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In the current literatures, there are several models of fully fuzzy linear programming (FFLP) problems where all the parameters
and variables were fuzzy numbers but the constraints were crisp equality or inequality. In this paper, an FFLP problem with
fuzzy equality constraints is discussed, and a method for solving this FFLP problem is also proposed. We first transform
the fuzzy equality constraints into the crisp inequality ones using the measure of the similarity, which is interpreted as the
feasibility degree of constrains, and then transform the fuzzy objective into two crisp objectives by considering expected value
and uncertainty of fuzzy objective. Since the feasibility degree of constrains is in conflict with the optimal value of objective
function, we finally construct an auxiliary three-objective linear programming problem, which is solved through a compromise
programming approach, to solve the initial FFLP problem. To illustrate the proposed method, two numerical examples are
solved.

1. Introduction

Linear programming (LP) has important applications in
many areas of engineering and management. In these appli-
cations, since the real-world problems are very complex, the
parameters of LP are usually represented by fuzzy numbers.
Therefore, many researchers have shown interest in the area
of fuzzy linear programming (FLP).

Recently fuzzy set theory has been applied in many
research regions, since fuzzy set theory is effective to solve the
decision-making problems with imprecise data [1–3]. Several
kinds of the FLP problems have appeared in the literature
[4–16]. Delgado et al. [4] have proposed a general model for
the FLP problems in which constraints are fuzzy inequality
and the parameters of constraints are fuzzy numbers but the
parameters of the objective function are crisp. Rommelfanger
[5] has also proposed a general model for the FLP problems
and the main difference compared with [4] is that here
parameters of the objective function are also fuzzy numbers.
Considering the different hypotheses, researchers [6–13] have
proposed some particular FLP problems, which can be

deduced from the general model. In order to solve these
FLP problems, different approaches have been proposed too.
Some methods are based on the concepts of the superiority
and inferiority of fuzzy numbers [7], the degrees of feasibility
[8], the satisfaction degree of the constraints [10], and the
statistical confidence interval [11]. Other kinds of methods
are multiobjective optimization method [6], penalty method
[12], and semi-infinite programming method [13]. Similar
other interesting works also can be found in the literature
[14–16]. Mahdavi-Amiri and Nasseri [14] develop a new dual
algorithm for solving the FLP problem directly. Ganesan and
Veeramani [15] propose a method for solving fuzzy linear
programming problems without converting them to crisp
linear programming problems. Maleki et al. [16] propose a
good method for solving an FLP problem, and an auxiliary
problem is introduced in their model.

In recent years, several kinds of the fully fuzzy linear
programming (FFLP) problems in which all the parame-
ters and variables are represented by fuzzy numbers have
appeared in the literature [17–21]. Some authors [17, 18] have
discussed FFLP problems with crisp inequality constraints
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and obviously different methods for solving them have been
proposed. In these methods the fuzzy optimal solutions of
the FFLP problems are obtained by converting FFLP problem
into crisp linear programming (CLP) problem. Other authors
[19, 20] have discussed FFLP problems with crisp equality
constraints and different methods for solving them have been
proposed too. In their methods, the method proposed by
Lotfi et al. [19] can only obtain the approximate solution of
the FFLP problems, but the method proposed by Kumar et
al. [20] can find the fuzzy optimal solution which satisfies the
constraints exactly. Guo and Shang [21] propose the comput-
ing model to the positive fully fuzzy linear matrix equation,
and the fuzzy approximate solution is obtained by using
pseudoinverse. However, in most of previous literatures, all
constraints of FFLP problems have the crisp form.

In this paper, an FFLP problem with fuzzy equality
constraints has been considered. In order to solve it, we
first transform the FFLP problem into a crisp three-objective
LP model by considering expected value and uncertainty of
fuzzy objective and the feasibility degree of fuzzy constrains.
Then we solve it using a compromise programming (CP)
approach.

This paper is organized as follows. In Section 2 some basic
definitions, arithmetic operations, and comparison opera-
tions between two triangular fuzzy numbers are reviewed.
In Section 3 the processes for transforming the FFLP prob-
lem with fuzzy equality constraints into crisp problem are
described. In Section 4 a crisp three-objective LP model to
find the fuzzy optimal solution of the FFLP problem is built,
and themodel is solved through CP in Section 5. In Section 6
a numerical example is given. Conclusions are discussed in
Section 7.

2. Preliminaries

2.1. Basic Definitions. In this paper, the triangular fuzzy
numbers are considered because this form of fuzzy numbers
is very simple and popular. Moreover, we can express and
estimate many other types of fuzzy numbers with triangular
fuzzy number [7]. The triangular fuzzy numbers are defined
as follows.

Definition 1 (see [20, 22]). A fuzzy number ̃𝐴 = (𝑎
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,
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Definition 2 (see [20, 22]). A triangular fuzzy number (𝑎(1),
𝑎

(2)
, 𝑎

(3)
) is said to be nonnegative fuzzy number if and only

if 𝑎(1) ≥ 0.

Definition 3 (see [23]). Let ̃𝐴 = (𝑎(1), 𝑎(2), 𝑎(3)) and ̃𝐵 = (𝑏(1),
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where 𝑢 = max(𝑎(3), 𝑏(3)) −min(𝑎(1), 𝑏(1)).

Definition 4 (see [20, 24]). A ranking function is a function
R : 𝐹(𝑅) → 𝑅, where 𝐹(𝑅) is a set of fuzzy numbers defined
on set of real numbers, which maps each fuzzy number
into the real line, where a natural order exists. Let ̃𝐴 =
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2.2. Arithmetic Operations. In the following, arithmetic oper-
ations between two triangular fuzzy numbers, defined on
universal set of real numbers 𝑅, are reviewed [20, 22].

Let ̃𝐴 = (𝑎
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2.3. Comparison Operations. Let ̃𝐴 = (𝑎
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then greater-than and less-than operations can be defined as
follows [25]:
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3. Presentation of the Problem

The FFLP problem with fuzzy equality constraints “≅” is
written as follows:

Max ̃

𝑍 =

̃

𝐶 ⊗

̃

𝑋,

s.t. ̃

𝐴 ⊗

̃

𝑋 ≅

̃

𝑏,

̃

𝑋 is a nonnegative fuzzy vector,

(P1)

where ̃𝐶 = (𝑐𝑗)1×𝑛,
̃

𝑋 = (𝑥𝑗)𝑛×1
, ̃𝐴 = (𝑎𝑖𝑗)𝑚×𝑛, ̃𝑏 = (̃𝑏𝑖)𝑚×1,

and 𝑐𝑗, 𝑥𝑗, 𝑎𝑖𝑗, ̃𝑏𝑖 ∈ 𝐹(𝑅). The symbols “≅” denote the fuzzified
versions of “=” and can be read as “approximately equal to.”

Substituting ̃𝐶 = (𝑐𝑗)1×𝑛, ̃𝑋 = (𝑥𝑗)𝑛×1, ̃𝐴 = (𝑎𝑖𝑗)𝑚×𝑛, ̃𝑏 =
(

̃

𝑏𝑖)𝑚×1, (P1)may be written as follows:
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𝑥𝑗 is a nonnegative fuzzy number, 𝑗 = 1, 2, . . . , 𝑛.

(P2)

Also, (P2) can be expressed as follows:

Max ̃
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(P3)

Here the symbols “≲ and ≳” denote the fuzzified versions of
“⩽ and ⩾” and can be read as “approximately less/greater than
or equal to.”

As the decision maker (DM) knows that all the param-
eters and variables in each constraint of (P3) are fuzzy
numbers, he may allow some violation of the right hand
fuzzy number in each constraint. This violation can also
be considered as a fuzzy number. Let ̃𝑝𝑖 and 𝑞𝑖, 𝑖 =

1, 2, . . . , 𝑚, be fuzzy numbers determined by the DM giving
his allowed maximum violation in the accomplishment of
the 𝑖th constraint and the 𝑚 + 𝑖th constraint of (P3),
respectively. It means that the DM tolerates violations in each
constraint of (P2) up the value ̃𝑏𝑖 + ̃𝑝𝑖 and down the value
̃

𝑏𝑖 − 𝑞𝑖, 𝑖 = 1, 2, . . . , 𝑚, respectively. Based on these ideas,

according to the resolutionmethods proposed in [4], (P3)will
become
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where the symbols “ ⃝≤ and ⃝≥” are relations between fuzzy
numbers which preserve the ranking when fuzzy numbers
are multiplied by positive scalars, and they can be anyone the
DM chooses. Different kind of relation ⃝≤ and ⃝≥ will lead to
different models of CLP problems. In this paper, we assume
that the relation ⃝≤ and ⃝≥ will be determined by using the
comparison operations defined in Section 2.3.

Without any loss of generality, we assume that 𝑐𝑗 and 𝑎𝑖𝑗
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arithmetic operations between two triangular fuzzy numbers,
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(P5)

Using the comparison operations between two triangular
fuzzy numbers, defined in Section 2.3, to deal with the
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inequality relation on the constraints, (P5) is converted into
the following problem:

Max (𝑍
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) =
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Generally, the DM usually knows little about the prob-
lem; moreover, constraints of (P3) have different tolerated
violations for different DM, so it is difficult for the DM to
determine reasonable values of 𝑝(ℎ)

𝑖
and 𝑞(ℎ)

𝑖
, ℎ = 1, 2, 3,

𝑖 = 1, 2, . . . , 𝑚. In this paper, the concept of similarity between
two triangular fuzzy numbers is introduced to solve this
problem. The key of this method is that the DM determines
an allowed similarity level instead of allowed maximum
tolerated violations in each constraint of (P3) by using the
following inequalities:

𝑆 (

̃

𝑏𝑖,
̃

𝑏𝑖 +
̃
𝑝𝑖) ≥ 𝑠, 𝑖 = 1, 2, . . . , 𝑚, (6)
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(9)

Here 𝑆(̃𝑏𝑖, ̃𝑏𝑖 + ̃𝑝𝑖) is the similarity between two triangular
fuzzy numbers ̃𝑏𝑖 and 𝑏𝑖 + ̃𝑝𝑖, 𝑖 = 1, 2, . . . , 𝑚, 𝑆(̃𝑏𝑖, ̃𝑏𝑖 −𝑞𝑖) is the
similarity between two triangular fuzzy numbers̃𝑏𝑖 and̃𝑏𝑖−𝑞𝑖,
𝑖 = 1, 2, . . . , 𝑚, and 𝑠 is the allowed similarity level given by
the DM.

According to the definition of the similarity between two
triangular fuzzy numbers, we have
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(10)

𝑆 (

̃

𝑏𝑖,
̃

𝑏𝑖 − 𝑞𝑖) = 1 −
𝑞

(1)

𝑖
+ 2𝑞

(2)

𝑖
+ 𝑞

(3)

𝑖

4𝑢

󸀠
𝑖

, 𝑖 = 1, 2, . . . , 𝑚,

(11)

where 𝑢𝑖 = 𝑏
(3)

𝑖
+ 𝑝

(3)

𝑖
− 𝑏

(1)

𝑖
, 𝑢󸀠𝑖 = 𝑏

(3)

𝑖
+ 𝑞

(3)

𝑖
− 𝑏

(1)

𝑖
. In order to

decrease the influence of variables 𝑝(3)
𝑖

and 𝑞(3)
𝑖

on 𝑆(̃𝑏𝑖, ̃𝑏𝑖+ ̃𝑝𝑖)

and 𝑆(̃𝑏𝑖, ̃𝑏𝑖 − 𝑞𝑖), 𝑖 = 1, 2, . . . , 𝑚, respectively, we assume that
𝑢𝑖 = 𝑢

󸀠
𝑖 = 𝑏
(3)

𝑖
− 𝑏

(1)

𝑖
. Hence, from (6) and (10), as well as (7)

and (11), we obtain the following inequalities, respectively:

𝑝

(1)

𝑖 + 2𝑝
(2)

𝑖 + 𝑝
(3)

𝑖 ≤ 4 (1 − 𝑠) (𝑏
(3)

𝑖 − 𝑏
(1)

𝑖 ) ,

𝑖 = 1, 2, . . . , 𝑚,

𝑞

(1)

𝑖 + 2𝑞
(2)

𝑖 + 𝑞
(3)

𝑖 ≤ 4 (1 − 𝑠) (𝑏
(3)

𝑖 − 𝑏
(1)

𝑖 ) ,

𝑖 = 1, 2, . . . , 𝑚.

(12)

Therefore, giving the DM allowed similarity level 𝑠, ̃𝑝𝑖
and 𝑞𝑖 can be determined by (8), (9), and (12). Adding those
inequalities into constrains of (P6), we obtain the following
problem:

Max (𝑍

(1)
, 𝑍

(2)
, 𝑍

(3)
) =

𝑛

∑

𝑗=1

(𝑐

(1)

𝑗 𝑥
(1)

𝑗 , 𝑐
(2)

𝑗 𝑥
(2)

𝑗 , 𝑐
(3)

𝑗 𝑥
(3)

𝑗 )

s.t.
𝑛

∑

𝑗=1

𝑎

(ℎ)

𝑖𝑗 𝑥
(ℎ)

𝑗

≤ 𝑏

(ℎ)

𝑖 + 𝑝
(ℎ)

𝑖 , ℎ = 1, 2, 3, 𝑖 = 1, 2, . . . , 𝑚,

𝑛

∑

𝑗=1

𝑎

(ℎ)

𝑖𝑗 𝑥
(ℎ)

𝑗

≥ 𝑏

(ℎ)

𝑖 − 𝑞
(4−ℎ)

𝑖 , ℎ = 1, 2, 3, 𝑖 = 1, 2, . . . , 𝑚,

𝑝

(1)

𝑖 + 2𝑝
(2)

𝑖 + 𝑝
(3)

𝑖

≤ 4 (1 − 𝑠) (𝑏

(3)

𝑖 − 𝑏
(1)

𝑖 ) , 𝑖 = 1, 2, . . . , 𝑚,

𝑞

(1)

𝑖 + 2𝑞
(2)

𝑖 + 𝑞
(3)

𝑖

≤ 4 (1 − 𝑠) (𝑏

(3)

𝑖 − 𝑏
(1)

𝑖 ) , 𝑖 = 1, 2, . . . , 𝑚,

𝑥

(1)

𝑗 ≥ 0, 𝑥

(2)

𝑗 − 𝑥
(1)

𝑗 ≥ 0, 𝑥

(3)

𝑗 − 𝑥
(2)

𝑗 ≥ 0,

𝑗 = 1, 2, . . . , 𝑛,

𝑝

(1)

𝑖 ≥ 0, 𝑝

(2)

𝑖 − 𝑝
(1)

𝑖 ≥ 0, 𝑝

(3)

𝑖 − 𝑝
(2)

𝑖 ≥ 0,

𝑖 = 1, 2, . . . , 𝑚,

𝑞

(1)

𝑖 ≥ 0, 𝑞

(2)

𝑖 − 𝑞
(1)

𝑖 ≥ 0, 𝑞

(3)

𝑖 − 𝑞
(2)

𝑖 ≥ 0,

𝑖 = 1, 2, . . . , 𝑚.

(P7)

Now we have transformed the FFLP problem (P1) into
(P7) using similarity measures. The main feature of (P7) is
that the constraints are crisp linear by introducing allowed
similarity level 𝑠. The definition of 𝑠-feasible solution about
(P7) is given as follows.

Definition 5. Given an allowed similarity level 𝑠, for a decision
matrix 𝑋0(𝑠) = (𝑥0𝑗

(ℎ)
(𝑠))𝑛×3, we will say that it is 𝑠-feasible

solution of (P7) if𝑋0(𝑠) satisfies constraints of (P7).
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According to transforming processes of (P1) to (P7), we
may set the following proposition.

Proposition 6. A decision matrix 𝑋0(𝑠) is 𝑠-fuzzy-feasible
solution of (P1) if and only if𝑋0(𝑠) is 𝑠-feasible solution of (P7).

In the following, the set of the 𝑠-feasible solution of (P7)will
be denoted by ℵ(𝑠), and it is evident that

𝑠1 < 𝑠2 󳨐⇒ ℵ(𝑠1) ⊃ ℵ (𝑠2) . (13)

Then, (P7) can be rewritten as

Max (𝑍

(1)
, 𝑍

(2)
, 𝑍

(3)
) =

𝑛

∑

𝑗=1

(𝑐

(1)

𝑗 𝑥
(1)

𝑗 , 𝑐
(2)

𝑗 𝑥
(2)

𝑗 , 𝑐
(3)

𝑗 𝑥
(3)

𝑗 )

s.t. (x(1)j , x
(2)
j , x
(3)
j ) ∈ ℵ (s) , j = 1, 2, . . . , n.

(P7-1)

In order to transform the fuzzy objective into crisp one,
we should consider expected value and uncertainty of fuzzy
objective. We use a ranking function to define the expected
value of fuzzy objective. Many ranking functions can be
found in the literatures, and we choose the same ranking
function, which is defined in Definition 4, used by Kumar
et al. [20]. The uncertainty of fuzzy objective is measured
using the difference between upper bound and lower bound
of fuzzy objective value. Therefore, (P7)may be transformed
into the following crisp problem:

Max R (̃𝑍) =
1

4

𝑛

∑

𝑗=1

(𝑐

(1)

𝑗 𝑥
(1)

𝑗 + 2𝑐
(2)

𝑗 𝑥
(2)

𝑗 + 𝑐
(3)

𝑗 𝑥
(3)

𝑗 )

Min Δ (

̃

𝑍) =

𝑛

∑

𝑗=1

𝑐

(3)

𝑗 𝑥
(3)

𝑗 −

𝑛

∑

𝑗=1

𝑐

(1)

𝑗 𝑥
(1)

𝑗

s.t. (𝑥

(1)

𝑗 , 𝑥
(2)

𝑗 , 𝑥
(3)

𝑗 ) ∈ ℵ (𝑠) , 𝑗 = 1, 2, . . . , 𝑛.

(P8)

(P8) is an 𝑠-parametric crisp biobjective LPmodel. Giving
the value of 𝑠, and we can solve the 𝑠-efficient solution, which
is defined as follows.

Definition 7. Giving the value of 𝑠, 𝑋∗(𝑠) ∈ ℵ(𝑠) is said to be
𝑠-efficient solution to the problem (P8) if there does not exist
another𝑋0(𝑠) ∈ ℵ(𝑠) such that

R (̃𝑍 (𝑋
0
(𝑠))) ≥ R (̃𝑍 (𝑋

∗
(𝑠))) ,

Δ (

̃

𝑍 (𝑋

0
(𝑠))) ≤ Δ (

̃

𝑍 (𝑋

∗
(𝑠))) ,

(14)

where at least one of these inequalities is strict.
From Definition 7, we have the following proposition.

Proposition 8. All 𝑠-efficient solutions 𝑋∗(𝑠) to the problem
(P8) are 𝑠-fuzzy-optimal solutions to the problem (P1) and
reciprocally.

From Proposition 8, we can obtain the 𝑠-fuzzy-optimal
solutions to the problem (P1) by solving (P8).

4. The Auxiliary Three-Objective LP Model

From (12), a bigger value of 𝑠 implies that the DM allows
a smaller violation of the right hand fuzzy number in each
constraint. So 𝑠 can be interpreted as the feasibility degree
of constrains, the bigger the value of 𝑠 is; the higher the
feasibility degree of constrainswill be.However, from (13) and
(P7), the bigger the value of 𝑠 is, the worst the objective value
will be.Therefore, we want to find a balance solution between
two goals: to improve the objectives function values and to
increase the feasibility degree of constrains. According to the
previous analysis, (P8) can be transformed into the following
auxiliary three-objective LP model:

Max R (̃𝑍) =
1

4

𝑛

∑

𝑗=1

(𝑐

(1)

𝑗 𝑥
(1)

𝑗 + 2𝑐
(2)

𝑗 𝑥
(2)

𝑗 + 𝑐
(3)

𝑗 𝑥
(3)

𝑗 ) ,

Min Δ (

̃

𝑍) =

𝑛

∑

𝑗=1

𝑐

(3)

𝑗 𝑥
(3)

𝑗 −

𝑛

∑

𝑗=1

𝑐

(1)

𝑗 𝑥
(1)

𝑗 ,

Max 𝑠

s.t. 𝑠𝑚 ≤ 𝑠 ≤ 1

(𝑥

(1)

𝑗 , 𝑥
(2)

𝑗 , 𝑥
(3)

𝑗 ) ∈ ℵ (𝑠) , 𝑗 = 1, 2, . . . , 𝑛,

(P9)

where 𝑠𝑚 is the allowed minimum similarity level, and it is
specified by the DM according to his interests. The three
objectives of (P9) represent the DM’s preference for the
alternative with the higher expected value, less uncertainty
of objective, and the higher feasibility degree of constrains,
respectively.

In the following, the set of the feasible solutions of (P9)
will be denoted by ℵ.

Definition 9. (𝑋∗, 𝑠∗) ∈ ℵ is said to be an efficient solution to
the problem (P9) if there does not exist another (𝑋0, 𝑠0) ∈ ℵ
such that

R (̃𝑍 (𝑋
0
)) ≥ R (̃𝑍 (𝑋

∗
)) ,

Δ (

̃

𝑍 (𝑋

0
)) ≤ Δ (

̃

𝑍 (𝑋

∗
)) ,

𝑠

0
≥ 𝑠

∗
,

(15)

where at least one of these inequalities is strict.
From Definitions 7 and 9 and Proposition 8, we have the

following proposition.

Proposition 10. All efficient solutions (𝑋∗, 𝑠∗) to the problem
(P9) are 𝑠∗-fuzzy-optimal solutions to the problem (P1) and
reciprocally.

Proof. Let (𝑋∗, 𝑠∗) be an 𝑠∗-fuzzy-optimal solutions to the
problem (P1) but not an efficient solution to the problem
(P9), and then there exists another (𝑋0, 𝑠0) ∈ ℵ such that
R(̃𝑍(𝑋0)) ≥ R(̃𝑍(𝑋∗)), Δ(̃𝑍(𝑋0)) ≤ Δ(̃𝑍(𝑋∗)), 𝑠0 ≥ 𝑠∗,
where at least one of these inequalities is strict. It implies,
from Definition 7, that (𝑋∗, 𝑠∗) is not an 𝑠∗-efficient solution
to the problem (P8), and then according to Proposition 8,
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(𝑋

∗
, 𝑠

∗
) is not an 𝑠∗-fuzzy-optimal solutions to the problem

(P1).
Reciprocally, let (𝑋∗, 𝑠∗) be an efficient solution to the

problem (P9) but not an 𝑠∗-fuzzy-optimal solution to the
problem (P1). Then from Proposition 8, (𝑋∗, 𝑠∗) is not 𝑠∗-
efficient solution to the problem (P8). So, from Definition 7,
there exists another (𝑋0, 𝑠∗) ∈ ℵ(𝑠∗) such that R(̃𝑍(𝑋0)) ≥
R(̃𝑍(𝑋∗)), Δ(̃𝑍(𝑋0)) ≤ Δ(̃𝑍(𝑋∗)), 𝑠∗ = 𝑠∗, where at least
one of these inequalities is strict. Therefore, (𝑋∗, 𝑠∗) is not an
efficient solution to the problem (P9).

Now we have transformed the FFLP problem (P1) into
(P9), which is a crisp three-objective LP problem. According
to Proposition 10, we can obtain the 𝑠∗-fuzzy-optimal solu-
tion of initial problem (P1) by solving (P9). In the following
section, we will solve (P9) through CP approach.

5. Compromise Solutions

CP is a Multiple Criteria Decision Making approach which
ranks alternatives according to their closeness to the ideal
point.The best alternative is the onewhose point is at the least
distance from an ideal point in the set of efficient solutions
[26].

In order to apply the CP approach to solve the problem
(P9), we need to obtain the pay-off matrix. For this, we opti-
mize each objective separately, calculating the values reached
by the objectives on the optimal solution, respectively. Let
𝑋

∗
𝑇, 𝑇 = R, Δ, 𝑠, be the optimal solutions for each objective,

and R𝑇, Δ𝑇, 𝑠𝑇 the values reached by three objectives on
the optimal solution 𝑋∗𝑇, 𝑇 = R, Δ, 𝑠, respectively. Then the
obtained pay-off matrix can be expressed as in Table 1.

From Table 1, we know that the elements of principal
diagonal (RR, ΔΔ, 𝑠𝑠) form the ideal point. The anti-ideal
point is (min{RΔ,R𝑠},max{ΔR, Δ 𝑠},min{𝑠R, 𝑠Δ}).

The distance between each objective value and the corre-
sponding ideal point is

𝐷1 = RR −R (
̃

𝑍) , 𝐷2 = Δ (
̃

𝑍) − ΔΔ,

𝐷3 = 𝑠𝑠 − 𝑠.

(16)

As the objectives are measured with different units, it is
necessary to homogenize the distances as

𝑑1 =

RR −R (
̃

𝑍)

RR −min {RΔ,R𝑠}
, 𝑑2 =

Δ (

̃

𝑍) − ΔΔ

max {ΔR, Δ 𝑠} − ΔΔ

,

𝑑3 =
𝑠𝑠 − 𝑠

𝑠𝑠 −min {𝑠R, 𝑠Δ}
.

(17)

The distance measure used in CP is the family of 𝐿𝑝-
metrics given as

𝐿𝑝 = [

3

∑

𝑘=1

(𝑤𝑘𝑑𝑘)
𝑝
]

1/𝑝

,
(18)

where 𝑤𝑘 is the weight or relative importance attached to the
𝑘th objective and 𝑝 is the topological metric that is a real
number belonging to the closed interval [1,∞].

Table 1: The pay-off matrix.

𝑋

∗
R 𝑋

∗
Δ 𝑋

∗
𝑠

R(̃𝑍) RR RΔ R𝑠

Δ(

̃

𝑍) ΔR ΔΔ Δ 𝑠

𝑠 𝑠R 𝑠Δ 𝑠𝑠

A compromise solution is the one which minimizes 𝐿𝑝.
Therefore, we have

Min 𝐿𝑝 = [

3

∑

𝑘=1

(𝑤𝑘𝑑𝑘)
𝑝
]

1/𝑝

s.t. ((𝑥

(ℎ)

𝑗 )𝑛×3
, 𝑠) ∈ ℵ.

(P10)

Obviously the solution of (P10) depends on the chosen
metric. The most commonly obtained compromise solutions
are for metrics 𝑝 = 1 and 𝑝 = ∞ because for other metrics
the nonlinear programming algorithms are needed [27]. Also,
in the biobjective case they are the bounds of the whole
compromise set [28, 29].

For 𝑝 = 1, the compromise solution closest to the ideal
solution can be obtained by solving the following LP problem:

Min 𝐿1 =

3

∑

𝑘=1

(𝑤𝑘𝑑𝑘)

s.t. ((𝑥

(ℎ)

𝑗 )𝑛×3
, 𝑠) ∈ ℵ.

(P10-1)

For 𝑝 = ∞, themaximum divergence between individual
discrepancies is minimized. Consequently, the compromise
solution is obtained by solving the following problem:

Min 𝐿∞ = max
𝑘=1,2,3

{𝑤𝑘𝑑𝑘}

s.t. ((𝑥

(ℎ)

𝑗 )𝑛×3
, 𝑠) ∈ ℵ.

(P10-2)

The previous problem is a min-max problem. Let 𝑑𝑚 =
max𝑘=1,2,3{𝑤𝑘𝑑𝑘}, and then it is reformulated as

Min 𝐿∞ = 𝑑𝑚

s.t. 𝑤𝑘𝑑𝑘 ≤ 𝑑𝑚, 𝑘 = 1, 2, 3,

((𝑥

(ℎ)

𝑗 )𝑛×3
, 𝑠) ∈ ℵ.

(P10-3)

For 𝑝 = 1, Yu showed that the solution of (P10-1) is
always Pareto efficient [30]. For 𝑝 = ∞, if (P10-3) exists as
a unique optimal solution, then it is an efficient solution to
the problem (P9) [31]. If the uniqueness is not satisfied, then
the efficiency is not guaranteed for all solutions [31, 32]. In
order to obtain an efficient solution several approaches have
been proposed in the literature [31–35].
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A composite form of CP for 𝑝 = 1 and 𝑝 = ∞ can be
obtained byminimizing a linear combination between𝐿1 and
𝐿∞; that is,

Min 𝐿𝑐 = (1 − 𝜆) 𝑑𝑚 + 𝜆

3

∑

𝑘=1

(𝑤𝑘𝑑𝑘)

s.t. 𝑤𝑘𝑑𝑘 ≤ 𝑑𝑚, 𝑘 = 1, 2, 3,

((𝑥

(ℎ)

𝑗 )𝑛×3
, 𝑠) ∈ ℵ,

(P10-4)

where 𝜆 ∈ [0, 1]. 𝜆 can be interpreted as a trade-off or
marginal rate of substitution between 𝐿1 and 𝐿∞. When 𝜆 =
1, problem (P10-4) gives the compromise solution for 𝑝 = 1,
and for 𝜆 = 0, (P10-4) gives the compromise solution for
𝑝 = ∞. For any set of positive weights and any 𝜆 > 0, the
solutions of problem (P10-4) are efficient [36].

6. Numerical Examples

In this section two numerical examples are given to illustrate
the proposed model and method.

Example 1. Let us solve the following FFLP problem with
fuzzy equality constraints, which is like Example 6.1 given in
[20] with the main difference that here constraints are fuzzy
equality, not crisp equality. Consider

Max ̃

𝑍 = (1, 6, 9) ⊗ 𝑥1 ⊕ (2, 3, 8) ⊗ 𝑥2

s.t. (2, 3, 4) ⊗ 𝑥1 ⊕ (1, 2, 3) ⊗ 𝑥2 ≅ (6, 16, 30) ,

(−1, 1, 2) ⊗ 𝑥1 ⊕ (1, 3, 4) ⊗ 𝑥2 ≅ (1, 17, 30) ,

𝑥1, 𝑥2 are nonnegative triangular fuzzy numbers.
(EP 1)

Solution. Let 𝑥1 = (𝑥
(1)
1 , 𝑥
(2)
1 , 𝑥
(3)
1 ); and 𝑥2 = (𝑥

(1)
2 , 𝑥
(2)
2 , 𝑥
(3)
2 )

then the given FFLP problem (EP 1)may be written as

Max ̃

𝑍 = (𝑥

(1)

1 + 2𝑥
(1)

2 , 6𝑥
(2)

1 + 3𝑥
(2)

2 , 9𝑥
(3)

1 + 8𝑥
(3)

2 )

s.t. (2𝑥

(1)

1 + 𝑥
(1)

2 , 3𝑥
(2)

1 + 2𝑥
(2)

2 , 4𝑥
(3)

1 + 3𝑥
(3)

2 )≅(6, 16, 30) ,

(−𝑥

(3)

1 + 𝑥
(1)

2 , 𝑥
(2)

1 + 3𝑥
(2)

2 , 2𝑥
(3)

1 + 4𝑥
(3)

2 ) ≅ (1, 17, 30) ,

(𝑥

(1)

1 , 𝑥
(2)

1 , 𝑥
(3)

1 ) , (𝑥
(1)

2 , 𝑥
(2)

2 , 𝑥
(3)

2 ) are nonnegative

triangular fuzzy numbers.
(EP 2)

Suppose that the allowed minimum similarity level spec-
ified by the DM is 𝑠𝑚 = 0.9. According to (P9), we will solve

the following three-objective LP model:

Max R (̃𝑍)

=

1

4

(𝑥

(1)

1 + 2𝑥
(1)

2 + 12𝑥
(2)

1 + 6𝑥
(2)

2 + 9𝑥
(3)

1 + 8𝑥
(3)

2 ) ,

Min Δ (

̃

𝑍) = 9𝑥

(3)

1 + 8𝑥
(3)

2 − 𝑥
(1)

1 − 2𝑥
(1)

2 ,

Max 𝑠

s.t. 0.9 ≤ 𝑠 ≤ 1

(𝑥

(1)

𝑗 , 𝑥
(2)

𝑗 , 𝑥
(3)

𝑗 ) ∈ ℵ (𝑠) , 𝑗 = 1, 2,

(EP 3)

where ℵ(𝑠) is the set of the 𝑠-feasible solution of (P7), which
is determined using the following constrain inequalities:

2𝑥

(1)

1 + 𝑥
(1)

2 ≤ 6 + 𝑝
(1)

1 , 3𝑥

(2)

1 + 2𝑥
(2)

2 ≤ 16 + 𝑝
(2)

1 ,

4𝑥

(3)

1 + 3𝑥
(3)

2 ≤ 30 + 𝑝
(3)

1 , −𝑥

(3)

1 + 𝑥
(1)

2 ≤ 1 + 𝑝
(1)

2 ,

𝑥

(2)

1 + 3𝑥
(2)

2 ≤ 17 + 𝑝
(2)

2 , 2𝑥

(3)

1 + 4𝑥
(3)

2 ≤ 30 + 𝑝
(3)

2 ,

2𝑥

(1)

1 + 𝑥
(1)

2 ≥ 6 − 𝑞
(1)

1 , 3𝑥

(2)

1 + 2𝑥
(2)

2 ≥ 16 − 𝑞
(2)

1 ,

4𝑥

(3)

1 + 3𝑥
(3)

2 ≥ 30 − 𝑞
(3)

1 , −𝑥

(3)

1 + 𝑥
(1)

2 ≥ 1 − 𝑞
(1)

2 ,

𝑥

(2)

1 + 3𝑥
(2)

2 ≥ 17 − 𝑞
(2)

2 , 2𝑥

(3)

1 + 4𝑥
(3)

2 ≥ 30 − 𝑞
(3)

2 ,

𝑝

(1)

1 + 2𝑝
(2)

1 + 𝑝
(3)

1 ≤ 96 (1 − 𝑠) ,

𝑝

(1)

2 + 2𝑝
(2)

2 + 𝑝
(3)

2 ≤ 116 (1 − 𝑠) ,

𝑞

(1)

1 + 2𝑞
(2)

1 + 𝑞
(3)

1 ≤ 96 (1 − 𝑠) ,

𝑞

(1)

2 + 2𝑞
(2)

2 + 𝑞
(3)

2 ≤ 116 (1 − 𝑠) ,

𝑥

(1)

𝑗 ≥ 0, 𝑥

(2)

𝑗 − 𝑥
(1)

𝑗 ≥ 0, 𝑥

(3)

𝑗 − 𝑥
(2)

𝑗 ≥ 0, 𝑗 = 1, 2,

𝑝

(1)

𝑖 ≥ 0, 𝑝

(2)

𝑖 − 𝑝
(1)

𝑖 ≥ 0, 𝑝

(3)

𝑖 − 𝑝
(2)

𝑖 ≥ 0, 𝑖 = 1, 2,

𝑞

(1)

𝑖 ≥ 0, 𝑞

(2)

𝑖 − 𝑞
(1)

𝑖 ≥ 0, 𝑞

(3)

𝑖 − 𝑞
(2)

𝑖 ≥ 0, 𝑖 = 1, 2.

(19)

In order to obtain the pay-off matrix, we optimize each
objective separately, calculating the values reached by the
objectives on the optimal solution, respectively.The obtained
pay-off matrix is shown in Table 2.

From Table 2, we know that the elements of principal
diagonal (41.34, 56.36, 1.0) form the ideal point.The anti-ideal
point is (33.42, 91.20, 0.9).
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Table 2: The pay-off matrix of (EP 2).

𝑋

∗
R 𝑋

∗
Δ 𝑋

∗
𝑠

R(̃𝑍) 41.34 33.42 34.50
Δ(

̃

𝑍) 91.20 56.36 66.00
𝑠 0.9 0.9 1.0

From (16) and (17), the homogenized distance between
each objective value and the corresponding ideal point is

𝑑1=

41.34 −(1/4) (𝑥

(1)
1 +2𝑥

(1)
2 +12𝑥

(2)
1 +6𝑥

(2)
2 +9𝑥

(3)
1 + 8𝑥

(3)
2 )

41.34 − 33.42

,

𝑑2 =
9𝑥

(3)
1 + 8𝑥

(3)
2 − 𝑥

(1)
1 − 2𝑥

(1)
2 − 56.36

91.20 − 56.36

,

𝑑3 =
1.0 − 𝑠

1.0 − 0.9

.

(20)

The compromise solution can be obtained by solving
(P10). Let 𝑤1 = 0.35, 𝑤2 = 0.35, 𝑤3 = 0.30, and then we
have the following.

(i) For 𝑝 = 1, the compromise solution closest to the
ideal solution can be obtained by solving the following
LP problem:

Min 𝐿1 = 0.35𝑑1 + 0.35𝑑2 + 0.30𝑑3

s.t. ((𝑥

(ℎ)

𝑗 )2×3
, 𝑠) ∈ ℵ.

(EP 4)

The optimal solution of (EP 4) is 𝑥(1)1 = 0.63, 𝑥
(2)
1 = 2.33,

𝑥

(3)
1 = 2.73, 𝑥(1)2 = 4.75, 𝑥(2)2 = 4.75, 𝑥(3)2 = 5.73, 𝑠∗ = 0.985.

According to Proposition 10, 𝑠∗-fuzzy-optimal solutions to
the problem (EP 1) are 𝑥∗1 (0.985) = (0.63, 2.33, 3.32),
𝑥

∗
2 (0.985) = (4.75, 4.75, 5.73).
Put 𝑥∗1 (0.985), 𝑥

∗
2 (0.985) in objectives of (EP 2) and

(EP 3), and then we have ̃𝑍∗ = (10.12, 28.20, 75.73),R(̃𝑍∗) =
35.56, Δ(̃𝑍∗) = 65.61.

(ii) For 𝑝 = ∞, the compromise solution is obtained by
solving the following LP problem:

Min 𝐿∞ = 𝑑𝑚

s.t. 0.35𝑑1 ≤ 𝑑𝑚,

0.35𝑑2 ≤ 𝑑𝑚,

0.30𝑑3 ≤ 𝑑𝑚,

((𝑥

(ℎ)

𝑗 )2×3
, 𝑠) ∈ ℵ.

(EP 5)

The optimal solution of (EP 5) is 𝑥(1)1 = 0.87, 𝑥
(2)
1 = 2.66,

𝑥

(3)
1 = 3.00, 𝑥(1)2 = 4.25, 𝑥(2)2 = 4.25, 𝑥(3)2 = 7.00, 𝑠∗ = 0.959.

According to Proposition 10, 𝑠∗-fuzzy-optimal solutions to
the problem (EP 1) are 𝑥∗1 (0.959) = (0.87, 2.66, 3.00),
𝑥

∗
2 (0.959) = (4.25, 4.25, 7.00).

Put 𝑥∗1 (0.959), 𝑥
∗
2 (0.959) in objectives of (EP 2) and

(EP 3), and then we have ̃𝑍∗ = (9.38, 28.70, 82.93),R(̃𝑍∗) =
37.43, Δ(̃𝑍∗) = 73.55.

(iii) For a composite form of CP for 𝑝 = 1 and 𝑝 = ∞,
the compromise solution is obtained by solving the
following LP problem:

Min 𝐿𝑐 = (1 − 𝜆) 𝑑𝑚 + 𝜆 (0.35𝑑1 + 0.35𝑑2 + 0.30𝑑3)

s.t. 0.35𝑑1 ≤ 𝑑𝑚,

0.35𝑑2 ≤ 𝑑𝑚,

0.30𝑑3 ≤ 𝑑𝑚,

((𝑥

(ℎ)

𝑗 )2×3
, 𝑠) ∈ ℵ.

(EP 6)

Assuming that 𝜆 = 0.5, then optimal solution of (EP 6)
is 𝑥(1)1 = 0.73, 𝑥(2)1 = 2.76, 𝑥(3)1 = 2.76, 𝑥(1)2 = 4.54, 𝑥(2)2 =

4.54, 𝑥(3)2 = 6.77, 𝑠∗ = 0.957. According to Proposition 10,
𝑠

∗-fuzzy-optimal solutions to the problem (EP 1) are
𝑥

∗
1 (0.957) = (0.73, 2.76, 2.76), 𝑥

∗
2 (0.957) = (4.54, 4.54, 6.77).

Put 𝑥∗1 (0.957), 𝑥
∗
2 (0.957) in objectives of (EP 2) and

(EP 3), and then we have ̃𝑍∗ = (9.81, 30.19, 79.04),R(̃𝑍∗) =
37.31, Δ(̃𝑍∗) = 69.23.

Given different values of 𝜆, we can also obtain the 𝑠∗-
fuzzy-optimal solutions to the problem (EP 1); see Table 3.
Comparing these solutions with the ideal point, DM may
choose an acceptable optimal solution.

Example 2. Let us solve the following FFLP problem with
crisp equality constraints [20]:

Max ̃

𝑍 = (1, 6, 9) ⊗ 𝑥1 ⊕ (2, 3, 8) ⊗ 𝑥2

s.t. (2, 3, 4) ⊗ 𝑥1 ⊕ (1, 2, 3) ⊗ 𝑥2 = (6, 16, 30) ,

(−1, 1, 2) ⊗ 𝑥1 ⊕ (1, 3, 4) ⊗ 𝑥2 = (1, 17, 30) ,

𝑥1, 𝑥2 are nonnegative triangular fuzzy numbers.
(21)

Solution. Let 𝑥1 = (𝑥
(1)
1 , 𝑥
(2)
1 , 𝑥
(3)
1 ) and 𝑥2 = (𝑥

(1)
2 , 𝑥
(2)
2 , 𝑥
(3)
2 ),

and then the previous FFLP problem may be written as

Max ̃

𝑍 = (𝑥

(1)

1 + 2𝑥
(1)

2 , 6𝑥
(2)

1 + 3𝑥
(2)

2 , 9𝑥
(3)

1 + 8𝑥
(3)

2 )

s.t. (2𝑥

(1)

1 + 𝑥
(1)

2 , 3𝑥
(2)

1 + 2𝑥
(2)

2 , 4𝑥
(3)

1 + 3𝑥
(3)

2 )=(6, 16, 30) ,

(−𝑥

(3)

1 + 𝑥
(1)

2 , 𝑥
(2)

1 + 3𝑥
(2)

2 , 2𝑥
(3)

1 + 4𝑥
(3)

2 ) = (1, 17, 30) ,

(𝑥

(1)

1 , 𝑥
(2)

1 , 𝑥
(3)

1 ) , (𝑥
(1)

2 , 𝑥
(2)

2 ,𝑥
(3)

2 ) are nonnegative

triangular fuzzy numbers.
(22)

As the constraints are crisp equality, 𝑠 = 1. According
to (P9), we can solve the following two-objective LP model
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Table 3: The 𝑠∗-fuzzy-optimal solutions with different value of 𝜆.

𝜆 𝑠

∗
𝑥

∗
1 (𝑠
∗
) 𝑥

∗
2 (𝑠
∗
)

̃

𝑍

∗ R(̃𝑍∗) Δ(

̃

𝑍

∗
)

0 0.959 (0.87, 2.66, 3.00) (4.25, 4.25, 7.00) (9.38, 28.70, 82.93) 37.43 73.55
0.1 0.959 (0.90, 2.82, 2.82) (4.20, 4.20, 7.00) (9.30, 29.49, 81.36) 37.41 72.07
0.2 0.957 (0.73, 2.76, 2.76) (4.54, 4.54, 6.77) (9.81, 30.19, 79.04) 37.31 69.23
0.3 0.957 (0.73, 2.76, 2.76) (4.54, 4.54, 6.77) (9.81, 30.19, 79.04) 37.31 69.23
0.4 0.957 (0.73, 2.76, 2.76) (4.54, 4.54, 6.77) (9.81, 30.19, 79.04) 37.31 69.23
0.5 0.957 (0.73, 2.76, 2.76) (4.54, 4.54, 6.77) (9.81, 30.19, 79.04) 37.31 69.23
0.6 0.957 (0.73, 2.76, 2.76) (4.54, 4.54, 6.77) (9.81, 30.19, 79.04) 37.31 69.23
0.7 0.985 (0.63, 2.33, 3.32) (4.75, 4.75, 5.73) (10.12, 28.20, 75.73) 35.56 65.61
0.8 0.985 (0.63, 2.33, 3.32) (4.75, 4.75, 5.73) (10.12, 28.20, 75.73) 35.56 65.61
0.9 0.985 (0.63, 2.33, 3.32) (4.75, 4.75, 5.73) (10.12, 28.20, 75.73) 35.56 65.61
1 0.985 (0.63, 2.33, 3.32) (4.75, 4.75, 5.73) (10.12, 28.20, 75.73) 35.56 65.61

to obtain the fuzzy optimal solution of the previous FFLP
problem:

Max R (̃𝑍)

=

1

4

(𝑥

(1)

1 + 2𝑥
(1)

2 + 12𝑥
(2)

1 + 6𝑥
(2)

2 + 9𝑥
(3)

1 + 8𝑥
(3)

2 ) ,

Min Δ (

̃

𝑍) = 9𝑥

(3)

1 + 8𝑥
(3)

2 − 𝑥
(1)

1 − 2𝑥
(1)

2

s.t. 2𝑥

(1)

1 + 𝑥
(1)

2 = 6, 3𝑥

(2)

1 + 2𝑥
(2)

2 = 16,

4𝑥

(3)

1 + 3𝑥
(3)

2 = 30, −𝑥

(3)

1 + 𝑥
(1)

2 = 1,

𝑥

(2)

1 + 3𝑥
(2)

2 = 17, 2𝑥

(3)

1 + 4𝑥
(3)

2 = 30,

𝑥

(1)

𝑗 ≥ 0, 𝑥

(2)

𝑗 − 𝑥
(1)

𝑗 ≥ 0, 𝑥

(3)

𝑗 − 𝑥
(2)

𝑗 ≥ 0,

𝑗 = 1, 2.

(23)

In order to obtain the pay-off matrix, we optimize each
objective separately. As the optimal solution is same for two
objective, we have obtained the optimal solution of previous
two-objective LP model: 𝑥(1)1 = 1, 𝑥

(2)
1 = 2, 𝑥

(3)
1 = 3, 𝑥

(1)
2 = 4,

𝑥

(2)
2 = 5, 𝑥(3)2 = 6. R(̃𝑍∗) = 34.5, Δ(̃𝑍∗) = 66. Therefore,

the fuzzy optimal solution of the given FFLP problem is 𝑥1 =
(1, 2, 3), 𝑥2 = (4, 5, 6), ̃𝑍

∗
= (9, 27, 75).

From the analysis and solution processes of the numerical
examples, we have summarized the following advantages.

(i) The auxiliary model (P9) to solve the FFLP problem
(P1) is linear, so it is very ease to solve.

(ii) The FFLP problem with crisp equality constraints in
[20] is a special case of the FFLP problems with fuzzy
equality constraints (𝑠 = 1).

(iii) In order to solve the FFLP problems with fuzzy
equality constraints, the DM only determines one
parameter instead of 6𝑚 parameters. Moreover, the
DM can get different fuzzy optimal solution giving
different similarity level.

The main disadvantage of proposed method is that the
number of constraints is increased when the FFLP problems
with fuzzy equality constraints are converted into crisp one.

7. Conclusions

In this paper, an FFLP problem with fuzzy equality con-
straints has been presented. Also, an approach has been
given to solve it. We first transform the FFLP problem with
fuzzy equality constraints into the crisp three-objective LP
model by considering expected value anduncertainty of fuzzy
objective and the feasibility degree of fuzzy constrains. Then
we solve it using a CP approach. To illustrate the proposed
method, two numerical examples are solved.

For different comparison relations of fuzzy number and
different measure methods of similarity, an FFLP problem
can be converted into different auxiliary problems.The study
of those problems will be the aim of a forthcoming paper.
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Rodŕıguez Uŕıa, “Solving a multiobjective possibilistic problem
through compromise programming,” European Journal of Oper-
ational Research, vol. 164, no. 3, pp. 748–759, 2005.

[28] M. Freimer and P. L. Yu, “Some new results on compromise
solutions for group decision problems,” Management Science,
vol. 22, no. 6, pp. 688–693, 1976.
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