
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 785141, 12 pages
http://dx.doi.org/10.1155/2013/785141

Research Article
Stability Analysis for Impulsive Stochastic Reaction-Diffusion
Differential System and Its Application to Neural Networks

Yanke Du,1 Yanlu Li,2 and Rui Xu1

1 Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China
2 Training Department, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China

Correspondence should be addressed to Yanke Du; yankedu2011@163.com

Received 26 March 2013; Revised 28 June 2013; Accepted 12 July 2013

Academic Editor: Debasish Roy

Copyright © 2013 Yanke Du et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the stability of impulsive stochastic reaction-diffusion differential systems with mixed time delays.
First, an equivalent relation between the solution of a stochastic reaction-diffusion differential system with time delays and
impulsive effects and that of corresponding system without impulses is established. Then, some stability criteria for the stochastic
reaction-diffusion differential system with time delays and impulsive effects are derived. Finally, the stability criteria are applied
to impulsive stochastic reaction-diffusion Cohen-Grossberg neural networks with mixed time delays, and sufficient conditions are
obtained for the exponential𝑝-stability of the zero solution to the neural networks. An example is given to illustrate the effectiveness
of our theoretical results. The systems we studied in this paper are more general, and some existing results are improved and
extended.

1. Introduction

In recent years, impulsive dynamical systems have attracted
considerable attention due to its wide applications in the areas
of economics, physics, population dynamics, engineering,
biology, and so on. These systems arise because they are
subject to abrupt state changes at certain moments of time,
and these changes may be related to such phenomena as
shocks, harvesting, or other faults. Meanwhile, time delays
are frequently encountered in real world, which can cause
instability and oscillations in a system. A large number
of stability criteria of impulsive delay systems have been
reported (see [1–6] and references therein).

Stochastic effects are common phenomena due to dis-
turbances or uncertainties in a system. A lot of dynamical
systems have variable structures subject to stochastic abrupt
changes, which may result from abrupt phenomena such as
stochastic failures and repairs of the components, changes in
the interconnections of subsystems, and sudden environment
switching. Hence, considerable attention has been paid to the
study of stochastic systems, and various interesting results
have been reported in the literatures; for example, see [2–4, 7,
8] and references therein. In particular, Li et al. [8] considered

the following impulsive stochastic differential system with
time delay:

d𝑦
𝑖 (𝑡, 𝑥) = 𝐹

𝑖
(𝑡, 𝑦
1 (𝑡) , . . . , 𝑦𝑛 (𝑡) , 𝑦1 (𝑡 − 𝜏 (𝑡)) ,

. . . , 𝑦
𝑛 (𝑡 − 𝜏 (𝑡))) d𝑡

+ 𝐺
𝑖
(𝑡, 𝑦
1 (𝑡) , . . . , 𝑦𝑛 (𝑡) , 𝑦1 (𝑡 − 𝜏 (𝑡)) ,

. . . , 𝑦
𝑛 (𝑡 − 𝜏 (𝑡))) d𝑤𝑖 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝑦
𝑖
(𝑡
+

𝑘
) − 𝑦
𝑖
(𝑡
𝑘
) = 𝐼
𝑘𝑖
(𝑦
1
(𝑡
𝑘
) , . . . , 𝑦

𝑛
(𝑡
𝑘
)) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑁, 𝑖 = 1, 2, . . . , 𝑛.

(1)

They showed the stability results of system (1) by transform-
ing (1) into an equivalent system without impulses.

Generally speaking, diffusion effects cannot be avoided
in systems modeling many real world phenomena. As a rep-
resentation example in neural networks, when electrons are
moving in an asymmetric electromagnetic field, it inevitably
leads to diffusion phenomena. In [5, 9–11], the stabilities of
the equilibrium points of some types of neural networks
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with reaction-diffusion terms have been investigated. On the
other hand, distributed delay systems can characterize the
cumulative effects of the past values of the dynamic and are
often used to model the time lag phenomena in thermo-
dynamics, ecology, epidemiology, and neural networks. For
example, neural networks usually have a spatial extent due
to the presence of a multitude of parallel pathways with a
variety of axon sizes and lengths. It is desired to model them
by introducing continuously distributed delays over a certain
duration of time such that the distant past has less influence
compared to the recent behavior of the state.

However, in [8], the authors neglected the effects of dif-
fusion and distributed delays. To the best of our knowledge,
there are few results about the stability of impulsive stochastic
reaction-diffusion deferential systems (ISRDDSs) withmixed
time delays. Motivated by [8] and the previous discussions,
we are concerned with the stability of the following ISRDDS
with time-varying discrete delays and distributed delays:

d𝑢 (𝑡, 𝑥) = ∇ ⋅ (𝐷 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) ∘ ∇𝑢 (𝑡, 𝑥)) d𝑡

+ 𝐹(𝑡, 𝑢 (𝑡, 𝑥) , 𝑢 (𝑡 − 𝜏
1 (𝑡) , 𝑥) , . . . ,

𝑢 (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) , ∫

𝑡

𝑡−𝑟(𝑡)

𝑢 (𝑠, 𝑥) d𝑠) d𝑡

+ 𝐺(𝑡, 𝑢 (𝑡, 𝑥) , 𝑢 (𝑡 − 𝜏
1 (𝑡) , 𝑥) , . . . ,

𝑢 (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

𝑢 (𝑠, 𝑥) d𝑠) d𝑤 (𝑡) , 𝑡 ̸= 𝑡
𝑘
,

𝑢 (𝑡
+

𝑘
, 𝑥) − 𝑢 (𝑡

𝑘
, 𝑥) = 𝐼

𝑘
(𝑢 (𝑡
𝑘
, 𝑥)) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑁,

𝑢 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ,

(𝑡, 𝑥) ∈ [−𝛾, 0] × Ω, Ω ∈ R
𝑚
,

(2)

in which

𝑢 (𝑡, 𝑥) = (𝑢
1 (𝑡, 𝑥) , 𝑢2 (𝑡, 𝑥) , . . . , 𝑢𝑛 (𝑡, 𝑥))

T
,

𝑢 (𝑡 − 𝜏
𝑗 (𝑡) , 𝑥) = (𝑢

1
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥) ,

𝑢
2
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥) , . . . ,

𝑢
𝑛
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥))

T
(𝑗 = 1, 2, . . . , 𝑝) ,

∫

𝑡

𝑡−𝑟(𝑡)

𝑢 (𝑠, 𝑥) d𝑠 = (∫

𝑡

𝑡−𝑟
1(𝑡)

𝑢
1 (𝑠, 𝑥) d𝑠, ∫

𝑡

𝑡−𝑟
2(𝑡)

𝑢
2 (𝑠, 𝑥) d𝑠,

. . . , ∫

𝑡

𝑡−𝑟
𝑛(𝑡)

𝑢
𝑛 (𝑠, 𝑥) d𝑠)

T

,

𝐹 = (𝐹
1
, . . . , 𝐹

𝑛
)
T
, 𝐺 = (𝐺

1
, . . . , 𝐺

𝑛
)
T
,

𝐼
𝑘
= (𝐼
𝑘1
, . . . , 𝐼

𝑘𝑛
)
T

(𝑘 ∈ 𝑁) ,

𝜙 = (𝜙
1
, . . . , 𝜙

𝑛
)
T
,

𝐷 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) = (𝐷
𝑖𝑙 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)))𝑛×𝑚,

∇𝑢 = (∇𝑢
1
, . . . , ∇𝑢

𝑛
)
T
, ∇𝑢

𝑖
= (

𝜕𝑢
𝑖

𝜕𝑥
1

, . . . ,
𝜕𝑢
𝑖

𝜕𝑥
𝑚

) ,

𝐷 ∘ ∇𝑢 = (𝐷
𝑖𝑙 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

𝜕𝑢
𝑖

𝜕𝑥
𝑙

)

𝑛×𝑚

,

𝑌 = (𝑌
1
, . . . , 𝑌

𝑛
)
T
, 𝑌

𝑖
= (𝑦
𝑖1
, . . . , 𝑦

𝑖𝑚
)
T
,

∇ ⋅ 𝑌
𝑖
=

𝑚

∑

𝑙=1

𝜕𝑦
𝑖𝑙

𝜕𝑥
𝑙

, ∇ ⋅ 𝑌 = (∇ ⋅ 𝑌
1
, . . . , ∇ ⋅ 𝑌

𝑛
)
T
.

(3)

𝑢
𝑖
(𝑡, 𝑥) is the state variable, 𝑥

𝑖
is the space variable,

𝐷
𝑖𝑙
(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) ≥ 0 is a diffusion operator, 𝜏

𝑗
(𝑡) and 𝑟

𝑖
(𝑡) are

time-varying functions, 𝑤(𝑡) = (𝑤
1
(𝑡), 𝑤
2
(𝑡), . . . , 𝑤

𝑛
(𝑡))

T
∈

R𝑛 is a Brownian motion defined on a complete probability
space (𝑆,F,P), and 𝐼

𝑘𝑖
is the impulsive function; 𝛾 =

max
1≤𝑗≤𝑝,1≤𝑖≤𝑛

{𝜏
𝑗
, 𝑟
𝑖
}, 𝜏
𝑗
= sup

𝑡≥0
𝜏
𝑗
(𝑡), and 𝑟

𝑖
= sup

𝑡≥0
𝑟
𝑖
(𝑡).

The organization of this paper is as follows. In Section 2,
some preliminaries are given. In Section 3, by transforming
the solutions of the stochastic reaction-diffusion differential
system with delay and impulsive effects into that of the
corresponding system without impulses, some stability cri-
teria for the stochastic reaction-diffusion differential system
with delay and impulsive effects are derived. In Section 4,
the stability criteria are applied to impulsive stochastic
reaction-diffusionCohen-Grossberg neural networks (ISRD-
CGNNs) with mixed time delays, and sufficient conditions
are obtained for the exponential 𝑝-stability of the zero
solution to the neural networks. In Section 5, a numerical
example is provided to illustrate the effectiveness of the
theoretical results. A concluding remark is given in Section 6
to end this work.

2. Preliminaries

For convenience, we introduce several notations. Let
𝑃𝐶([−𝛾, 0] × Ω,R𝑛) := {𝑢(𝑡, 𝑥) : [−𝛾, 0] × Ω → R𝑛|𝑢(𝑡, 𝑥) is
continuous at 𝑡 ̸= 𝑡

𝑘
, 𝑢(𝑡
−

𝑘
, 𝑥) = 𝑢(𝑡

𝑘
, 𝑥), and 𝑢(𝑡+

𝑘
, 𝑥) exists for

𝑡
𝑘
}. For 𝑢(𝑡, 𝑥) = (𝑢

1
(𝑡, 𝑥), . . . , 𝑢

𝑛
(𝑡, 𝑥))

T
∈ R𝑛, we define

‖𝑢 (𝑡, 𝑥)‖ =

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 =

𝑛

∑

𝑖=1

(∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝d𝑥)
1/𝑝

, (4)

and for 𝜙(𝑠, 𝑥) = (𝜙
1
(𝑠, 𝑥), . . . , 𝜙

𝑛
(𝑠, 𝑥))

T
∈ 𝑃𝐶([−𝛾, 0] ×

Ω,R𝑛), we define ‖𝜙(𝑠, 𝑥)‖ = sup
−𝛾≤𝑠≤0

∑
𝑛

𝑖=1
‖𝜙
𝑖
(𝑠, 𝑥)‖.

Denote 𝑃𝐶
𝑏

𝐹
0

([−𝛾, 0] × Ω,R𝑛) : = {𝑢(𝑡, 𝑥) ∈ 𝑃𝐶([−𝛾, 0] ×

Ω,R𝑛)|𝑢(𝑡, 𝑥) is bounded, 𝐹
0
-measurable, and 𝐸‖𝑢(𝑡, 𝑥)‖ <

∞}, 𝑃𝐶𝑏
𝐹
0

(𝛿) := {𝑢(𝑡, 𝑥) ∈ 𝑃𝐶
𝑏

𝐹
0

([−𝛾, 0] × Ω,R𝑛)|𝐸‖𝑢(𝑡, 𝑥)‖ ≤

𝛿}. Throughout this paper, we always assume that a product
equals to unity if the number of factors is zero.
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Definition 1. A function 𝑢(𝑡, 𝑥) : [−𝛾, 0] × Ω → R𝑛 is said
to be the solution of system (2) if the following conditions are
satisfied:

(i) 𝑢(𝑡, 𝑥) is piecewise continuous with the first kind
discontinuity at the points 𝑡

𝑘
, 𝑘 ∈ 𝑁.Moreover,𝑢(𝑡, 𝑥)

is left continuous at each point,
(ii) 𝑢(𝑡, 𝑥) satisfies system (2).

Definition 2. The zero solution of system (2) is said to be as
follows.

(i) 𝑝-stable if, for any 𝜀 > 0, there exists a 𝛿 > 0 such that
the initial function 𝜙 ∈ 𝑃𝐶

𝑏

𝐹
0

(𝛿) implies 𝐸‖𝑢(𝑡, 𝑥)‖𝑝 <
𝜀 for (𝑡, 𝑥) ∈ (0, +∞) × Ω. Especially, when 𝑝 = 1, it
is said to be stable.

(ii) Exponentially 𝑝-stable if there is a pair of positive
constants 𝜆 and 𝐾 such that, for any initial condition
𝜙 ∈ 𝑃𝐶

𝑏

𝐹
0

([−𝛾, 0] × Ω,R𝑛), there holds 𝐸‖𝑢(𝑡, 𝑥)‖𝑝 ≤
𝐾‖𝜙‖
𝑝
𝑒
−𝜆𝑡, 𝑡 ≥ 0. Here, 𝜆 is called the exponential

convergence rate. When 𝑝 = 2 especially, it is said to
be exponentially stable in mean square.

(iii) Asymptotically stable if it is stable, and there exists
a 𝛿 > 0 such that the initial function 𝜙 ∈ 𝑃𝐶

𝑏

𝐹
0

(𝛿)

implies lim
𝑡→∞

𝐸‖𝑢(𝑡, 𝑥)‖ = 0.

For system (2), one makes the following assumptions:

(H1) 0 ≤ 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ are fixed impulsive

moments such that 𝑡
𝑘
→ ∞ as 𝑘 → ∞;

(H2) 𝐹, 𝐺 : 𝑅
+
×𝑅
𝑛
× ⋅ ⋅ ⋅ × 𝑅

𝑛
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝+2

→ 𝑅
𝑛 satisfy 𝐹(𝑡, 0, . . . , 0) ≡

0 and 𝐺(𝑡, 0, . . . , 0) ≡ 0;
(H3) 𝐼

𝑘
: 𝑅
𝑛
→ 𝑅
𝑛 satisfies 𝐼

𝑘
(0) = 0, 𝑘 ∈ 𝑁;

(H4) except for the zero solution of (2), for any solution
𝑢(𝑡, 𝑥) of (2), 𝑢(𝑡, 𝑥) ̸= 0 and 𝐼

𝑘
(𝑢(𝑡
𝑘
, 𝑥)) ̸= − 𝑢(𝑡

𝑘
, 𝑥),

𝑘 ∈ 𝑁.

Denoting

𝐽
𝑘𝑖
: =

𝑢
𝑖
(𝑡
𝑘
, 𝑥)

𝑢
𝑖
(𝑡
𝑘
, 𝑥) + 𝐼

𝑘𝑖
(𝑢
1
(𝑡
𝑘
, 𝑥) , . . . , 𝑢

𝑛
(𝑡
𝑘
, 𝑥))

,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑁,

(5)

we consider the following delayed stochastic reaction-
diffusion differential system without impulses:

dV (𝑡, 𝑥) = ∇ ⋅ (𝐷 (𝑡, 𝑥, V (𝑡, 𝑥)) ∘ ∇V (𝑡, 𝑥)) d𝑡

+ ∏

0≤𝑡
𝑘
<𝑡

𝐽
𝑘
𝐹(𝑡, V (𝑡, 𝑥) , V (𝑡 − 𝜏

1 (𝑡) , 𝑥) , . . . ,

V (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

V (𝑠, 𝑥) 𝑑𝑠) d𝑡

+ ∏

0≤𝑡
𝑘
<𝑡

𝐽
𝑘
𝐺(𝑡, V (𝑡, 𝑥) , V (𝑡 − 𝜏

1 (𝑡) , 𝑥) , . . . ,

V (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

V (𝑠, 𝑥) d𝑠) d𝑤 (𝑡) ,

V (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) , (𝑡, 𝑥) ∈ [−𝛾, 0] × Ω,

(6)

where

𝐽
𝑘
= diag (𝐽

𝑘1
, 𝐽
𝑘2
, . . . , 𝐽

𝑘𝑛
) ,

𝐷 (𝑡, 𝑥, V (𝑡, 𝑥)) = 𝐷(𝑡, 𝑥, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
V (𝑡, 𝑥)) ,

𝐹(𝑡, V (𝑡, 𝑥) , V (𝑡 − 𝜏
1 (𝑡) , 𝑥) , . . . ,

V (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) , ∫

𝑡

𝑡−𝑟(𝑡)

V (𝑠, 𝑥) d𝑠)

= 𝐹(𝑡, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
V (𝑡, 𝑥) ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
1(𝑡)

𝐽
−1

𝑘
V (𝑡 − 𝜏

1 (𝑡) , 𝑥) , . . . ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
𝑝(𝑡)

𝐽
−1

𝑘
V (𝑡 − 𝜏

𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

∏

0≤𝑡
𝑘
<𝑠

𝐽
−1

𝑘
V (𝑠, 𝑥) d𝑠) ,

𝐺(𝑡, V (𝑡, 𝑥) , V (𝑡 − 𝜏
1 (𝑡) , 𝑥) , . . . ,

V (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) , ∫

𝑡

𝑡−𝑟(𝑡)

V (𝑠, 𝑥) d𝑠)

= 𝐺(𝑡, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
V (𝑡, 𝑥) ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
1(𝑡)

𝐽
−1

𝑘
V (𝑡 − 𝜏

1 (𝑡) , 𝑥) , . . . ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
𝑝(𝑡)

𝐽
−1

𝑘
V (𝑡 − 𝜏

𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

∏

0≤𝑡
𝑘
<𝑠

𝐽
−1

𝑘
V (𝑠, 𝑥) d𝑠) .

(7)

A function vector V(𝑡, 𝑥) is a solution of (6) on [−𝛾, +∞)×

Ω if it is absolutely continuous on [−𝛾, +∞) × Ω and satisfies
(6) almost everywhere for 𝑡 ≥ 0 and 𝑥 ∈ Ω.
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3. Stability Criteria

In this section, we first establish an equivalent relation
between the solution of system (2) and that of system (6).

Lemma 3. Assume that (H1)–(H4) hold. Then 𝑢(𝑡, 𝑥) is a
solution of system (2) if and only if V(𝑡, 𝑥) is a solution of
system (6), where 𝑢(𝑡, 𝑥) = ∏

0≤𝑡
𝑘
<𝑡
𝐽
−1

𝑘
V(𝑡, 𝑥) or V(𝑡, 𝑥) =

∏
0≤𝑡
𝑘
<𝑡
𝐽
𝑘
𝑢(𝑡, 𝑥).

Proof. First, we prove the sufficiency. Letting V(𝑡, 𝑥) be a
solution of system (6), we derive that, for any 𝑡 ̸= 𝑡

𝑘
,

d𝑢 (𝑡, 𝑥) = d( ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
V (𝑡, 𝑥)) = ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
d (V (𝑡, 𝑥))

= ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
∇ ⋅ (𝐷 (𝑡, 𝑥, V (𝑡, 𝑥)) ∘ ∇V (𝑡, 𝑥)) d𝑡

+ 𝐹(𝑡, V (𝑡, 𝑥) , V (𝑡 − 𝜏
1 (𝑡) , 𝑥) , . . . ,

V (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) , ∫

𝑡

𝑡−𝑟(𝑡)

V (𝑠, 𝑥) d𝑠) d𝑡

+ 𝐺(𝑡, V (𝑡, 𝑥) , V (𝑡 − 𝜏
1 (𝑡) , 𝑥) ,

. . . , V (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

V (𝑠, 𝑥) d𝑠) d𝑤 (𝑡)

= ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
∇ ⋅ (𝐷(𝑡, 𝑥, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
V (𝑡, 𝑥))

∘∇( ∏

0≤𝑡
𝑘
<𝑡

𝐽
𝑘
𝑢 (𝑡, 𝑥))) d𝑡

+ 𝐹(𝑡, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
V (𝑡, 𝑥) ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
1(𝑡)

𝐽
−1

𝑘
V (𝑡 − 𝜏

1 (𝑡) , 𝑥) , . . . ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
𝑝(𝑡)

𝐽
−1

𝑘
V (𝑡 − 𝜏

𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

∏

0≤𝑡
𝑘
<𝑠

𝐽
−1

𝑘
V (𝑠, 𝑥) d𝑠) d𝑡

+ 𝐺(𝑡, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘
V (𝑡, 𝑥) ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
1(𝑡)

𝐽
−1

𝑘
V (𝑡 − 𝜏

1 (𝑡) , 𝑥) , . . . ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
𝑝(𝑡)

𝐽
−1

𝑘
V (𝑡 − 𝜏

𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

∏

0≤𝑡
𝑘
<𝑠

𝐽
−1

𝑘
V (𝑠, 𝑥) d𝑠) d𝑤 (𝑡)

= ∇ ⋅ (𝐷 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) ∘ ∇𝑢 (𝑡, 𝑥)) d𝑡

+ 𝐹(𝑡, 𝑢 (𝑡, 𝑥) , 𝑢 (𝑡 − 𝜏
1 (𝑡) , 𝑥) , . . . ,

𝑢 (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) , ∫

𝑡

𝑡−𝑟(𝑡)

𝑢 (𝑠, 𝑥) d𝑠) d𝑡

+ 𝐺(𝑡, 𝑢 (𝑡, 𝑥) , 𝑢 (𝑡 − 𝜏
1 (𝑡) , 𝑥) , . . . ,

𝑢 (𝑡 − 𝜏
𝑝 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

𝑢 (𝑠, 𝑥) d𝑠) d𝑤 (𝑡) .

(8)

On the other hand, for any 𝑘 ∈ 𝑁, we have

𝑢 (𝑡
+

𝑘
, 𝑥) = lim

𝑡→ 𝑡
+

𝑘

∏

0≤𝑡
𝑗
<𝑡

𝐽
−1

𝑗
V (𝑡, 𝑥) = ∏

0≤𝑡
𝑗
≤𝑡
𝑘

𝐽
−1

𝑗
V (𝑡+
𝑘
, 𝑥)

= 𝐽
−1

𝑘
∏

0≤𝑡
𝑗
<𝑡
𝑘

𝐽
−1

𝑗
V (𝑡
𝑘
, 𝑥) = 𝐽

−1

𝑘
𝑢 (𝑡
𝑘
, 𝑥)

= 𝑢 (𝑡
𝑘
, 𝑥) + 𝐼

𝑘
(𝑢 (𝑡
𝑘
, 𝑥)) ,

(9)

𝑢 (𝑡
−

𝑘
, 𝑥) = lim

𝑡→ 𝑡
−

𝑘

∏

0≤𝑡
𝑗
<𝑡

𝐽
−1

𝑗
V (𝑡, 𝑥)

= ∏

0≤𝑡
𝑗
<𝑡
𝑘

𝐽
−1

𝑗
V (𝑡−
𝑘
, 𝑥)

= ∏

0≤𝑡
𝑗
<𝑡
𝑘

𝐽
−1

𝑗
V (𝑡
𝑘
, 𝑥) = 𝑢 (𝑡

𝑘
, 𝑥) .

(10)

Further, if V(𝑡, 𝑥) is a solution of system (6) with initial
condition V(𝑡, 𝑥) = 𝜙(𝑡, 𝑥), (𝑡, 𝑥) ∈ [−𝛾, 0] × Ω, then
𝑢(𝑡, 𝑥) = ∏

0≤𝑡
𝑘
<𝑡
𝐽
−1

𝑘
V(𝑡, 𝑥) = V(𝑡, 𝑥) = 𝜙(𝑡, 𝑥), (𝑡, 𝑥) ∈

[−𝛾, 0] × Ω. Therefore, 𝑢(𝑡, 𝑥) is a solution of system (2)
with initial condition 𝑢(𝑡, 𝑥) = 𝜙(𝑡, 𝑥), (𝑡, 𝑥) ∈ [−𝛾, 0] × Ω,
and the sufficiency is proved. Similarly, we can prove the
necessity.

Remark 4. Lemma 3 gives the equivalent relation between the
solution of a stochastic reaction-diffusion differential delay
system with impulsive effects and the solution of a corre-
sponding system without impulses. Based on the “equivalent
method,” the existence and uniqueness of the solution of a
stochastic reaction-diffusion differential delay system with
impulsive effects can be derived by a new way; that is, any
conditions that ensure the existence and uniqueness of the
solution of system (6) without impulses will also ensure the
existence and uniqueness of the system (2) with impulses.

In what follows, we will reduce the stabilities of system (2)
to those of corresponding system (6).
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Theorem 5. Under assumptions (H1)–(H4), if there exists a
constant𝑀 > 0 such that, for any 𝑡 > 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀, 𝑖 = 1, 2, . . . , 𝑛, (11)

and the zero solution of (6) is 𝑝-stable (exponentially 𝑝-stable,
asymptotically stable), then the zero solution of (2) is also 𝑝-
stable (exponentially 𝑝-stable, asymptotically stable).

Proof. Let 𝑢(𝑡, 𝑥) and V(𝑡, 𝑥) be the solutions of systems (2)
and (6), respectively. Since the zero solution of (6) is 𝑝-stable,
we have that, for any 𝜀 > 0, there exists a scalar 𝛿 > 0 such
that the initial condition 𝜙 ∈ 𝑃𝐶

𝑏

𝐹
0

(𝛿) implies 𝐸‖V(𝑡, 𝑥)‖𝑝 <
𝜀/𝑀
𝑝 for (𝑡, 𝑥) ∈ (0, +∞) × Ω. By Lemma 3, 𝑢(𝑡, 𝑥) =

∏
0≤𝑡
𝑘
<𝑡
𝐽
−1

𝑘
V(𝑡, 𝑥) is a solution of (2) on (𝑡, 𝑥) ∈ [−𝛾, +∞)×Ω.

Furthermore, it is easy to see that

𝐸‖𝑢 (𝑡, 𝑥)‖
𝑝
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢
1 (𝑡, 𝑥) , . . . , 𝑢𝑛 (𝑡, 𝑥))

T󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

( ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘1
V
1 (𝑡, 𝑥) , . . . ,

∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑛
V
𝑛 (𝑡, 𝑥))

T󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

= 𝐸[

[

𝑛

∑

𝑖=1

(∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

d𝑥)
1/𝑝

]

]

𝑝

≤ 𝐸[𝑀

𝑛

∑

𝑖=1

(∫
Ω

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝d𝑥)
1/𝑝

]

𝑝

= 𝑀
𝑝
𝐸‖V(𝑡, 𝑥)‖𝑝 < 𝑀

𝑝
⋅

𝜀

𝑀𝑝
= 𝜀.

(12)

Hence, the zero solution of (2) is 𝑝-stable. Using similar
arguments, we can verify that if the zero solution of (6) is
exponentially 𝑝-stable (asymptotically stable), then the zero
solution of (2) is also exponentially 𝑝-stable (asymptotically
stable). This completes the proof.

In a similar way, we can derive the following results.

Theorem 6. Under assumptions (H1)–(H4), if there exists a
constant 𝐿 > 0 such that, for any 𝑡 > 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏

0≤𝑡
𝑘
<𝑡

𝐽
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐿, 𝑖 = 1, 2, . . . , 𝑛, (13)

and the zero solution of (2) is 𝑝-stable (exponentially 𝑝-stable,
asymptotically stable), then the zero solution of (6) is also 𝑝-
stable (exponentially 𝑝-stable, asymptotically stable).

Combining Theorems 5 and 6, one can easily obtain the
following results.

Theorem 7. Assume that (H1)–(H4) hold and inequalities (11)
and (13) are satisfied, then the zero solution of (2) is 𝑝-stable
(exponentially 𝑝-stable, asymptotically stable) if and only if the
zero solution of (6) is also 𝑝-stable (exponentially 𝑝-stable,
asymptotically stable).

Remark 8. For impulsive neural networks, many researchers
supposed that the impulsive operators are linear (e.g., [7, 12–
15]); that is,

𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
𝑘
) = −𝛾

𝑘𝑖
𝑥
𝑖
(𝑡
𝑘
) , 0 < 𝛾

𝑘𝑖
≤ 2. (14)

From the definition of 𝐽
𝑘𝑖
in Section 2, we have |𝐽−1

𝑘𝑖
| = |1 −

𝛾
𝑘𝑖
| < 1; then |∏

0≤𝑡
𝑘
<𝑡
𝐽
−1

𝑘𝑖
| ≤ 1. Obviously, the condition

(11) in Theorem 5 is less conservative than (14), in which (11)
ensures that the stability of the delayed stochastic reaction-
diffusion differential system without impulses can be used to
judge the stability of the corresponding systemwith impulses.

Remark 9. In [2, 8], the authors dealt with the stochastic dif-
ferential systems with delay and nonlinear impulsive effects,
the stability results of which were showed by transforming
the system into a corresponding system without impulses.
However, the distributed delays and diffusion effects were not
taken into account in the previous systems. In this paper,
we incorporated stochastic perturbations, reaction-diffusion
effects, and mixed time delays into impulsive differential
system and derived the stability criteria of the system. It is
readily seen that our results are more general than those
reported in [2, 8].

4. Application to Impulsive Stochastic
Reaction-Diffusion Neural Networks

In this section, we apply our previous stability results to
analyze the stability of the following ISRDCGNNs with time
delays:

d𝑢
𝑖 (𝑡, 𝑥) =

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖𝑙
(𝑡, 𝑥, 𝑢

𝑖 (𝑡, 𝑥))
𝜕𝑢
𝑖 (𝑡, 𝑥)

𝜕𝑥
𝑙

) d𝑡

− 𝛼
𝑖
(𝑢
𝑖 (𝑡, 𝑥))

[

[

𝛽
𝑖
(𝑢
𝑖 (𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗 (𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
ℎ
𝑗
(∫

𝑡

𝑡−𝑟(𝑡)

𝑢
𝑗(𝑠, 𝑥)d𝑠)]

]

d𝑡
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+

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑡, 𝑢
𝑗 (𝑡, 𝑥) , 𝑢𝑗 (𝑡 − 𝜏

𝑖𝑗 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

𝑢
𝑗 (𝑠, 𝑥) d𝑠) d𝑤

𝑖 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

𝑢
𝑖
(𝑡
+

𝑘
, 𝑥) − 𝑢

𝑖
(𝑡
𝑘
, 𝑥) = 𝐼

𝑘𝑖
(𝑢
1
(𝑡
𝑘
, 𝑥) , . . . , 𝑢

𝑛
(𝑡
𝑘
, 𝑥)) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑁, 𝑖 = 1, 2, . . . , 𝑛,

(15)

where 𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), . . . , 𝑢

𝑛
(𝑡, 𝑥))

T
∈ R𝑛 denotes

the state vector associated with the neurons, 𝑥 ∈ Ω ⊂ R𝑚,
and Ω = {𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)
T
||𝑥
𝑘
| < 𝑙
𝑘
, 𝑘 = 1, 2, . . . , 𝑚}

is a bounded compact set with smooth boundary 𝜕Ω and
mesΩ > 0, 𝐷

𝑖𝑙
(𝑡, 𝑥, 𝑢

𝑖
(𝑡, 𝑥)) ≥ 0 denotes the diffusion

function, and let 𝐷
𝑖𝑙

= sup
𝑡≥0,𝑥∈Ω

𝐷
𝑖𝑙
(𝑡, 𝑥, 𝑢

𝑖
(𝑡, 𝑥)); (𝑎

𝑖𝑗
)
𝑛×𝑛

,
(𝑏
𝑖𝑗
)
𝑛×𝑛

and (𝑐
𝑖𝑗
)
𝑛×𝑛

are the interconnection weight matrices,
𝛼
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) represents an amplification function,𝛽

𝑖
(𝑢
𝑖
(𝑡, 𝑥)) is

an appropriately behaved function, 𝑓
𝑗
, 𝑔
𝑗
, and ℎ

𝑗
denote the

activation functions, and (𝜎
𝑖𝑗
)
𝑛×𝑛

is the diffusion coefficient
matrix; 𝜎

𝑖
= (𝜎
𝑖1
, 𝜎
𝑖2
, . . . , 𝜎

𝑖𝑛
), 𝛽
𝑖
(0) = 𝑓

𝑖
(0) = 𝑔

𝑖
(0) = ℎ

𝑖
(0) =

𝜎
𝑖𝑗
(0) = 0, and 𝜏

𝑖𝑗
(𝑡) ≤ 𝜏, 𝑟(𝑡) ≤ 𝑟.

The boundary condition and the initial value of system
(15) are

𝑢
𝑖 (𝑡, 𝑥) |𝜕Ω = 0, (𝑡, 𝑥) ∈ [−𝛿, +∞) × 𝜕Ω, 𝑖 = 1, 2, . . . , 𝑛,

𝑢
𝑖 (𝑠, 𝑥) = 𝜙

𝑖 (𝑠, 𝑥) , (𝑠, 𝑥) ∈ [−𝛿, 0] × Ω, 𝑖 = 1, 2, . . . , 𝑛,

(16)

where 𝛿 = max{𝜏, 𝑟}.
Equivalently, we consider the following stochastic re-

action-diffusion Cohen-Grossberg neural networks without
impulses:

dV
𝑖 (𝑡, 𝑥)

=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖𝑙
(𝑡, 𝑥, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥))

𝜕V
𝑖 (𝑡, 𝑥)

𝜕𝑥
𝑙

) d𝑡

− ∏

0≤𝑡
𝑘
<𝑡

𝐽
𝑘𝑖
⋅ 𝛼
𝑖
( ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥))

× [

[

𝛽
𝑖
( ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
( ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑗
V
𝑗 (𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
( ∏

0≤𝑡
𝑘
<𝑡−𝜏
𝑖𝑗(𝑡)

𝐽
−1

𝑘𝑗
V
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
ℎ
𝑗
(∫

𝑡

𝑡−𝑟(𝑡)

∏

0≤𝑡
𝑘
<𝑠

𝐽
−1

𝑘𝑠
V
𝑗 (𝑠, 𝑥) d𝑠)]

]

d𝑡

+ ∏

0≤𝑡
𝑘
<𝑡

𝐽
𝑘𝑖
⋅

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑡, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑗
V
𝑗 (𝑡, 𝑥) ,

∏

0≤𝑡
𝑘
<𝑡−𝜏
𝑖𝑗(𝑡)

𝐽
−1

𝑘𝑗
V
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥) ,

∫

𝑡

𝑡−𝑟(𝑡)

∏

0≤𝑡
𝑘
<𝑠

𝐽
−1

𝑘𝑗
V
𝑗 (𝑠, 𝑥) d𝑠) d𝑤

𝑖 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑛.

(17)

Throughout this section, we make the following assump-
tions:

(H5) 𝛼
𝑖
(𝑢) is a continuous function, and 0 < 𝛼

𝑖
≤ 𝛼
𝑖
(𝑢) ≤

𝛼
𝑖
for all 𝑢 ∈ R, 𝑖 = 1, 2, . . . , 𝑛;

(H6) there exists a constant 𝛽
𝑖
> 0 such that

𝛽
𝑖 (𝑢) − 𝛽

𝑖 (V)

𝑢 − V
≥ 𝛽
𝑖
, (18)

for all 𝑢, V ∈ R(𝑢 ̸= V), 𝑖 = 1, 2, . . . , 𝑛;
(H7) there exist positive constants 𝐹

𝑖
, 𝐺
𝑖
, and𝐻

𝑖
such that

𝐹
𝑖
= sup
𝑢 ̸= V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝑖 (𝑢) − 𝑓

𝑖 (V)

𝑢 − V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, 𝐺

𝑖
= sup
𝑢 ̸= V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑖 (𝑢) − 𝑔

𝑖 (V)

𝑢 − V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝐻
𝑖
= sup
𝑢 ̸= V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
𝑖 (𝑢) − ℎ

𝑖 (V)

𝑢 − V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(19)

for all 𝑢, V ∈ R(𝑢 ̸= V), 𝑖 = 1, 2, . . . , 𝑛;
(H8) there exist positive constants 𝑠(1)

𝑖𝑗
, 𝑠(2)
𝑖𝑗
, and 𝑠

(3)

𝑖𝑗
(𝑖, 𝑗 =

1, 2, . . . , 𝑛) such that

(𝜎
𝑖
(𝑡, 𝑢
(1)
, 𝑢
(2)
, 𝑢
(3)
) − 𝜎
𝑖
(𝑡, V(1), V(2), V(3)))

× (𝜎
𝑖
(𝑡, 𝑢
(1)
, 𝑢
(2)
, 𝑢
(3)
) − 𝜎
𝑖
(𝑡, V(1), V(2), V(3)))

T

≤

𝑛

∑

𝑗=1

(𝑠
(1)

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑢
(1)

𝑗
− V(1)
𝑗

󵄨󵄨󵄨󵄨󵄨

2

+𝑠
(2)

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑢
(2)

𝑗
− V(2)
𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑠
(3)

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑢
(3)

𝑗
− V(3)
𝑗

󵄨󵄨󵄨󵄨󵄨

2

) ,

(20)

for all 𝑢(𝑘) = (𝑢
(𝑘)

1
, 𝑢
(𝑘)

2
, . . . , 𝑢

(𝑘)

𝑛
), V(𝑘) = (V(𝑘)

1
, V(𝑘)
2
, . . .,

V(𝑘)
𝑛
), 𝑘 = 1, 2, 3.

The following lemmas are useful in proving our main
results.

Lemma 10 (see [16]). Let𝑄 be an 𝑛×𝑛matrixwith nonpositive
off-diagonal elements; then 𝑄 is an M-matrix if and only if
there exists a vector 𝜉 > 0 such that 𝑄𝜉 > 0.

Lemma 11 (see [10]). Let 𝑝 ≥ 2 be a positive inte-
ger, 𝑙
𝑘
(𝑘 = 1, 2, . . . , 𝑚) positive constants, and cube
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Ω = {𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)
T
∈ R𝑚||𝑥

𝑘
| < 𝑙
𝑘
, 𝑘 = 1, 2, . . . , 𝑚}.

Let ℎ(𝑥) be a real-valued function belonging to 𝐶
1
(Ω) which

vanishes on the boundary 𝜕Ω of Ω, that is, ℎ(𝑥)|
𝜕Ω=0

. Then

∫
Ω

|ℎ (𝑥)|
𝑝 d𝑥 ≤

𝑝
2
𝑙
2

𝑘

4
∫
Ω

|ℎ (𝑥)|
𝑝−2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕ℎ(𝑥)

𝜕𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝑥,

𝑘 = 1, 2, . . . , 𝑚.

(21)

Lemma 12 (see [17]). Let 𝑎, 𝑏 ≥ 0, 𝑝 ≥ 𝑖 > 0; then

𝑎
𝑝−𝑖

𝑏
𝑖
≤
𝑝 − 𝑖

𝑝
𝑎
𝑝
+

𝑖

𝑝
𝑏
𝑝
. (22)

Theorem 13. Under assumptions (H5)–(H8), if inequalities
(11) and (13) are satisfied and 𝑄 + 𝑇 is an M-matrix, where

𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

,

𝑞
𝑖𝑗
= −𝐿𝑀𝛼

𝑖
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗
) ,

𝑇 = (𝑡
𝑖𝑗
)
𝑛×𝑛

,

𝑡
𝑖𝑗
= − (𝑝 − 1) 𝐿

2
𝑀
2
(𝑠
(1)

𝑖𝑗
+ 𝑠
(2)

𝑖𝑗
+ 𝑟
2
𝑠
(3)

𝑖𝑗
) (𝑖 ̸= 𝑗) ,

𝑡
𝑖𝑖
=
4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

𝑙2
𝑖

+ 𝑝𝛼
𝑖
𝛽
𝑖

− (𝑝 − 1) 𝐿𝑀𝛼
𝑖

×

𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

+
(𝑝 − 2) 𝐿𝑀

2𝛼
𝑖

(𝑠
(1)

𝑖𝑗
+ 𝑠
(2)

𝑖𝑗
+ 𝑟
2
𝑠
(3)

𝑖𝑗
)]

− (𝑝 − 1) 𝐿
2
𝑀
2
(𝑠
(1)

𝑖𝑖
+ 𝑠
(2)

𝑖𝑖
+ 𝑟
2
𝑠
(3)

𝑖𝑖
) ,

(23)

then the zero solution of system (15) is exponentially 𝑝-stable.

Proof. Since𝑄+𝑇 is an M-matrix, by Lemma 10, there exists
𝜉 = (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
)
T such that (𝑄 + 𝑇)𝜉 > 0; that is,

[
4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

𝑙2
𝑖

+ 𝑝𝛼
𝑖
𝛽
𝑖
− (𝑝 − 1) 𝐿𝑀𝛼

𝑖

×

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

+
(𝑝 − 2) 𝐿𝑀

2𝛼
𝑖

(𝑠
(1)

𝑖𝑗
+ 𝑠
(2)

𝑖𝑗
+ 𝑟
2
𝑠
(3)

𝑖𝑗
))] 𝜉

𝑖

− 𝐿𝑀𝛼
𝑖

𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖

(𝑠
(1)

𝑖𝑗
+ 𝑠
(2)

𝑖𝑗
+ 𝑟
2
𝑠
(3)

𝑖𝑗
)] 𝜉
𝑗
> 0,

𝑖 = 1, 2, . . . , 𝑛.

(24)

We can choose a sufficiently small constant 𝜖 > 0 such
that

[
4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

𝑙2
𝑖

+ 𝑝𝛼
𝑖
𝛽
𝑖
− 𝜖 − (𝑝 − 1) 𝐿𝑀𝛼

𝑖

×

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

+
(𝑝 − 2) 𝐿𝑀

2𝛼
𝑖

(𝑠
(1)

𝑖𝑗
+ 𝑠
(2)

𝑖𝑗
+ 𝑟
2
𝑠
(3)

𝑖𝑗
))] 𝜉

𝑖

− 𝐿𝑀𝛼
𝑖

𝑛

∑

𝑗=1

[(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖

𝑠
(1)

𝑖𝑗
)

+ 𝑒
𝜖𝜏
(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖

𝑠
(2)

𝑖𝑗
)

+
𝑒
𝜖𝑟−1

𝜖
(
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗
+
(𝑝 − 1) 𝐿𝑀𝑟

𝛼
𝑖

𝑠
(3)

𝑖𝑗
)] 𝜉
𝑗
> 0.

(25)

Let 𝑤
𝑖
(𝑡, 𝑥) = 𝑒

𝜖𝑡
∫
Ω
|V
𝑖
(𝑡, 𝑥)|

𝑝d𝑥, 𝑝 ≥ 2, 𝑖 = 1, 2, . . . , 𝑛. By the
Itô differential formula, the stochastic derivative of 𝑤

𝑖
(𝑡, 𝑥)

along (17) can be derived as follows:

𝐿𝑤
𝑖 (𝑡, 𝑥)

= 𝜖𝑒
𝜖𝑡
∫
Ω

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝d𝑥

+ 𝑝𝑒
𝜖𝑡 sgn (V

𝑖 (𝑡, 𝑥)) ∫
Ω

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝−1

× [

[

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖𝑙
(𝑡, 𝑥, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥))

𝜕V
𝑖 (𝑡, 𝑥)

𝜕𝑥
𝑙

)

− ∏

0≤𝑡
𝑘
<𝑡

𝐽
𝑘𝑖
⋅ 𝛼
𝑖
( ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥))

× [𝛽
𝑖
( ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
( ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑗
V
𝑗 (𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
( ∏

0≤𝑡
𝑘
<𝑡−𝜏
𝑖𝑗(𝑡)

𝐽
−1

𝑘𝑗
V
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥))
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𝑛

∑

𝑗=1

𝑐
𝑖𝑗
ℎ
𝑗
(∫

𝑡

𝑡−𝑟(𝑡)

∏

0≤𝑡
𝑘
<𝑠

𝐽
−1

𝑘𝑠
V
𝑗 (𝑠, 𝑥) d𝑠)]

]

]

]

d𝑥

+
𝑝 (𝑝 − 1)

2
𝑒
𝜖𝑡
( ∏

0≤𝑡
𝑘
<𝑡

𝐽
𝑘𝑖
)

2

∫
Ω

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝−2

𝜎
𝑖
𝜎
T
𝑖
d𝑥,

𝑖 = 1, 2, . . . , 𝑛.

(26)

By Lemma 11, we derive from (16) that

𝑝 sgn (V
𝑖 (𝑡, 𝑥)) ∫

Ω

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝−1

×

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖𝑙
(𝑡, 𝑥, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥))

×
𝜕V
𝑖 (𝑡, 𝑥)

𝜕𝑥
𝑙

) d𝑥

= 𝑝∫
Ω

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝−2

V
𝑖 (𝑡, 𝑥) ∇

⋅ (𝐷
𝑖𝑙
(𝑡, 𝑥, ∏

0≤𝑡
𝑘
<𝑡

𝐽
−1

𝑘𝑖
V
𝑖 (𝑡, 𝑥))

𝜕V
𝑖 (𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑚

𝑙=1

d𝑥

≤ −𝑝 (𝑝 − 1)∫
Ω

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝−2

(
𝜕V
𝑖 (𝑡, 𝑥)

𝜕𝑥
𝑙

)

2

d𝑥

≤ −
4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

𝑙2
𝑖

∫
Ω

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝d𝑥.

(27)

Applying assumptions (H5)–(H8) and Lemma 12, we can
deduce from (11), (13), and (27) that

𝐿𝑤
𝑖 (𝑡, 𝑥) ≤ 𝑒

𝜖𝑡
∫
Ω

[(𝜖 −
4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

𝑙2
𝑖

− 𝑝𝛼
𝑖
𝛽
𝑖
)

×
󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨
𝑝

+ 𝑝𝐿𝑀𝛼
𝑖

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝−1

×

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗

󵄨󵄨󵄨󵄨󵄨
V
𝑗 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗
∫

𝑡

𝑡−𝑟(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
𝑗 (𝑠, 𝑥)

󵄨󵄨󵄨󵄨󵄨
d𝑠)

+
𝑝 (𝑝 − 1)

2
𝐿
2
𝑀
2󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨
𝑝−2

×

𝑛

∑

𝑗=1

(𝑠
(1)

𝑖𝑗
V2
𝑗
(𝑡, 𝑥)

+ 𝑠
(2)

𝑖𝑗
V2
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥)

+𝑟𝑠
(3)

𝑖𝑗
∫

𝑡

𝑡−𝑟(𝑡)

V2
𝑗
(𝑠, 𝑥) d𝑠) ] d𝑥

≤ 𝑒
𝜖𝑡
∫
Ω

[(𝜖 −
4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

𝑙2
𝑖

− 𝑝𝛼
𝑖
𝛽
𝑖
)

×
󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨
𝑝

+ (𝑝 − 1) 𝐿𝑀𝛼
𝑖

󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
𝑝

×

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗
)

+ 𝐿𝑀𝛼
𝑖

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗

󵄨󵄨󵄨󵄨󵄨
V
𝑗 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

× 𝐺
𝑗

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

×∫

𝑡

𝑡−𝑟(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
𝑗 (𝑠, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

d𝑠)

+
(𝑝 − 1) (𝑝 − 2)

2
𝐿
2
𝑀
2󵄨󵄨󵄨󵄨V𝑖 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨
𝑝

×

𝑛

∑

𝑗=1

(𝑠
(1)

𝑖𝑗
+ 𝑠
(2)

𝑖𝑗
+ 𝑟
2
𝑠
(3)

𝑖𝑗
)

+ (𝑝 − 1) 𝐿
2
𝑀
2

×

𝑛

∑

𝑗=1

(𝑠
(1)

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
V
𝑗 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝑠
(2)

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝑟𝑠
(3)

𝑖𝑗

× ∫

𝑡

𝑡−𝑟(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
𝑗 (𝑠, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

) d𝑠] d𝑥

≤ [𝜖 −
4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

𝑙2
𝑖

− 𝑝𝛼
𝑖
𝛽
𝑖
+ (𝑝 − 1) 𝐿𝑀𝛼

𝑖

×

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

+
(𝑝 − 2) 𝐿𝑀

2𝛼
𝑖

× (𝑠
(1)

𝑖𝑗
+ 𝑠
(2)

𝑖𝑗
+ 𝑟
2
𝑠
(3)

𝑖𝑗
))]𝑤

𝑖 (𝑡, 𝑥)
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+ 𝐿𝑀𝛼
𝑖

𝑛

∑

𝑗=1

[(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖

𝑠
(1)

𝑖𝑗
)

× 𝑤
𝑗 (𝑡, 𝑥)

+ 𝑒
𝜖𝜏
(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗

+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖

𝑠
(2)

𝑖𝑗
)

× 𝑤
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥)

+ (
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗
+
(𝑝 − 1) 𝐿𝑀𝑟

𝛼
𝑖

𝑠
(3)

𝑖𝑗
)

× ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝜖(𝑡−𝑠)

𝑤
𝑗 (𝑠, 𝑥) d𝑠] .

(28)

Further, we can get

𝐷
+
(𝐸𝑤
𝑖 (𝑡, 𝑥))

≤ [𝜖 −
4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖𝑙

𝑙2
𝑖

− 𝑝𝛼
𝑖
𝛽
𝑖
+ (𝑝 − 1) 𝐿𝑀𝛼

𝑖

×

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

+
(𝑝 − 2) 𝐿𝑀

2𝛼
𝑖

(𝑠
(1)

𝑖𝑗
+ 𝑠
(2)

𝑖𝑗
+ 𝑟
2
𝑠
(3)

𝑖𝑗
))]𝐸𝑤

𝑖 (𝑡, 𝑥)

+ 𝐿𝑀𝛼
𝑖

𝑛

∑

𝑗=1

[(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖

𝑠
(1)

𝑖𝑗
)𝐸𝑤
𝑗 (𝑡, 𝑥)

+ 𝑒
𝜖𝜏
(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖

𝑠
(2)

𝑖𝑗
)

× 𝐸𝑤
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡) , 𝑥)

+ (
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗
+
(𝑝 − 1) 𝐿𝑀𝑟

𝛼
𝑖

𝑠
(3)

𝑖𝑗
)

×∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝜖(𝑡−𝑠)

𝐸𝑤
𝑗 (𝑠, 𝑥) d𝑠] .

(29)

Denoting 𝑘
0
= ‖𝜙‖

𝑝
/min
1≤𝑖≤𝑛

{𝜉
𝑖
}, we have

𝐸𝑤
𝑖 (𝑡, 𝑥) = 𝑒

𝜖𝑡
𝐸
󵄩󵄩󵄩󵄩V𝑖 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩
𝑝
≤ 𝐸

󵄩󵄩󵄩󵄩V𝑖 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩
𝑝

≤ 𝑘
0
𝜉
𝑖
, 𝑡 ∈ [−𝛿, 0] , 𝑖 = 1, 2, . . . , 𝑛.

(30)

In what follows, we prove that

𝐸𝑤
𝑖 (𝑡, 𝑥) ≤ 𝑘

0
𝜉
𝑖
, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛. (31)

In fact, if (31) is not true, then there exist 𝑖
0
∈ {1, 2, . . . , 𝑛} and

𝑡
∗
∈ [0, +∞) such that

𝐸𝑤
𝑖
0

(𝑡
∗
, 𝑥) ≤ 𝑘

0
𝜉
𝑖
0

, 𝐷
+
𝐸𝑤
𝑖
0

(𝑡
∗
, 𝑥) > 0,

𝐸𝑤
𝑗 (𝑡, 𝑥) ≤ 𝑘

0
𝜉
𝑗
, 𝑡 ∈ [−𝛿, 𝑡

∗
] , 𝑗 = 1, 2, . . . , 𝑛.

(32)

However, (25), (29), and (32) imply that

𝐷
+
(𝐸𝑤
𝑖
0

(𝑡
∗
, 𝑥))

≤ 𝑘
0
{[𝜖 −

4 (𝑝 − 1)

𝑝

𝑚

∑

𝑙=1

𝐷
𝑖
0
𝑙

𝑙2
𝑖
0

− 𝑝𝛼
𝑖
0

𝛽
𝑖
0

+ (𝑝 − 1) 𝐿𝑀𝛼
𝑖
0

×

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖
0
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗

+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖
0
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+ 𝑟

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖
0
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

+
(𝑝 − 2) 𝐿𝑀

2𝛼
𝑖
0

(𝑠
(1)

𝑖
0
𝑗
+ 𝑠
(2)

𝑖
0
𝑗
+ 𝑟
2
𝑠
(3)

𝑖
0
𝑗
))] 𝜉

𝑖
0

+ 𝐿𝑀𝛼
𝑖
0

×

𝑛

∑

𝑗=1

[(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖
0
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖
0

𝑠
(1)

𝑖
0
𝑗
)

+ 𝑒
𝜖𝜏
(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖
0
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑗
+
(𝑝 − 1) 𝐿𝑀

𝛼
𝑖
0

𝑠
(2)

𝑖
0
𝑗
)

+
𝑒
𝜖𝑟
− 1

𝜖
(
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖
0
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑗

+
(𝑝 − 1) 𝐿𝑀𝑟

𝛼
𝑖
0

𝑠
(3)

𝑖
0
𝑗
)] 𝜉
𝑗
}

< 0,

(33)

which is a contradiction. Hence, (31) holds, which leads to

𝐸
󵄩󵄩󵄩󵄩V𝑖 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩
𝑝
≤ 𝑘
0
𝜉
𝑖
𝑒
−𝜖𝑡

, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛. (34)

Therefore,

𝐸‖V (𝑡, 𝑥)‖𝑝 ≤ 𝐾
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
𝑝
𝑒
−𝜖𝑡

, 𝑡 ≥ 0, (35)

where 𝐾 = (max
1≤𝑖≤𝑛

{𝜉
𝑖
}/min

1≤𝑖≤𝑛
{𝜉
𝑖
})𝑛
𝑝. This means that

the zero solution of system (17) is exponentially 𝑝-stable and
the exponential convergence rate equals 𝜖. By Theorem 5,
we can obtain that the zero solution of system (15) is
exponentially 𝑝-stable. The proof is complete.

Remark 14. The stability of impulsive Cohen-Grossberg neu-
ral networks without spacial diffusion or distributed delays or
stochastic disturbance, which are special cases of system (15),
have been studied in [5, 13, 18–20]. It should be noted that the
main result in [13] is a special case ofTheorem 13. Further, the
stability criteria derived in [5, 18–20] are dependent on the
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intervals of adjoining impulsive moments, while our results
are independent of that. Thus, our results are new, and they
effectually complement or improve the previously published
results.

Remark 15. In [19, 21–26], the reaction-diffusion neural
networks have been investigated. Nevertheless, the diffusion
terms were eliminated by inequality analysis techniques, and
the derived conditions for the stability of neural networks
are the same as those obtained in the cases when there are
no reaction-diffusion terms in the systems. Thus, our results
including reaction-diffusion terms are less conservative than
those in [19, 21–26].

Remark 16. As far as we know, almost all the existing results
concerning the stability of neural networks are based on 2-
norm (e.g., [5, 11, 19, 21, 22, 26–28]). In this paper, we derived
the stability criteria of ISRDCGNNs with mixed time delays
in terms of 𝑝-norm. Hence, our results generalize and im-
prove the existing results reported in the previous literature.

5. Numerical Example

In this section, we give an example to illustrate the main
theoretical results in Sections 3 and 4.

In system (15), let

𝑛 = 𝑚 = 2, 𝛼
1 (𝑥) = 2.5 + 0.5 cos𝑥,

𝛼
2 (𝑥) = 3 − sin𝑥, 𝛽

1 (𝑥) = 8𝑥,

𝛽
2 (𝑥) = 10𝑥,

𝑓
𝑗 (𝑥) = 𝑔

𝑗 (𝑥) = ℎ
𝑗 (𝑥)

=
1

2
(|𝑥 + 1| + |𝑥 − 1|) , 𝑙

𝑗
= 1 (𝑗 = 1, 2) ,

𝑟 (𝑡) = 1 + sin 𝑡, (𝐷
𝑖𝑙 (𝑥)) = (

6 6

8 8
) ,

(𝑎
𝑖𝑗
) = (

0.1 −0.2

−0.3 −0.5
) , (𝑏

𝑖𝑗
) = (

0.8 0.8

0.4 0.2
) ,

(𝑐
𝑖𝑗
) = (

0.3 −0.2

0.1 −0.2
) ,

(𝜏
𝑖𝑗 (𝑡)) = (

0.02 sin2 (𝑡) 0.01 |cos 𝑡|

0.03 cos2 (𝑡) 0.02 |sin 2𝑡|
) ,

(𝜎
𝑖𝑗
(𝑥, 𝑦, 𝑧))

= (
0.1𝑥 − 0.2𝑦 − 0.1𝑧 0.2𝑥 + 0.3𝑦 + 0.1𝑧

0.5𝑥 + 0.4𝑦 − 0.3𝑧 0.3𝑥 + 0.1𝑦 + 0.2𝑧
) ,

𝐼
𝑘1
(𝑢
1
(𝑡
𝑘
, 𝑥) , 𝑢

2
(𝑡
𝑘
, 𝑥))

=
1

2𝑘+2
𝑢
1
(𝑡
𝑘
, 𝑥)

+
1

(2𝑘)
2
𝑢
1
(𝑡
𝑘
, 𝑥) sin2 (𝑢

2
(𝑡
𝑘
, 𝑥)) ,

𝐼
𝑘2
(𝑢
1
(𝑡
𝑘
, 𝑥) , 𝑢

2
(𝑡
𝑘
, 𝑥))

=
1

223𝑘
𝑢
2
(𝑡
𝑘
, 𝑥)

+
1

(2𝑘)
2
𝑢
2
(𝑡
𝑘
, 𝑥) cos2 (𝑢

1
(𝑡
𝑘
, 𝑥)) .

(36)

By direct calculation, we obtain that

𝛼
1
= 2, 𝛼

1
= 3, 𝛼

2
= 2,

𝛼
2
= 4, 𝛽

1
= 8, 𝛽

2
= 10,

𝐹
𝑖
= 𝐺
𝑖
= 𝐻
𝑖
= 1, 𝜏 = 0.03, 𝑟 = 2,

(𝑠
(1)

𝑖𝑗
) = (

0.04 0.12

0.6 0.18
) , (𝑠

(2)

𝑖𝑗
) = (

0.08 0.18

0.48 0.06
) ,

(𝑠
(3)

𝑖𝑗
) = (

0.04 0.06

0.36 0.12
) ,

𝐽
−1

𝑘1
= 1 +

1

2𝑘+2
+

1

(2𝑘)
2
sin2 (𝑢

2
(𝑡
𝑘
, 𝑥)) ,

𝐽
−1

𝑘2
= 1 +

1

223𝑘
+

1

(2𝑘)
2
cos2 (𝑢

1
(𝑡
𝑘
, 𝑥)) ,

(37)

𝐿 = 1, 𝑀 = 2. (38)

Hence, assumptions (H5)–(H8) and inequalities (11) and (13)
are satisfied. Taking 𝑝 = 4, it is not difficult to compute that

𝑄 = (
−9.0 −8.4

−7.2 −8.8
) , 𝑇 = (

34.60 −6.48

−30.24 32.48
) ,

𝑄 + 𝑇 = (
25.60 −14.88

−37.44 23.68
) ,

(39)

in which 𝑄 + 𝑇 is an M-matrix, and all the conditions of
Theorem 13 are satisfied. From Theorem 13, we know that
the zero solution of system (15) with the parameters and
functions above is exponentially 4-stable (see Figure 1).

6. Concluding Remark

In this paper, we incorporated stochastic perturbations,
reaction-diffusion effects, and mixed time delays into impul-
sive differential systems. First, an equivalent relation between
the solution of a stochastic reaction-diffusion differential
system with time delays and impulsive effects and that
of corresponding system without impulses was established.
Second, some stability criteria for the stochastic reaction-
diffusion differential system with time delays and impulsive
effects were derived by transforming the solutions of the
system to those of corresponding one without impulses.
Third, the stability criteria were applied to ISRDCGNNs with
mixed time delays, and sufficient conditions were obtained
for the exponential 𝑝-stability of the zero solution to the
neural networks. Lastly, a numerical example was provided
to illustrate the effectiveness of our theoretical results. Our
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Figure 1: Transient behaviors of the state variables 𝑢
1
(𝑡, 𝑥) and 𝑢

2
(𝑡, 𝑥) in the example.

stability results provide a new, convenient, and efficient
approach to study the stability of stochastic reaction-diffusion
differential systems with time delays and impulsive effects,
and some previously published results are generalized and
improved.
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