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We present an iterative method for solving nonlinear equations. The proposed iterative method has optimal order of convergence
sixteen in the sense of Kung-Traub conjecture (Kung and Traub, 1974); it means that the iterative scheme uses five functional
evaluations to achieve 16(=25−1) order of convergence. The proposed iterative method utilizes one derivative and four function
evaluations. Numerical experiments are made to demonstrate the convergence and validation of the iterative method.

1. Introduction

According to Kung and Traub conjecture, a multipoint itera-
tive method without memory could achieve optimal conver-
gence order 2𝑛−1 by performing 𝑛 evaluations of function or
its derivatives [1]. In order to construct an optimal sixteenth-
order convergent iterative method for solving nonlinear
equations, we require four and eight optimal-order iterative
schemes. Many authors have been developed the optimal
eighth-order iterative methods, namely, Bi et al. [2], Bi et al.
[3], Geum and Kim [4], Liu and Wang [5], Wang and Liu
[6], and Soleymani et al. [7–9]. Some recent applications of
nonlinear equation solvers in matrix inversion for regular or
rectangular matrices have been introduced in [10–12].

For the proposed iterative method, we developed new
optimal fourth- and eighth-orders iterative methods to con-
struct optimal sixteenth-order iterative scheme. On the other
hand, it is known that rational weight functions give a
better convergence radius. By keeping this fact in mind, we
introduced rational terms in weight functions to achieve
optimal sixteenth order.

For the sake of completeness, we list some existing
optimal sixteenth-order convergent methods. Babajee and
Thukral [13] suggested 4-point sixteenth-order king family of
iterative methods for solving nonlinear equations (BT):
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In 2011, Geum and Kim [14] proposed a family of optimal
sixteenth-order multipoint methods (GK2):
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In the same year, Geum and Kim [15] presented a biparamet-
ric family of optimally convergent sixteenth-ordermultipoint
methods (GK1):
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2. A New Method and Convergence Analysis

The proposed sixteenth-order iterative method is described
as follows (MA):
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fxn:= c1∗(e+c2∗e∧2+c3∗e∧3+c4∗e∧4+c5∗e∧5+c6∗e∧6+c7∗e∧7+c8∗e∧8+c9∗e∧9+c10∗e∧10+
c11∗e∧11+c13∗e∧12+c13∗e∧13+c14∗e∧14+c15∗e∧15+c16∗e∧16+c17∗e∧17);

dfxn:= diff (fxn, e);
ye:= simplify (taylor (e−fxn/dfxn, e = 0, 17));
fyn:= c1∗(ye+c2∗ye∧2+c3∗ye∧3+c4∗ye∧4+c5∗ye∧5+c6∗ye∧6+c7∗ye∧7+c8∗ye∧8+c9∗ye∧9+

c10∗ye∧10+c11∗ye∧11+c12∗ye∧12+c13∗ye∧13+c14∗ye∧14+c15∗ye∧15+c16∗ye∧16+c17∗ye∧17);
fyn:= simplify (taylor (fyn, e = 0, 17));
t1:= simplify (taylor (fyn/fxn, e = 0, 17));
fydfx:= simplify (taylor (fyn/dfxn, e = 0, 17));
ze:= factor (simplify (taylor (ye−(1+2∗t1−t1∧2)∗fydfx/(1−6∗t1∧2), e = 0, 17)));
factor (simplify (taylor (ye−(1+2∗t1−t1∧2)∗fydfx/(1−6∗t1∧2), e = 0, 7)));

−c2∗c3∗e∧4+(−2∗c3∧2+2∗c3∗c2∧2+2∗c2∧4−2∗c2∗c4)∗e∧5+(−3∗c2∗c5−7∗c3∗c4+6∗c2∗c3∧2+
12∗c3∗c2∧3+3∗c4∗c2∧2−14∗c2∧5)∗e∧6+O(e∧7)

fzn:= c1∗(ze+c2∗ze∧2+c3∗ze∧3+c4∗ze∧4+c5∗ze∧5+c6∗ze∧6+c7∗ze∧7+c8∗ze∧8+c9∗ze∧9+
c10∗ze∧10+c11∗ze∧11+c12∗ze∧12+c13∗ze∧13+c14∗ze∧14+c15∗ze∧15+c16∗ze∧16+c17∗ze∧17);

fzn:= simplify (taylor (fzn, e = 0, 17));
t2:= simplify (taylor (fzn/fyn, e = 0, 17));
t3:= simplify (taylor (fzn/fxn, e = 0, 17));
fzdfx:= simplify (taylor (fzn/dfxn, e = 0, 17));
we:= simplify (taylor (ze−(1−t1+t3)∗fzdfx/(1−3∗t1+2∗t3−t2), e = 0, 17));
simplify (taylor (ze−(1−t1+t3)∗fzdfx/(1−3∗t1+2∗t3−t2), e = 0, 10));

−c4∗c3∗c2∧2∗e∧8+(−2∗c5∗c3∗c2∧2−4∗c2∗c4∗c3∧2+4∗c3∗c4∗c2∧3−2∗c4∧2∗c2∧2+2∗c4∗c2∧5
−3∗c3∧3∗c2∧2+4∗c3∧2∗c2∧4+4∗c3∗c2∧6)∗e∧9+O(e∧10)

fwn:= c1∗(we+c2∗we∧2+c3∗we∧3+c4∗we∧4+c5∗we∧5+c6∗we∧6+c7∗we∧7+c8∗we∧8+c9∗we∧9+c10∗we∧10+
c12∗we∧12+c13∗we∧13+c14∗we∧14+c15∗we∧15+c16∗we∧16+c17∗we∧17);

fwn:= simplify (taylor (fwn, e = 0, 17));
fwdfx:= simplify (taylor (fwn/dfxn, e = 0, 17));
t4:= simplify (taylor (fwn/fxn, e = 0, 17));
t5:= simplify (taylor (fwn/fyn, e = 0, 17));
t6:= simplify (taylor (fwn/fzn, e = 0, 17));
q1:= simplify (taylor (1/(1−2∗(t1+t1∧2+t1∧3+t1∧4+t1∧5+t1∧6+t1∧7)), e = 0, 17));
q2:= simplify (taylor (4∗t3/(1−(31/4)∗t3), e = 0, 17));
q3:= simplify (taylor (t2/(1−t2−20∗t2∧3), e = 0, 17));
q4:= simplify (taylor (8∗t4/(1−t4)+2∗t5/(1−t5)+t6/(1−t6), e = 0, 17));
q5:= simplify (taylor (15∗t1∗t3/(1−(131/15)∗t3), e = 0, 17));
q6:= simplify (taylor (54∗t1∧2∗t3/(1−t1∧2∗t3), e = 0, 17));
q7:= simplify (taylor (7∗t2∗t3+2∗t1∗t6+6∗t6∗t1∧2+188∗t3∗t1∧3+18∗t6∗t1∧3+

9∗t2∧2∗t3+648∗t1∧4∗t3, e = 0, 17));
x[n+1]:= simplify (taylor (we−fwdfx∗(q1+q2+q3+q4+q5+q6+q7), e = 0, 17));
for i to 16 do p:= factor (simplify (coeff (x[n+1], e, i))) end do;

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−c4∗c3∗c2∧2∗(c5∗c3∗c2∧2+2∗c2∗c4∗c3∧2−20∗c3∧4−51∗c3∧3∗c2∧2+522∗c3∧2∗c2∧4−2199∗c3∗c2∧6
+2∗c2∧8−30∗c3∗c4∗c2∧3+54∗c4∗c2∧5)

Algorithm 1: The Maple code for finding the error equation.
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Table 1: Set of six test nonlinear functions.

Functions Roots
𝑓
1
(𝑥) = 𝑒

𝑥 sin (𝑥) + log (1 + 𝑥2) 𝛼 = 0

𝑓
2
(𝑥) = (𝑥 − 2) (𝑥

10
+ 𝑥 + 1) 𝑒

−𝑥− 1
𝛼 = 2

𝑓
3
(𝑥) = sin (𝑥)2 − 𝑥2 + 1 𝛼 = 1.40449 ⋅ ⋅ ⋅

𝑓
4
(𝑥) = 𝑒

−𝑥
− cos (𝑥) 𝛼 = 0

𝑓
5
(𝑥) = 𝑥

3
+ log (𝑥) 𝛼 = 0.70470949 ⋅ ⋅ ⋅

Table 2: Numerical comparison of absolute error |𝑥
𝑛
− 𝛼|, number of iterations = 3.

(𝑓
𝑛
(𝑥), 𝑥

0
) Iter/COC MA BT GK1 GK2

𝑓
1
, 1.0

1 0.00268 0.00183 0.0111 0.00230
2 2.03𝑒 − 37 1.71𝑒 − 37 6.35𝑒 − 24 5.61𝑒 − 34

3 2.47e − 583 3.53𝑒 − 582 1.37𝑒 − 363 1.03𝑒 − 523

COC 16 16 16 16

𝑓
2
, 2.5

1 0.04086 0.0639 0.0296 0.00866
2 6.16𝑒 − 9 650.0 5.35𝑒 − 14 2.53𝑒 − 21

3 1.50𝑒 − 121 Divergent 4.79𝑒 − 201 1.89e − 317
COC 16.5 — 15.9 16.0

𝑓
3
, 2.5

1 0.0000326 0.0000303 0.000497 0.0000677
2 4.87𝑒 − 73 1.70𝑒 − 72 1.56𝑒 − 51 1.14𝑒 − 64

3 3.11e − 1158 1.63𝑒 − 1148 1.42𝑒 − 811 4.52𝑒 − 1021

COC 16 16 16 16

𝑓
4
, 1/6

1 2.79𝑒 − 7 0.0000864 1.28𝑒 − 7 0.000167
2 1.00𝑒 − 109 1.18𝑒 − 63 2.28𝑒 − 107 9.28𝑒 − 57

3 2.80e − 1851 1.72𝑒 − 1005 2.24𝑒 − 1703 7.82𝑒 − 893

COC 17 16 16 16

𝑓
5
, 3.0

1 0.0486 0.135 0.0949 0.0133
2 1.95𝑒 − 22 1.81𝑒 − 17 1.78𝑒 − 19 1.11𝑒 − 35

3 8.46𝑒 − 349 1.79𝑒 − 271 6.86𝑒 − 302 2.61e − 563
COC 16.0 16.0 15.9 16.0
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1 − 31/4𝑡
3

, 𝑞
3
=

𝑡
2

1 − 𝑡
2
− 20𝑡
3

2

,

𝑞
4
=
8𝑡
4

1 − 𝑡
4

+
2𝑡
5

1 − 𝑡
5

+
𝑡
6

1 − 𝑡
6

,

𝑞
5
=

15𝑡
1
𝑡
3

1 − 131/15𝑡
3

, 𝑞
6
=
54𝑡
2

1
𝑡
3

1 − 𝑡
2

1
𝑡
3

,

𝑞
7
= 7𝑡
2
𝑡
3
+ 2𝑡
1
𝑡
6
+ 6𝑡
6
𝑡
2

1
+ 188𝑡

3
𝑡
3

1

+ 18𝑡
6
𝑡
3

1
+ 9𝑡
2

2
𝑡
3
+ 648𝑡

4

1
𝑡
3
.

(10)

Theorem 1. Let 𝑓 : 𝐷 ⊆ R → R be a sufficiently differen-
tiable function, and 𝛼 ∈ 𝐷 is a simple root of 𝑓(𝑥) = 0, for
an open interval 𝐷. If 𝑥

0
is chosen sufficiently close to 𝛼, then

the iterative scheme (9) converges to 𝛼 and shows an order of
convergence at least equal to sixteen.

Proof. Let error at step 𝑛 be denoted by 𝑒
𝑛
= 𝑥
𝑛
− 𝛼 and

𝑐
1
= 𝑓
󸀠
(𝛼) and 𝑐

𝑘
= (1/𝑘!)(𝑓

(𝑘)
(𝛼)/𝑓

󸀠
(𝛼)), 𝑘 = 2, 3, . . .. We

providedMaple based computer assisted proof inAlgorithm 1
and got the following error equation:

𝑒
𝑛+1
= −𝑐
4
𝑐
3
𝑐
2

2
(𝑐
5
𝑐
3
𝑐
2

2
+ 2𝑐
4
𝑐
2
𝑐
2

3

− 20𝑐
4

3
− 51𝑐
3

3
𝑐
2

2
+ 522𝑐

2

3
𝑐
4

2
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− 2199𝑐
3
𝑐
6

2
+ 2𝑐
8

2
− 30𝑐
4
𝑐
3
𝑐
3

2

+54𝑐
4
𝑐
5

2
) 𝑒
16

𝑛
+ 𝑂 (𝑒

17

𝑛
) .

(11)

3. Numerical Results

If the convergence order 𝜂 is defined as

lim
𝑥→∞

󵄨󵄨󵄨󵄨𝑒𝑛+1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑛
󵄨󵄨󵄨󵄨

𝜂
= 𝑐 ̸= 0, (12)

then the following expression approximates the computa-
tional order of convergence (COC) [16] as follows:

𝜌 ≈
ln 󵄨󵄨󵄨󵄨(𝑥𝑛+1 − 𝛼) / (𝑥𝑛 − 𝛼)

󵄨󵄨󵄨󵄨

ln 󵄨󵄨󵄨󵄨(𝑥𝑛 − 𝛼) / (𝑥𝑛−1 − 𝛼)
󵄨󵄨󵄨󵄨

, (13)

where 𝛼 is the root of nonlinear equation. A set of five
nonlinear equations are used for numerical computations
in Table 1. Three iterations are performed to calculate the
absolute error (|𝑥

𝑛
− 𝛼|) and computational order of conver-

gence. Table 2 shows absolute error and computational order
of convergence, respectively.

4. Conclusion

An optimal sixteenth-order iterative scheme has been devel-
oped for solving nonlinear equations. A Maple program is
provided to calculate error equation, which actually shows
the optimal order of convergence in the sense of Kung-
Traub conjecture. The computational order of convergence
also verifies our claimed order of convergence. The proposed
scheme uses four functions and one derivative evaluation per
full cycle, which gives 1.741 as the efficiency index. We also
have shown the validity of our proposed iterative scheme
by comparing it with other existing optimal sixteenth-order
iterative methods. The numerical results show that the per-
formance of iterative scheme is competitive as compared to
other methods.
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