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This paper studies the properties of the Kronecker product related to the mixed matrix products, the vector operator, and the vec-
permutation matrix and gives several theorems and their proofs. In addition, we establish the relations between the singular values
of two matrices and their Kronecker product and the relations between the determinant, the trace, the rank, and the polynomial
matrix of the Kronecker products.

1. Introduction

TheKronecker product, named after Germanmathematician
Leopold Kronecker (December 7, 1823–December 29, 1891), is
very important in the areas of linear algebra and signal pro-
cessing. In fact, the Kronecker product should be called the
Zehfuss product because Johann Georg Zehfuss published a
paper in 1858 which contained the well-known determinant
conclusion |A ⊗ B| = |A|

𝑛

|B|
𝑚, for square matrices A and B

with order 𝑚 and 𝑛 [1].
The Kronecker product has wide applications in system

theory [2–5], matrix calculus [6–9], matrix equations [10, 11],
system identification [12–15], and other special fields [16–
19]. Steeba and Wilhelm extended the exponential functions
formulas and the trace formulas of the exponential functions
of the Kronecker products [20]. For estimating the upper and
lower dimensions of the ranges of the two well-known linear
transformations T

1
(X) = X − AXB and T

2
(X) = AX −

XB, Chuai and Tian established some rank equalities and
inequalities for the Kronecker products [21]. Corresponding
to two different kinds ofmatrix partition, Koning,Neudecker,
and Wansbeek developed two generalizations of the Kro-
necker product and two related generalizations of the vector
operator [22]. The Kronecker product has an important role
in the linear matrix equation theory. The solution of the
Sylvester and the Sylvester-like equations is a hotspot research
area. Recently, the innovational and computationally efficient

numerical algorithms based on the hierarchical identification
principle for the generalized Sylvester matrix equations [23–
25] and coupled matrix equations [10, 26] were proposed by
Ding and Chen. On the other hand, the iterative algorithms
for the extended Sylvester-conjugate matrix equations were
discussed in [27–29]. Other related work is included in [30–
32].

This paper establishes a new result about the singular
value of the Kronecker product and gives a definition of the
vec-permutation matrix. In addition, we prove the mixed
products theorem and the conclusions on the vector operator
in a different method.

This paper is organized as follows. Section 2 gives the def-
inition of the Kronecker product. Section 3 lists some prop-
erties based on the the mixed products theorem. Section 4
presents some interesting results about the vector operator
and the vec-permutation matrices. Section 5 discusses the
determinant, trace, and rank properties and the properties of
polynomial matrices.

2. The Definition and the Basic Properties of
the Kronecker Product

Let F be a field, such as R or C. For any matrices A =

[𝑎
𝑖𝑗
] ∈ F𝑚×𝑛 and B ∈ F𝑝×𝑞, their Kronecker product
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(i.e., the direct product or tensor product), denoted as A ⊗B,
is defined by

A ⊗ B = [𝑎
𝑖𝑗
B]

=

[
[
[
[

[

𝑎
11
B 𝑎
12
B ⋅ ⋅ ⋅ 𝑎

1𝑛
B

𝑎
21
B 𝑎
22
B ⋅ ⋅ ⋅ 𝑎

2𝑛
B

...
...

...
𝑎
𝑚1
B 𝑎
𝑚2
B ⋅ ⋅ ⋅ 𝑎

𝑚𝑛
B

]
]
]
]

]

∈ F
(𝑚𝑝)×(𝑛𝑞)

.

(1)

It is clear that the Kronecker product of two diagonal
matrices is a diagonal matrix and the Kronecker product of
two upper (lower) triangular matrices is an upper (lower)
triangular matrix. Let A𝑇 and A𝐻 denote the transpose and
the Hermitian transpose of matrix A, respectively. I

𝑚
is

an identity matrix with order 𝑚 × 𝑚. The following basic
properties are obvious.

Basic properties as follows:

(1) I
𝑚

⊗ A = diag[A,A, . . . ,A],

(2) if 𝛼 = [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
]
𝑇 and 𝛽 = [𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
]
𝑇, then,

𝛼𝛽
𝑇

= 𝛼 ⊗ 𝛽
𝑇

= 𝛽
𝑇

⊗ 𝛼 ∈ F𝑚×𝑛,

(3) if A = [A
𝑖𝑗
] is a block matrix, then for any matrix B,

A ⊗ B = [A
𝑖𝑗
⊗ B].

(4) (𝜇A) ⊗ B = A ⊗ (𝜇B) = 𝜇(A ⊗ B),

(5) (A + B) ⊗ C = A ⊗ C + B ⊗ C,

(6) A ⊗ (B + C) = A ⊗ B + A ⊗ C,

(7) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C = A ⊗ B ⊗ C,

(8) (A ⊗ B)
𝑇

= A𝑇 ⊗ B𝑇,

(9) (A ⊗ B)
𝐻

= A𝐻 ⊗ B𝐻.

Property 2 indicates that 𝛼 and 𝛽𝑇 are commutative.
Property 7 shows that A ⊗ B ⊗ C is unambiguous.

3. The Properties of the Mixed Products

This section discusses the properties based on the mixed
products theorem [6, 33, 34].

Theorem 1. Let A ∈ F𝑚×𝑛 and B ∈ F𝑝×𝑞; then

A ⊗ B = (A ⊗ I
𝑝
) (I
𝑛
⊗ B) = (I

𝑚
⊗ B) (A ⊗ I

𝑞
) . (2)

Proof. According to the definition of the Kronecker product
and the matrix multiplication, we have

A ⊗ B =

[
[
[
[

[

𝑎
11
B 𝑎
12
B ⋅ ⋅ ⋅ 𝑎

1𝑛
B

𝑎
21
B 𝑎
22
B ⋅ ⋅ ⋅ 𝑎

2𝑛
B

...
...

...
𝑎
𝑚1
B 𝑎
𝑚2
B ⋅ ⋅ ⋅ 𝑎

𝑚𝑛
B

]
]
]
]

]

=

[
[
[
[

[

𝑎
11
I
𝑝

𝑎
12
I
𝑝

⋅ ⋅ ⋅ 𝑎
1𝑛
I
𝑝

𝑎
21
I
𝑝

𝑎
22
I
𝑝

⋅ ⋅ ⋅ 𝑎
2𝑛
I
𝑝

...
...

...
𝑎
𝑚1
I
𝑝

𝑎
𝑚2
I
𝑝

⋅ ⋅ ⋅ 𝑎
𝑚𝑛
I
𝑝

]
]
]
]

]

[
[
[
[

[

B 0 ⋅ ⋅ ⋅ 0
0 B ⋅ ⋅ ⋅ 0
...

... d
...

0 0 ⋅ ⋅ ⋅ B

]
]
]
]

]

= (A ⊗ I
𝑝
) (I
𝑛
⊗ B) ,

A ⊗ B =

[
[
[
[

[

𝑎
11
B 𝑎
12
B ⋅ ⋅ ⋅ 𝑎

1𝑛
B

𝑎
21
B 𝑎
22
B ⋅ ⋅ ⋅ 𝑎

2𝑛
B

...
...

...
𝑎
𝑚1
B 𝑎
𝑚2
B ⋅ ⋅ ⋅ 𝑎

𝑚𝑛
B

]
]
]
]

]

=

[
[
[
[

[

B 0 ⋅ ⋅ ⋅ 0
0 B ⋅ ⋅ ⋅ 0
...

... d
...

0 0 ⋅ ⋅ ⋅ B

]
]
]
]

]

[
[
[
[

[

𝑎
11
I
𝑞

𝑎
12
I
𝑞

⋅ ⋅ ⋅ 𝑎
1𝑛
I
𝑞

𝑎
21
I
𝑞

𝑎
22
I
𝑞

⋅ ⋅ ⋅ 𝑎
2𝑛
I
𝑞

...
...

...
𝑎
𝑚1
I
𝑞

𝑎
𝑚2
I
𝑞

⋅ ⋅ ⋅ 𝑎
𝑚𝑛
I
𝑞

]
]
]
]

]

= (I
𝑚

⊗ B) (A ⊗ I
𝑞
) .

(3)

FromTheorem 1, we have the following corollary.

Corollary 2. Let A ∈ F𝑚×𝑚 and B ∈ F𝑛×𝑛. Then

A ⊗ B = (A ⊗ I
𝑛
) (I
𝑚

⊗ B) = (I
𝑚

⊗ B) (A ⊗ I
𝑛
) . (4)

This mean that I
𝑚

⊗ B and A ⊗ I
𝑛
are commutative for square

matrices A and B.

Using Theorem 1, we can prove the following mixed
products theorem.

Theorem 3. Let A = [𝑎
𝑖𝑗
] ∈ F𝑚×𝑛, C = [𝑐

𝑖𝑗
] ∈ F𝑛×𝑝, B ∈ F𝑞×𝑟,

and D ∈ F 𝑟×𝑠. Then

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD) . (5)

Proof. According toTheorem 1, we have

(A ⊗ B) (C ⊗ D)

= (A ⊗ I
𝑞
) (I
𝑛
⊗ B) (C ⊗ I

𝑟
) (I
𝑝
⊗ D)

= (A ⊗ I
𝑞
) [(I
𝑛
⊗ B) (C ⊗ I

𝑟
)] (I
𝑝
⊗ D)

= (A ⊗ I
𝑞
) (C ⊗ B) (I

𝑝
⊗ D)

= (A ⊗ I
𝑞
) [(C ⊗ I

𝑞
) (I
𝑝
⊗ B)] (I

𝑝
⊗ D)
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= [(A ⊗ I
𝑞
) (C ⊗ I

𝑞
)] [(I

𝑝
⊗ B) (I

𝑝
⊗ D)]

= [(AC) ⊗ I
𝑞
)] [I
𝑝
⊗ (BD)]

= (AC) ⊗ (BD) .
(6)

Let A[1] := A and define the Kronecker power by

A[𝑘+1] := A[𝑘] ⊗ A = A ⊗ A[𝑘], 𝑘 = 1, 2, . . . . (7)

FromTheorem 3, we have the following corollary [7].

Corollary 4. If the following matrix products exist, then one
has

(1) (A
1
⊗ B
1
)(A
2
⊗ B
2
) ⋅ ⋅ ⋅ (A

𝑝
⊗ B
𝑝
) = (A

1
A
2
⋅ ⋅ ⋅A
𝑝
) ⊗

(B
1
B
2
⋅ ⋅ ⋅B
𝑝
),

(2) (A
1
⊗ A
2
⊗ ⋅ ⋅ ⋅ ⊗ A

𝑝
)(B
1
⊗ B
2
⊗ ⋅ ⋅ ⋅ ⊗ B

𝑝
) = (A

1
B
1
) ⊗

(A
2
B
2
) ⊗ ⋅ ⋅ ⋅ ⊗ (A

𝑝
B
𝑝
),

(3) [AB]
[𝑘]

= A[𝑘]B[𝑘].

A squarematrixA is said to be a normalmatrix if and only
if A𝐻A = AA𝐻. A square matrix A is said to be a unitary
matrix if and only if A𝐻A = AA𝐻 = I. Straightforward
calculation gives the following conclusions [6, 7, 33, 34].

Theorem 5. For any square matrices A and B,
(1) if A−1 and B−1 exist, then (A ⊗ B)

−1

= A−1 ⊗ B−1,
(2) ifA and B are normal matrices, thenA⊗B is a normal

matrix,
(3) if A and B are unitary (orthogonal) matrices, then A ⊗

B is a unitary (orthogonal) matrix,

Let 𝜆[A] := {𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
} denote the eigenvalues of A

and let 𝜎[A] := {𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑟
} denote the nonzero singular

values ofA. According to the definition of the eigenvalue and
Theorem 3, we have the following conclusions [34].

Theorem 6. Let A ∈ F𝑚×𝑚 and B ∈ F𝑛×𝑛; 𝑘 and 𝑙 are positive
integers. Then 𝜆[A𝑘 ⊗ B𝑙] = {𝜆

𝑘

𝑖
𝜇
𝑙

𝑗
| 𝑖 = 1, 2, . . . , 𝑚, 𝑗 =

1, 2, . . . , 𝑛} = 𝜆[B𝑙 ⊗ A𝑘]. Here, 𝜆[A] = {𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
} and

𝜆[B] = {𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
}.

According to the definition of the singular value and
Theorem 3, for any matrices A and B, we have the next
theorem.

Theorem 7. Let A ∈ F𝑚×𝑛 and B ∈ F𝑝×𝑞. If rank[A] = 𝑟,
𝜎[A] = {𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑟
}, rank[B] = 𝑠, and 𝜎[B] =

{𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑠
}, then 𝜎[A ⊗ B] = {𝜎

𝑖
𝜌
𝑗

| 𝑖 = 1, 2, . . . , 𝑟, 𝑗 =

1, 2, . . . , 𝑠} = 𝜎[B ⊗ A].

Proof. According to the singular value decomposition theo-
rem, there exist the unitary matrices U, V and W, Q which
satisfy

A = U [
Σ 0
0 0]V, B = [

Γ 0
0 0]Q, (8)

where Σ = diag[𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑟
] and Γ = diag[𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑠
].

According to Corollary 4, we have

A ⊗ B = {U [
Σ 0
0 0]V} ⊗ {W [

Γ 0
0 0]Q}

= (U ⊗ W) {[
Σ 0
0 0] ⊗ [

Γ 0
0 0]} (V ⊗ Q)

= (U ⊗ W) [

[

Σ ⊗ [
Σ 0
0 0] 0
0 0

]

]

(V ⊗ Q)

= (U ⊗ W) [
Σ ⊗ Γ 0
0 0] (V ⊗ Q) .

(9)

Since U ⊗ W and V ⊗ Q are unitary matrices and Σ ⊗ Γ =

diag[𝜎
1
𝜌
1
, 𝜎
1
𝜌
2
, . . . , 𝜎

1
𝜌
𝑠
, . . . , 𝜎

𝑟
𝜌
𝑠
], this proves the theorem.

According toTheorem 7, we have the next corollary.

Corollary 8. For any matricesA, B, andC, one has 𝜎[A⊗B⊗

C] = 𝜎[C ⊗ B ⊗ A].

4. The Properties of the Vector Operator and
the Vec-Permutation Matrix

In this section, we introduce a vector-valued operator and a
vec-permutation matrix.

Let A = [a
1
, a
2
, . . . , a

𝑛
] ∈ F𝑚×𝑛, where a

𝑗
∈ F𝑚, 𝑗 =

1, 2, . . . , 𝑛; then the vector col[A] is defined by

col [A] :=

[
[
[
[

[

a
1

a
2

...
a
𝑛

]
]
]
]

]

∈ F
𝑚𝑛

. (10)

Theorem 9. Let A ∈ F𝑚×𝑛, B ∈ F𝑛×𝑝, and C ∈ F𝑝×𝑛, Then

(1) (I
𝑝
⊗ A)col[B] = col[AB],

(2) (A ⊗ I
𝑝
)col[C] = col[CAT

].

Proof. Let (B)
𝑖
denote the 𝑖th column of matrix B; we have

(I
𝑝
⊗ A) col [B] =

[
[
[
[

[

A 0 ⋅ ⋅ ⋅ 0
0 A ⋅ ⋅ ⋅ 0
...

... d
...

0 0 ⋅ ⋅ ⋅ A

]
]
]
]

]

[
[
[
[

[

(B)
1

(B)
2

...
(B)
𝑝

]
]
]
]

]

=

[
[
[
[

[

A(B)
1

A(B)
2

...
A(B)
𝑝

]
]
]
]

]

=

[
[
[
[

[

(AB)
1

(AB)
2

...
(AB)
𝑝

]
]
]
]

]

= col [AB] .

(11)
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Similarly, we have

(A ⊗ I
𝑝
) col [C]

=

[
[
[
[

[

𝑎
11
I
𝑝

𝑎
12
I
𝑝

⋅ ⋅ ⋅ 𝑎
1𝑛
I
𝑝

𝑎
21
I
𝑝

𝑎
22
I
𝑝

⋅ ⋅ ⋅ 𝑎
2𝑛
I
𝑝

...
...

...
𝑎
𝑚1
I
𝑝

𝑎
𝑚2
I
𝑝

⋅ ⋅ ⋅ 𝑎
𝑚𝑛
I
𝑝

]
]
]
]

]

[
[
[
[

[

(C)
1

(C)
2

...
(C)
𝑛

]
]
]
]

]

=

[
[
[
[

[

𝑎
11
(C)
1
+ 𝑎
12
(C)
2
+ ⋅ ⋅ ⋅ + 𝑎

1𝑛
(C)
𝑛

𝑎
21
(C)
1
+ 𝑎
22
(C)
2
+ ⋅ ⋅ ⋅ + 𝑎

2𝑛
(C)
𝑛

...
𝑎
𝑚1

(C)
1
+ 𝑎
𝑚2

(C)
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑚𝑛
(C)
𝑛

]
]
]
]

]

=

[
[
[
[
[

[

C(A𝑇)
1

C(A𝑇)
2

...
C(A𝑇)

𝑚

]
]
]
]
]

]

=

[
[
[
[
[

[

(CA𝑇)
1

(CA𝑇)
2

...
(CA𝑇)

𝑚

]
]
]
]
]

]

= col [CA𝑇] .

(12)

Theorem 10. Let A ∈ F𝑚×𝑛, B ∈ F𝑛×𝑝, and C ∈ F𝑝×𝑞. Then

col [ABC] = (C𝑇 ⊗ A) col [B] . (13)

Proof. According toTheorems 9 and 1, we have

col [ABC] = col [(AB)C]

= (C𝑇 ⊗ I
𝑚
) col [AB]

= (C𝑇 ⊗ I
𝑚
) (I
𝑝
⊗ A) col [B]

= [(C𝑇 ⊗ I
𝑚
) (I
𝑝
⊗ A)] col [B]

= (C𝑇 ⊗ A) col [B] .

(14)

Theorem 10 plays an important role in solving the matrix
equations [25, 35–37], system identification [38–54], and
control theory [55–58].

Let e
𝑖𝑛
denote an 𝑛-dimensional column vector which has

1 in the 𝑖th position and 0’s elsewhere; that is,

e
𝑖𝑛

:= [0, 0, . . . , 0, 1, 0, . . . , 0]
𝑇

. (15)

Define the vec-permutation matrix

P
𝑚𝑛

:=

[
[
[
[
[

[

I
𝑚

⊗ e𝑇
1𝑛

I
𝑚

⊗ e𝑇
2𝑛

...
I
𝑚

⊗ e𝑇
𝑛𝑛

]
]
]
]
]

]

∈ R
𝑚𝑛×𝑚𝑛

, (16)

which can be expressed as [6, 7, 33, 37]
𝑚

∑
𝑗=1

𝑛

∑
𝑘=1

(e
𝑘𝑛

⊗ e
𝑗𝑚

) (e
𝑗𝑚

⊗ e
𝑘𝑛

)
𝑇

. (17)

These two definitions of the vec-permutation matrix are
equivalent; that is,

𝑚

∑
𝑗=1

𝑛

∑
𝑘=1

(e
𝑘𝑛

⊗ e
𝑗𝑚

) (e
𝑗𝑚

⊗ e
𝑘𝑛

)
𝑇

= P
𝑚𝑛

. (18)

In fact, according to Theorem 3 and the basic properties of
the Kronecker product, we have

𝑚

∑
𝑗=1

𝑛

∑
𝑘=1

(e
𝑘𝑛

⊗ e
𝑗𝑚

) (e
𝑗𝑚

⊗ e
𝑘𝑛

)
𝑇

=

𝑚

∑
𝑗=1

𝑛

∑
𝑘=1

(e
𝑘𝑛

⊗ e
𝑗𝑚

) (e𝑇
𝑗𝑚

⊗ e𝑇
𝑘𝑛

)

=

𝑚

∑
𝑗=1

𝑛

∑
𝑘=1

(e
𝑘𝑛
e𝑇
𝑗𝑚

) ⊗ (e
𝑗𝑚
e𝑇
𝑘𝑛

)

=

𝑚

∑
𝑗=1

𝑛

∑
𝑘=1

(e
𝑘𝑛

⊗ e𝑇
𝑗𝑚

) ⊗ (e
𝑗𝑚

⊗ e𝑇
𝑘𝑛

)

=

𝑚

∑
𝑗=1

𝑛

∑
𝑘=1

[e
𝑘𝑛

⊗ (e𝑇
𝑗𝑚

⊗ e
𝑗𝑚

) ⊗ e𝑇
𝑘𝑛

]

=

𝑛

∑
𝑘=1

[

[

e
𝑘𝑛

⊗

𝑚

∑
𝑗=1

(e𝑇
𝑗𝑚

⊗ e
𝑗𝑚

) ⊗ e𝑇
𝑘𝑛

]

]

=

𝑛

∑
𝑘=1

[e
𝑘𝑛

⊗ I
𝑚

⊗ e𝑇
𝑘𝑛

]

=

[
[
[
[
[
[

[

I
𝑚

⊗ e𝑇
1𝑛

I
𝑚

⊗ e𝑇
2𝑛

...
I
𝑚

⊗ e𝑇
𝑛𝑛

]
]
]
]
]
]

]

= P
𝑚𝑛

.

(19)

Based on the definition of the vec-permutationmatrix, we
have the following conclusions.

Theorem 11. According to the definition of P
𝑚𝑛
, one has

(1) P𝑇
𝑚𝑛

= P
𝑛𝑚
,

(2) P𝑇
𝑚𝑛
P
𝑚𝑛

= P
𝑚𝑛
P𝑇
𝑚𝑛

= I
𝑚𝑛
.

That is, P
𝑚𝑛

is an (𝑚𝑛) × (𝑚𝑛) permutation matrix.
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Proof. According to the definition ofP
𝑚𝑛
,Theorem 3, and the

basic properties of the Kronecker product, we have

P𝑇
𝑚𝑛

=

[
[
[
[
[
[

[

I
𝑚

⊗ e𝑇
1𝑛

I
𝑚

⊗ e𝑇
2𝑛

...
I
𝑚

⊗ e𝑇
𝑛𝑛

]
]
]
]
]
]

]

𝑇

= [I𝑇
𝑚

⊗ e
1𝑛
, I𝑇
𝑚

⊗ e
2𝑛
, . . . , I𝑇

𝑚
⊗ e
𝑛𝑛

]

=

[
[
[
[
[
[

[

e𝑇
1𝑚

⊗ e
1𝑛

e𝑇
1𝑚

⊗ e
2𝑛

⋅ ⋅ ⋅ e𝑇
1𝑚

⊗ e
𝑛𝑛

e𝑇
2𝑚

⊗ e
1𝑛

e𝑇
2𝑚

⊗ e
2𝑛

⋅ ⋅ ⋅ e𝑇
2𝑚

⊗ e
𝑛𝑛

...
...

...
e𝑇
𝑚𝑚

⊗ e
1𝑛

e𝑇
𝑚𝑚

⊗ e
2𝑛

⋅ ⋅ ⋅ e𝑇
𝑚𝑚

⊗ e
𝑛𝑛

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

e
1𝑛

⊗ e𝑇
1𝑚

e
2𝑛

⊗ e𝑇
1𝑚

⋅ ⋅ ⋅ e
𝑛𝑛

⊗ e𝑇
1𝑚

e
1𝑛

⊗ e𝑇
2𝑚

e
2𝑛

⊗ e𝑇
2𝑚

⋅ ⋅ ⋅ e
𝑛𝑛

⊗ e𝑇
2𝑚

...
...

...
e
1𝑛

⊗ e𝑇
𝑚𝑚

e
2𝑛

⊗ e𝑇
𝑚𝑚

⋅ ⋅ ⋅ e
𝑛𝑛

⊗ e𝑇
𝑚𝑚

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

I
𝑛
⊗ e𝑇
1𝑚

I
𝑛
⊗ e𝑇
2𝑚

...
I
𝑛
⊗ e𝑇
𝑚𝑚

]
]
]
]
]
]

]

= P
𝑛𝑚

,

(20)

P
𝑚𝑛
P
𝑚𝑛

=

[
[
[
[
[
[

[

I
𝑚

⊗ e𝑇
1𝑛

I
𝑚

⊗ e𝑇
2𝑛

...
I
𝑚

⊗ e𝑇
𝑛𝑛

]
]
]
]
]
]

]

[I
𝑚

⊗ e
1𝑛
, I
𝑚

⊗ e
2𝑛
, . . . , I

𝑚
⊗ e
𝑛𝑛

]

=

[
[
[
[
[
[
[

[

I
𝑚

⊗ (e𝑇
1𝑛
e
1𝑛
) I
𝑚

⊗ (e𝑇
1𝑛
e
2𝑛
) ⋅ ⋅ ⋅ I

𝑚
⊗ (e𝑇
1𝑛
e
𝑛𝑛

)

I
𝑚

⊗ (e𝑇
2𝑛
e
1𝑛
) I
𝑚

⊗ (e𝑇
2𝑛
e
2𝑛
) ⋅ ⋅ ⋅ I

𝑚
⊗ (e𝑇
2𝑛
e
𝑛𝑛

)

...
...

...
I
𝑚

⊗ (e𝑇
𝑛𝑛
e
1𝑛
) I
𝑚

⊗ (e𝑇
𝑛𝑛
e
2𝑛
) ⋅ ⋅ ⋅ I

𝑚
⊗ (e𝑇
𝑛𝑛
e
𝑛𝑛

)

]
]
]
]
]
]
]

]

=

[
[
[
[

[

I
𝑚

0 ⋅ ⋅ ⋅ 0
0 I
𝑚

⋅ ⋅ ⋅ 0
...

... d
...

0 0 ⋅ ⋅ ⋅ I
𝑚

]
]
]
]

]

= I
𝑚𝑛

,

(21)

P𝑇
𝑚𝑛
P
𝑚𝑛

= [I
𝑚

⊗ e
1𝑛
, I
𝑚

⊗ e
2𝑛
, . . . , I

𝑚
⊗ e
𝑛𝑛

]

[
[
[
[
[
[

[

I
𝑚

⊗ e𝑇
1𝑛

I
𝑚

⊗ e𝑇
2𝑛

...
I
𝑚

⊗ e𝑇
𝑛𝑛

]
]
]
]
]
]

]

= I
𝑚

⊗ [

𝑛

∑
𝑖=1

e
𝑖𝑛
e𝑇
𝑖𝑛
]

= I
𝑚

⊗ I
𝑛

= I
𝑚𝑛

.

(22)

For any matrix A ∈ F𝑚×𝑛, we have col [A] = P
𝑚𝑛
col [A𝑇].

Theorem 12. IfA ∈ F𝑚×𝑛 andB ∈ F𝑝×𝑞, then one hasP
𝑚𝑝

(A⊗

B)P𝑇
𝑛𝑞

= B ⊗ A.

Proof. Let B := [𝑏
𝑖𝑗
] = [

[

B1
B2
...
B𝑝

]

]

, where B𝑖 ∈ F1×𝑞 and 𝑖 =

1, 2, . . . , 𝑝, and 𝑗 = 1, 2, . . . , 𝑞. According to the definition of
P
𝑚𝑛

and the Kronecker product, we have

P
𝑚𝑝

(A ⊗ B)P𝑇
𝑛𝑞

=

[
[
[
[
[
[
[

[

I
𝑚

⊗ e𝑇
1𝑝

I
𝑚

⊗ e𝑇
2𝑝

...
I
𝑚

⊗ e𝑇
𝑝𝑝

]
]
]
]
]
]
]

]

[(A)
1
⊗ B, (A)

2
⊗ B, . . . , (A)

𝑛
⊗ B]P𝑇

𝑛𝑞

=

[
[
[
[

[

(A)
1
⊗ B1 (A)

2
⊗ B1 ⋅ ⋅ ⋅ (A)

𝑛
⊗ B1

(A)
1
⊗ B2 (A)

2
⊗ B2 ⋅ ⋅ ⋅ (A)

𝑛
⊗ B2

...
...

...
(A)
1
⊗ B𝑝 (A)

2
⊗ B𝑝 ⋅ ⋅ ⋅ (A)

𝑛
⊗ B𝑝

]
]
]
]

]

P𝑇
𝑛𝑞

=

[
[
[
[

[

A ⊗ B1
A ⊗ B2

...
A ⊗ B𝑝

]
]
]
]

]

[I
𝑛
⊗ e
1𝑞
, I
𝑛
⊗ e
2𝑞
, . . . , I

𝑛
⊗ e
𝑞𝑞
]

=

[
[
[
[

[

A𝑏
11

A𝑏
12

⋅ ⋅ ⋅ A𝑏
1𝑞

A𝑏
21

A𝑏
22

⋅ ⋅ ⋅ A𝑏
2𝑞

...
...

...
A𝑏
𝑝1

A𝑏
𝑝2

⋅ ⋅ ⋅ A𝑏
𝑝𝑞

]
]
]
]

]

= B ⊗ A.

(23)

FromTheorem 12, we have the following corollaries.

Corollary 13. If A ∈ F𝑚×𝑛, then P
𝑚𝑟

(A ⊗ I
𝑟
)P𝑇
𝑛𝑟

= I
𝑟
⊗ A.
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Corollary 14. If A ∈ F𝑚×𝑛 and B ∈ F𝑛×𝑚, then

B ⊗ A = P
𝑚𝑛

(A ⊗ B)P𝑇
𝑛𝑚

= P
𝑚𝑛

[(A ⊗ B)P2
𝑚𝑛

]P𝑇
𝑛𝑚

. (24)

That is, 𝜆[B ⊗ A] = 𝜆[(A ⊗ B)P2
𝑚𝑛

]. When A ∈ F𝑛×𝑛 and
B ∈ F 𝑡×𝑡, one has B ⊗ A = P

𝑛𝑡
(A ⊗ B)P𝑇

𝑛𝑡
. That is, if A and B

are square matrices, then A ⊗ B is similar to B ⊗ A.

5. The Scalar Properties and the Polynomials
Matrix of the Kronecker Product

In this section, we discuss the properties [6, 7, 34] of the
determinant, the trace, the rank, and the polynomial matrix
of the Kronecker product.

ForA ∈ F𝑚×𝑚 andB ∈ F𝑛×𝑛, we have |A⊗B| = |A|
𝑛

|B|
𝑚

=

|B ⊗ A|. If A and B are two square matrices, then we have
tr[A ⊗ B] = tr[A] tr[B] = tr[B ⊗ A]. For any matrices A and
B, we have rank[A ⊗ B] = rank[A] rank[B] = rank[B ⊗ A].
According to these scalar properties, we have the following
theorems.

Theorem 15. (1) Let A,C ∈ F𝑚×𝑚 and B,D ∈ F𝑛×𝑛. Then

|(A ⊗ B) (C ⊗ D)| = |(A ⊗ B)| |(C ⊗ D)|

= (|A| |C|)
𝑛

(|B||D|)
𝑚

= |AC|
𝑛

|BD|
𝑚

.

(25)

(2) If A, B, C, and D are square matrices, then

tr [(A ⊗ B) (C ⊗ D)] = tr [(AC) ⊗ (BD)]

= tr [AC] tr [BD]

= tr [CA] tr [DB] .

(26)

(3) Let A ∈ F𝑚×𝑛, C ∈ F𝑛×𝑝, B ∈ F𝑞×𝑟, and D ∈ F 𝑟×𝑠; then

rank [(A ⊗ B) (C ⊗ D)] = rank [(AC) ⊗ (BD)]

= rank [AC] rank [BD] .
(27)

Theorem 16. If 𝑓(𝑥, 𝑦) := 𝑥
𝑟

𝑦
𝑠 is a monomial and 𝑓(A,B) :=

A[𝑟]⊗B[𝑠], where 𝑟, 𝑠 are positive integers, one has the following
conclusions.

(1) Let A ∈ F𝑚×𝑚 and B ∈ F𝑛×𝑛. Then

𝑓 (A,B)
 = |A|

𝑟𝑚
𝑟−1
𝑛
𝑠

|B|
𝑠𝑚
𝑟
𝑛
𝑠−1

. (28)

(2) If A and B are square matrices, then

tr [𝑓 (A,B)] = 𝑓 (tr [A] , tr [B]) . (29)

(3) For any matrices A and B, one has

rank [𝑓 (A,B)] = 𝑓 (rank [A] , rank [B]) . (30)

If 𝜆[A] = {𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
} and 𝑓(𝑥) = ∑

𝑘

𝑖=1
𝑐
𝑖
𝑥
𝑖 is a

polynomial, then the eigenvalues of

𝑓 (A) =

𝑘

∑
𝑖=1

𝑐
𝑖
A𝑖 (31)

are

𝑓 (𝜆
𝑗
) =

𝑘

∑
𝑖=1

𝑐
𝑖
𝜆
𝑖

𝑗
, 𝑗 = 1, 2, . . . , 𝑚. (32)

Similarly, consider a polynomial 𝑓(𝑥, 𝑦) in two variables 𝑥

and 𝑦:

𝑓 (𝑥, 𝑦) =

𝑘

∑
𝑖,𝑗=1

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

, 𝑐
𝑖𝑗
, 𝑥, 𝑦 ∈ F , (33)

where 𝑘 is a positive integer. Define the polynomial matrix
𝑓(A,B) by the formula

𝑓 (A,B) =

𝑘

∑
𝑖,𝑗=1

𝑐
𝑖𝑗
A𝑖 ⊗ B𝑗. (34)

According to Theorem 3, we have the following theorems
[34].

Theorem 17. Let A ∈ F𝑚×𝑚 and B ∈ F𝑛×𝑛; if 𝜆[A] =

{𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
} and 𝜆[B] = {𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
}, then the matrix

𝑓(A,B) has the eigenvalues

𝑓 (𝜆
𝑟
, 𝜇
𝑠
) =

𝑘

∑
𝑖,𝑗=1

𝑐
𝑖𝑗
𝜆
𝑖

𝑟
𝜇
𝑗

𝑠
, 𝑟 = 1, 2, . . . , 𝑚, 𝑠 = 1, 2, . . . , 𝑛.

(35)

Theorem 18 (see [34]). Let A ∈ F𝑚×𝑚. If 𝑓(𝑧) is an analytic
function and 𝑓(A) exists, then

𝑓(I
𝑛
⊗ A) = I

𝑛
⊗ 𝑓(A),

𝑓(A ⊗ I
𝑛
) = 𝑓(A) ⊗ I

𝑛
.

Finally, we introduce some results about the Kronecker
sum [7, 34]. The Kronecker sum of A ∈ F𝑚×𝑚 and B ∈ F𝑛×𝑛,
denoted as A ⊕ B, is defined by

A ⊕ B = A ⊗ I
𝑛
+ I
𝑚

⊗ B.

Theorem 19. Let A ∈ F𝑚×𝑚, and B ∈ F𝑛×𝑛. Then

exp[A ⊕ B] = exp[A] ⊗ exp[B],
sin(A ⊕ B) = sin(A) ⊗ cos(B) + cos(A) ⊗ sin(B),
cos(A ⊕ B) = cos(A) ⊗ cos(B) − sin(A) ⊗ sin(B).

6. Conclusions

This paper establishes some conclusions on the Kronecker
products and the vec-permutation matrix. A new presen-
tation about the properties of the mixed products and the
vector operator is given. All these obtained conclusions make
the theory of the Kronecker product more complete.
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