22375Ω + 60750√14 + 207875))/

(675(Ω
2
− 14Ω − 125)), 𝑏

1
= (𝑐
2
((1458√14 − 6489)Ω

2
−

31950Ω + 182250√14 + 811125))/(675(Ω
2
− 14Ω − 125)),

and 𝑏
2
= (𝑐((729√14 − 4482)Ω

2
+ 5400Ω + 91125√14 +

560250))/(675(Ω
2
− 14Ω − 125)). For example, 𝛽

1
≈

1.264234987, 𝛽
2
≈ 0.03471643922, 𝛽

3
≈ −3.882082755

when 𝑐 = −1; 𝛽
1
≈ 6.321174982, 𝛽

2
≈ 0.1735822117,

𝛽
3
≈ −19.41041364 when 𝑐 = −5; and 𝛽

1
≈ 19.41041364,

𝛽
2
≈ −0.1735822117, 𝛽

3
≈ −6.321174982 when 𝑐 = 5.

Substituting (40) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it
along the homoclinic orbit yield

∫

𝜙

𝛽1

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
2
)√(𝜙

2
− 𝑠) (𝑠 − 𝛽

1
) (𝑠 − 𝛽

2
) (𝑠 − 𝛽

3
)

= −
√
675Ω
2
− 9450Ω − 84375

24300𝑐
2
Ω





𝜉




.

(42)

Completing the above integral, we can get the parametric
representation of solitary wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(43)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
1
(𝜙
2
− 𝛽
2
) + 𝛽
2
(𝛽
1
− 𝜙
2
) sn2 (𝜔𝜒,𝑚)

(𝜙
2
− 𝛽
2
) + (𝛽

1
− 𝜙
2
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(1 − 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 1, 𝑚)

+𝜔(𝛼
2

1
−

𝜙
2
− 𝛽
1

𝜙
2
− 𝜙
𝑠

)𝜒] ,

(44)

where Ω̃ = ((𝜙
2
− 𝜙

𝑠
)/𝜔(𝜙

2
− 𝛽

1
))

√24300𝑐
2
Ω/(675Ω

2
− 9450Ω − 84375), 𝛼2

1
= (𝜙

2
− 𝛽
1
)/

(𝜙
2
− 𝛽
2
), 𝜔 = (1/2)√(𝜙

2
− 𝛽
2
)(𝛽
1
− 𝛽
3
), and 𝑚 =

√(𝜙
2
− 𝛽
1
)(𝛽
2
− 𝛽
3
)/(𝜙
2
− 𝛽
2
)(𝛽
1
− 𝛽
3
).

(iv) For the given ℎ = ℎ
1
in Figure 3(l), the level curve is

shown in Figure 4(f). From Figure 4(f), we see that there is
a homoclinic orbit connecting with a saddle point (𝜙

1
, 0) of

system (13) and passing point (𝛽
4
, 0), and at the same time,

there is a homoclinic orbit connecting with the saddle point
(𝜙
1
, 0) and passing point (𝛽

3
, 0) when (𝑐, 𝑘) ∈ 𝐵

12
, and their

expressions are

𝑦 = ± √
𝑘

6

×

(𝜙
1
− 𝜙)√(𝛽

1
− 𝜙) (𝛽

2
− 𝜙) (𝛽

3
− 𝜙) (𝜙 − 𝛽

4
)

𝜙
𝑠
− 𝜙

,

𝛽
4
≤ 𝜙 < 𝜙

1
,

(45)
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𝑦 = ± √
𝑘

6

×

(𝜙 − 𝜙
1
)√(𝛽

1
− 𝜙) (𝛽

2
− 𝜙) (𝛽

3
− 𝜙) (𝜙 − 𝛽

4
)

𝜙 − 𝜙
𝑠

,

𝜙
1
< 𝜙 ≤ 𝛽

3
,

(46)

respectively, where 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝛽

4
(𝛽
4
< 𝛽
3
< 𝛽
2
< 𝛽
1
) are

four real roots of (28).
Substituting (45) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the homoclinic orbit yield

∫

𝜙

𝛽4

(𝜙
𝑠
− 𝑠) 𝑑𝑠

(𝜙
1
− 𝑠)√(𝛽

1
− 𝑠) (𝛽

2
− 𝑠) (𝛽

3
− 𝑠) (𝑠 − 𝛽

4
)

= √
𝑘

6





𝜉




.

(47)

Completing the above integral, we can get the parametric
representation of solitary wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(48)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
4
(𝛽
1
− 𝛽
3
) + 𝛽
1
(𝛽
3
− 𝛽
4
) sn2 (𝜔𝜒,𝑚)

(𝛽
1
− 𝛽
3
) + (𝛽

3
− 𝛽
4
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(𝛼
2
− 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 𝛼2, 𝑚)

+𝜔(𝛼
2

1
−

𝛼
2
(𝛽
4
− 𝜙
1
)

𝜙
𝑠
− 𝜙
1

)𝜒] ,

(49)

where Ω̃ = ((𝜙
𝑠
− 𝜙
1
)/𝜔𝛼
2
(𝜙
1
− 𝛽
4
))√6/𝑘, 𝛼2 =

(𝜙
1
− 𝛽
1
)(𝛽
4
− 𝛽
3
)/(𝜙
1
− 𝛽
4
)(𝛽
1
− 𝛽
3
), 𝛼2
1
= (𝛽

4
−

𝛽
3
)/(𝛽
1
− 𝛽
3
), 𝜔 = (1/2)√(𝛽

1
− 𝛽
3
)(𝛽
2
− 𝛽
4
), and 𝑚 =

√(𝛽
1
− 𝛽
2
)(𝛽
3
− 𝛽
4
)/(𝛽
1
− 𝛽
3
)(𝛽
2
− 𝛽
4
).

Substituting (46) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it
along the homoclinic orbit yield

∫

𝛽3

𝜙

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
1
)√(𝛽

1
− 𝑠) (𝛽

2
− 𝑠) (𝛽

3
− 𝑠) (𝑠 − 𝛽

4
)

= −√
𝑘

6





𝜉




.

(50)

Completing the above integral, we can get the parametric
representation of solitary wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(51)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
3
(𝛽
4
− 𝛽
2
) + 𝛽
2
(𝛽
3
− 𝛽
4
) sn2 (𝜔𝜒,𝑚)

(𝛽
4
− 𝛽
2
) + (𝛽

3
− 𝛽
4
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(𝛼
2
− 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 𝛼2, 𝑚)

+𝜔(𝛼
2

1
−

𝛼
2
(𝛽
3
− 𝜙
1
)

𝜙
𝑠
− 𝜙
1

)𝜒] ,

(52)

where Ω̃ = ((𝜙
1
− 𝜙
𝑠
)/𝜔𝛼
2
(𝜙
1
− 𝛽
3
))√6/𝑘, 𝛼

2
=

(𝜙
1
− 𝛽
2
)(𝛽
3
− 𝛽
4
)/(𝜙
1
− 𝛽
3
)(𝛽
2
− 𝛽
4
), 𝛼2
1
= (𝛽

3
−

𝛽
4
)/(𝛽
2
− 𝛽
4
), 𝜔 = (1/2)√(𝛽

1
− 𝛽
3
)(𝛽
2
− 𝛽
4
), and 𝑚 =

√(𝛽
1
− 𝛽
2
)(𝛽
3
− 𝛽
4
)/(𝛽
1
− 𝛽
3
)(𝛽
2
− 𝛽
4
).

(v) For the given ℎ = (128/243)𝑐4 in Figure 3(m), the level
curve is shown in Figure 4(g). From Figure 4(g), we see that
there is a homoclinic orbit connecting with a cusp (𝜙

1
, 0) of

system (13) and passing point (𝛽
3
, 0) when (𝑐, 𝑘) ∈ 𝐵

13
, and

its expression is

𝑦 = ±

1

2√3𝑐

×

(𝜙
1
− 𝜙)√(𝛽

1
− 𝜙) (𝛽

2
− 𝜙) (𝜙

1
− 𝜙) (𝜙 − 𝛽

3
)

𝜙
𝑠
− 𝜙

,

𝛽
3
≤ 𝜙 < 𝜙

1
,

(53)

where 𝛽
1
, 𝛽
2
, and 𝛽

3
(𝛽
3
< 𝛽
2
< 𝛽
1
) are three real roots of

(36).
Substituting (53) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the homoclinic orbit yield

∫

𝜙

𝛽3

(𝜙
𝑠
− 𝑠) 𝑑𝑠

(𝜙
1
− 𝑠)√(𝛽

1
− 𝑠) (𝛽

2
− 𝑠) (𝜙

1
− 𝑠) (𝑠 − 𝛽

3
)

=

1

2√3𝑐





𝜉




.

(54)

Completing the above integral, we can get the parametric
representation of solitary wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙(𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(55)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
3
(𝜙
1
− 𝛽
1
) + 𝛽
1
(𝛽
3
− 𝜙
1
) sn2 (𝜔𝜒,𝑚)

(𝜙
1
− 𝛽
1
) + (𝛽

3
− 𝜙
1
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(1 − 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 1, 𝑚)

+𝜔(𝛼
2

1
−

𝛽
3
− 𝜙
1

𝜙
𝑠
− 𝜙
1

)𝜒] ,

(56)
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where Ω̃ = 2√3(𝜙
𝑠
− 𝜙
1
)𝑐/𝜔(𝜙

1
− 𝛽
3
), 𝛼2
1
= (𝜙
1
− 𝛽
3
)/

(𝜙
1
− 𝛽
1
), 𝜔 = (1/2)√(𝛽

2
− 𝛽
3
)(𝛽
1
− 𝜙
1
), and 𝑚 =

√(𝛽
3
− 𝜙
1
)(𝛽
2
− 𝛽
1
)/(𝛽
3
− 𝛽
2
)(𝜙
1
− 𝛽
1
).

(vi) For the given ℎ = ℎ
2
in Figure 3(o), the level curve is

shown in Figure 4(h). From Figure 4(h), we see that there is a
homoclinic orbit connecting with a cusp (𝜙

2
, 0) of system (13)

and passing point (𝛽
3
, 0)when (𝑐, 𝑘) ∈ 𝐵

15
, and its expression

is

𝑦 = ±
√
675Ω
2
− 9450Ω − 84375

24300𝑐
2
Ω

×

(𝜙 − 𝜙
2
)√(𝜙 − 𝜙

2
) (𝛽
1
− 𝜙) (𝜙 − 𝛽

2
) (𝜙 − 𝛽

3
)

𝜙 − 𝜙
𝑠

,

𝜙
2
< 𝜙 ≤ 𝛽

3
,

(57)

where 𝛽
1
, 𝛽
2
, and 𝛽

3
(𝛽
3
< 𝛽
2
< 𝛽
1
) are three real roots of

(41).
Substituting (57) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the homoclinic orbit yield

∫

𝛽3

𝜙

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
2
)√(𝛽

1
− 𝑠) (𝛽

2
− 𝑠) (𝛽

3
− 𝑠) (𝑠 − 𝜙

2
)

= −√
675Ω
2
− 9450Ω − 84375

24300𝑐
2
Ω





𝜉




.

(58)

Completing the above integral, we can get the parametric
representation of solitary wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(59)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
3
(𝜙
2
− 𝛽
2
) + 𝛽
2
(𝛽
3
− 𝜙
2
) sn2 (𝜔𝜒,𝑚)

(𝜙
2
− 𝛽
2
) + (𝛽

3
− 𝜙
2
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(1 − 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 1, 𝑚)

+𝜔(𝛼
2

1
−

𝜙
2
− 𝛽
3

𝜙
2
− 𝜙
𝑠

)𝜒] ,

(60)

where Ω̃ = ((𝜙
2
− 𝜙

𝑠
)/𝜔(𝜙

2
− 𝛽

3
))

√24300𝑐
2
Ω/(675Ω

2
− 9450Ω − 84375), 𝛼2

1
= (𝜙

2
−

𝛽
3
)/(𝜙
2
− 𝛽
2
), 𝜔 = (1/2)√(𝜙

2
− 𝛽
2
)(𝛽
3
− 𝛽
1
), and 𝑚 =

√(𝜙
2
− 𝛽
3
)(𝛽
2
− 𝛽
1
)/(𝜙
2
− 𝛽
2
)(𝛽
3
− 𝛽
1
).

3.3. Exact Parametric Representations of Smooth Periodic
Wave Solutions. (i) For the given ℎ = ℎ

1
in Figure 3(d), the

level curve is shown in Figure 4(c). From Figure 4(c), we see

that there is one periodic orbit passing points (𝛽
3
, 0) and

(𝛽
4
, 0) when (𝑐, 𝑘) ∈ 𝐵

4
, and its expression is

𝑦 = ± √
𝑘

6

×

(𝜙 − 𝜙
1
)√(𝛽

1
− 𝜙) (𝛽

2
− 𝜙) (𝛽

3
− 𝜙) (𝜙 − 𝛽

4
)

𝜙 − 𝜙
𝑠

,

𝛽
4
≤ 𝜙 ≤ 𝛽

3
,

(61)

where 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝛽

4
(𝛽
4
< 𝛽
3
< 𝛽
2
< 𝛽
1
) are four real

roots of (28).
Substituting (61) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the periodic orbit yield

∫

𝛽3

𝜙

(𝜙
𝑠
− 𝑠) 𝑑𝑠

(𝜙
1
− 𝑠)√(𝛽

1
− 𝑠) (𝛽

2
− 𝑠) (𝛽

3
− 𝑠) (𝑠 − 𝛽

4
)

= √
𝑘

6





𝜉




.

(62)

Completing the above integral, we can get the parametric
representation of smooth periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(63)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
3
(𝛽
4
− 𝛽
2
) + 𝛽
2
(𝛽
3
− 𝛽
4
) sn2 (𝜔𝜒,𝑚)

(𝛽
4
− 𝛽
2
) + (𝛽

3
− 𝛽
4
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(𝛼
2
− 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) , 𝛼2, 𝑚)

+𝜔(𝛼
2

1
−

𝛼
2
(𝛽
3
− 𝜙
1
)

𝜙
𝑠
− 𝜙
1

)𝜒] ,

(64)

where Ω̃ = ((𝜙
𝑠
− 𝜙
1
)/𝜔𝛼
2
(𝜙
1
− 𝛽
3
))√6/𝑘, 𝛼2 = (𝜙

1
− 𝛽
2
)

(𝛽
3
− 𝛽
4
)/(𝜙
1
− 𝛽
3
)(𝛽
2
− 𝛽
4
), 𝛼2
1
= (𝛽

3
− 𝛽
4
)/(𝛽
2
−

𝛽
4
), 𝜔 = (1/2)√(𝛽

1
− 𝛽
3
)(𝛽
2
− 𝛽
4
), and 𝑚 =

√(𝛽
1
− 𝛽
2
)(𝛽
3
− 𝛽
4
)/(𝛽
1
− 𝛽
3
)(𝛽
2
− 𝛽
4
).

(ii) For the given ℎ = (128/243)𝑐4 in Figure 3(e), the level
curve is shown in Figure 4(d). From Figure 4(d), we see that
there is one periodic orbit passing points (𝛽

2
, 0) and (𝛽

3
, 0)

when (𝑐, 𝑘) ∈ 𝐵
5
, and its expression is

𝑦 = ±

1

2√3𝑐

×

(𝜙
1
− 𝜙)√(𝛽

1
− 𝜙) (𝜙

1
− 𝜙) (𝛽

2
− 𝜙) (𝜙 − 𝛽

3
)

𝜙
𝑠
− 𝜙

,

𝛽
3
≤ 𝜙 ≤ 𝛽

2
,

(65)
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where 𝛽
1
, 𝛽
2
, and 𝛽

3
(𝛽
3
< 𝛽
2
< 𝛽
1
) are three real roots of

(36).
Substituting (65) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the periodic orbit yield

∫

𝛽2

𝜙

(𝜙
𝑠
− 𝑠) 𝑑𝑠

(𝜙
1
− 𝑠)√(𝛽

1
− 𝑠) (𝜙

1
− 𝑠) (𝛽

2
− 𝑠) (𝑠 − 𝛽

3
)

= −

1

2√3𝑐





𝜉




.

(66)

Completing the above integral, we can get the parametric
representation of smooth periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙(𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(67)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
2
(𝛽
3
− 𝜙
1
) + 𝜙
1
(𝛽
2
− 𝛽
3
) sn2 (𝜔𝜒,𝑚)

(𝛽
3
− 𝜙
1
) + (𝛽

2
− 𝛽
3
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒)

= Ω̃ [(𝑚
2
− 𝛼
2
) F (arcsin (sn (𝜔𝜒,𝑚)) ,𝑚)

+𝛼
2E (arcsin (sn (𝜔𝜒,𝑚)) ,𝑚) −

𝜔𝑚
2
(𝜙
1
− 𝛽
2
)

𝜙
1
− 𝜙
𝑠

𝜒] ,

(68)

where Ω̃ = (2√3(𝜙
1
− 𝜙
𝑠
)𝑐)/𝜔𝑚

2
(𝜙
1
− 𝛽
2
), 𝛼2 =

(𝛽
2
− 𝛽
3
)/(𝜙
1
− 𝛽
3
), 𝜔 = (1/2)√(𝛽

1
− 𝛽
2
)(𝜙
1
− 𝛽
3
), 𝑚 =

√(𝛽
1
− 𝜙
1
)(𝛽
2
− 𝛽
3
)/(𝛽
1
− 𝛽
2
)(𝜙
1
− 𝛽
3
), and F(⋅, ⋅) and E(⋅, ⋅)

are Legendre’s incomplete elliptic integrals of the first and
second kinds, respectively (see [11]).

(iii) For the given ℎ = ℎ
2
in Figure 3(g), the level curve

is shown in Figure 4(e). From Figure 4(e), we see that there
is one periodic orbit passing points (𝛽

2
, 0) and (𝛽

3
, 0) when

(𝑐, 𝑘) ∈ 𝐵
7
, and its expression is

𝑦 = ±
√
675Ω
2
− 9450Ω − 84375

24300𝑐
2
Ω

×

(𝜙
2
− 𝜙)√(𝜙

2
− 𝜙) (𝛽

1
− 𝜙) (𝛽

2
− 𝜙) (𝜙 − 𝛽

3
)

𝜙
𝑠
− 𝜙

,

𝛽
3
≤ 𝜙 ≤ 𝛽

2
,

(69)

where 𝛽
1
, 𝛽
2
, and 𝛽

3
(𝛽
3
< 𝛽
2
< 𝛽
1
) are three real roots of

(41).

Substituting (69) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it
along the periodic orbit yield

∫

𝛽2

𝜙

(𝜙
𝑠
− 𝑠) 𝑑𝑠

(𝜙
2
− 𝑠)√(𝜙

2
− 𝑠) (𝛽

1
− 𝑠) (𝛽

2
− 𝑠) (𝑠 − 𝛽

3
)

=
√
675Ω
2
− 9450Ω − 84375

24300𝑐
2
Ω





𝜉




.

(70)

Completing the above integral, we can get the parametric
representation of smooth periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(71)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
2
(𝛽
3
− 𝛽
1
) + 𝛽
1
(𝛽
2
− 𝛽
3
) sn2 (𝜔𝜒,𝑚)

(𝛽
3
− 𝛽
1
) + (𝛽

2
− 𝛽
3
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒)

= Ω̃ [(𝑚
2
− 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) ,𝑚2, 𝑚)

+𝜔(𝛼
2

1
−

𝑚
2
(𝜙
2
− 𝛽
2
)

𝜙
2
− 𝜙
𝑠

)𝜒] ,

(72)

where Ω̃ = ((𝜙
𝑠
− 𝜙

2
)/𝜔𝑚
2
(𝜙
2
− 𝛽

2
))

√24300𝑐
2
Ω/(675Ω

2
− 9450Ω − 84375), 𝛼2

1
= (𝛽

2
− 𝛽
3
)/

(𝛽
1
− 𝛽
3
), 𝜔 = (1/2)√(𝜙

2
− 𝛽
2
)(𝛽
1
− 𝛽
3
), and 𝑚 =

√(𝜙
2
− 𝛽
1
)(𝛽
2
− 𝛽
3
)/(𝜙
2
− 𝛽
2
)(𝛽
1
− 𝛽
3
).

(iv) For the given ℎ = ℎ
1
in Figure 3(l), the level curve

is shown in Figure 4(f). From Figure 4(f), we see that there
is one periodic orbit passing points (𝛽

1
, 0) and (𝛽

2
, 0) when

(𝑐, 𝑘) ∈ 𝐵
12
, and its expression is

𝑦 = ±√
𝑘

6

(𝜙 − 𝜙
1
)√(𝛽

1
− 𝜙) (𝜙 − 𝛽

2
) (𝜙 − 𝛽

3
) (𝜙 − 𝛽

4
)

𝜙 − 𝜙
𝑠

,

𝛽
2
≤ 𝜙 ≤ 𝛽

1
,

(73)

where 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝛽

4
(𝛽
4
< 𝛽
3
< 𝛽
2
< 𝛽
1
) are four real

roots of (28).
Substituting (73) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the periodic orbit yield

∫

𝛽1

𝜙

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
1
)√(𝛽

1
− 𝑠) (𝑠 − 𝛽

2
) (𝑠 − 𝛽

3
) (𝑠 − 𝛽

4
)

= √
𝑘

6





𝜉




.

(74)
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Completing the above integral, we can get the parametric
representation of smooth periodic wave solution which is the
same as (33).

(v) For the given ℎ = (128/243)𝑐4 in Figure 3(m), the
level curve is shown in Figure 4(g). From Figure 4(g), we see
that there is one periodic orbit passing points (𝛽

1
, 0) and

(𝛽
2
, 0) when (𝑐, 𝑘) ∈ 𝐵

13
, and its expression is

𝑦 = ±

1

2√3𝑐

×

(𝜙 − 𝜙
1
)√(𝛽

1
− 𝜙) (𝜙 − 𝛽

2
) (𝜙 − 𝜙

1
) (𝜙 − 𝛽

3
)

𝜙 − 𝜙
𝑠

,

𝛽
2
≤ 𝜙 ≤ 𝛽

1
,

(75)

where 𝛽
1
, 𝛽
2
, and 𝛽

3
(𝛽
3
< 𝛽
2
< 𝛽
1
) are three real roots of

(36).
Substituting (75) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the periodic orbit yield

∫

𝛽1

𝜙

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
1
)√(𝛽

1
− 𝑠) (𝑠 − 𝛽

2
) (𝑠 − 𝜙

1
) (𝑠 − 𝛽

3
)

=

1

2√3𝑐





𝜉




.

(76)

Completing the above integral, we can get the parametric
representation of smooth periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙 (𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(77)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
1
(𝛽
2
− 𝛽
3
) + 𝛽
3
(𝛽
1
− 𝛽
3
) sn2 (𝜔𝜒,𝑚)

(𝛽
2
− 𝛽
3
) + (𝛽

1
− 𝛽
3
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒) = Ω̃ [(𝑚
2
− 𝛼
2

1
)Π (arcsin (sn (𝜔𝜒,𝑚)) ,𝑚2, 𝑚)

+𝜔(𝛼
2

1
−

𝑚
2
(𝜙
1
− 𝛽
1
)

𝜙
1
− 𝜙
𝑠

)𝜒] ,

(78)

where Ω̃ = 2√3(𝜙
1
− 𝜙
𝑠
)𝑐/𝜔𝑚

2
(𝛽
1
− 𝜙
1
), 𝛼2
1
= (𝛽

2
−

𝛽
1
)/(𝛽
2
− 𝛽
3
), 𝜔 = (1/2)√(𝛽

1
− 𝜙
1
)(𝛽
2
− 𝛽
3
), and 𝑚 =

√(𝛽
1
− 𝛽
2
)(𝜙
1
− 𝛽
3
)/(𝛽
1
− 𝜙
1
)(𝛽
2
− 𝛽
3
).

(vi) For the given ℎ = ℎ
2
in Figure 3(o), the level curve

is shown in Figure 4(h). From Figure 4(h), we see that there

is one periodic orbit passing points (𝛽
1
, 0) and (𝛽

2
, 0) when

(𝑐, 𝑘) ∈ 𝐵
15
, and its expression is

𝑦 = ±
√
675Ω
2
− 9450Ω − 84375

24300𝑐
2
Ω

×

(𝜙 − 𝜙
2
)√(𝛽

1
− 𝜙) (𝜙 − 𝛽

2
) (𝜙 − 𝛽

3
) (𝜙 − 𝜙

2
)

𝜙 − 𝜙
𝑠

,

𝛽
2
≤ 𝜙 ≤ 𝛽

1
,

(79)

where 𝛽
1
, 𝛽
2
, and 𝛽

3
(𝛽
3
< 𝛽
2
< 𝛽
1
) are three real roots of

(41).
Substituting (79) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it

along the periodic orbit yield

∫

𝛽1

𝜙

(𝑠 − 𝜙
𝑠
) 𝑑𝑠

(𝑠 − 𝜙
2
)√(𝛽

1
− 𝑠) (𝑠 − 𝛽

2
) (𝑠 − 𝛽

3
) (𝑠 − 𝜙

2
)

=
√
675Ω
2
− 9450Ω − 84375

24300𝑐
2
Ω





𝜉




.

(80)

Completing the above integral, we can get the parametric
representation of smooth periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥 − 𝑐𝑡) +

4

3

𝑐,

𝜌 (𝑥, 𝑡) = (𝜙(𝑥 − 𝑐𝑡) +

1

3

𝑐)

2

.

(81)

𝜙 is confirmed by

𝜙 (𝜒) =

𝛽
1
(𝛽
2
− 𝜙
2
) + 𝜙
2
(𝛽
1
− 𝛽
2
) sn2 (𝜔𝜒,𝑚)

(𝛽
2
− 𝜙
2
) + (𝛽

1
− 𝛽
2
) sn2 (𝜔𝜒,𝑚)

,

𝜉 (𝜒)

= Ω̃ [ (𝑚
2
− 𝛼
2
) F (arcsin (sn (𝜔𝜒,𝑚)) ,𝑚)

+𝛼
2E (arcsin (sn (𝜔𝜒,𝑚)) ,𝑚) −

𝜔𝑚
2
(𝛽
2
− 𝛽
1
)

𝜙
2
− 𝜙
𝑠

𝜒] ,

(82)

where Ω̃ = ((𝜙
2
− 𝜙

𝑠
)/𝜔𝑚
2
(𝛽
1
− 𝛽

2
))

√24300𝑐
2
Ω/(675Ω

2
− 9450Ω − 84375), 𝛼2 = (𝛽

2
− 𝛽
1
)/

(𝛽
2
− 𝜙
2
), 𝜔 = (1/2)√(𝛽

1
− 𝛽
3
)(𝛽
2
− 𝜙
2
), and 𝑚 =

√(𝛽
1
− 𝛽
2
)(𝛽
3
− 𝜙
2
)/(𝛽
1
− 𝛽
3
)(𝛽
2
− 𝜙
2
).

Remark 2. From Figures 3(f) and 3(n), we see that (2) has
two solitary wave solutions when (𝑐, 𝑘) ∈ 𝐵

6
and two solitary

wave solutions when (𝑐, 𝑘) ∈ 𝐵
14
, but the exact parametric

representations are very complex, so here we omit them.
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4. Conclusion

In this paper, using the bifurcation theory and the method
of phase portraits analysis, we investigated the bifurcations
of (2) (which is called a two-component Degasperis-Procesi
equation) and obtained some exact parametric representa-
tions of peakon, solitary wave and smooth periodic wave
solutions (see (23), (30), and (63), etc.). We can say that we
obtained some new results of (2) in this paper.
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