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This paper presents a decomposition technique for the service station reliability in a discrete-time repairable Geom𝑋/G/1 queueing
system, in which the server takes exhaustive service and multiple adaptive delayed vacation discipline. Using such a novel analytic
technique, some important reliability indices and reliability relation equations of the service station are derived. Furthermore, the
structures of the service station indices are also found. Finally, special cases and numerical examples validate the derived results and
show that our analytic technique is applicable to reliability analysis of some complex discrete-time repairable bulk arrival queueing
systems.

1. Introduction

Queues with service station subject to failures and repairs,
so-called repairable queues, are often encountered in many
practical applications such as in computer, manufacturing
systems, and communication networks. Because system per-
formance deteriorates seriously by service station failures and
the limitation of repair capacity, the study of queues with
service station failures and repairs is not only important
for theoretic investigations, but it is also necessary for
engineering applications.

Relative to continuous-time repairable queues, their
discrete-time counterparts received very little attention in
the literature. Moreover, most of discrete-time repairable
queueing models were investigated from a queueing theory
viewpoint only, and some quantities relative to queueing
theory, such as queue size, waiting time, and busy period,
were obtained. But the reliability quantities of the service
station, such as the unavailability and failure frequency of the
service station, were neglected (see, e.g., [1–11]).

On the other hand, to the best of our knowledge, the
existing work about the discrete-time repairable queues was
studied with the help of the discrete supplementary variable

technique, the matrix-geometric solution method, and the
decomposition method.The discrete supplementary variable
technique has important applications in queueing theory.
With this method, various repairable queueing systems were
investigated in the existing literatures (see, e.g., [1–8]). The
matrix-geometric solution method studied by Yu [9] and
other researchers is a more powerful tool. For example, Yu
et al. [10] applied this method to analyze the characteristics of
the MAP/PH(PH/PH)/1 queue with repairable server where
lifetime of server, service time, and repair time of server are
all discrete phase-type random variables. The decomposition
technique first introduced by Tang et al. [11] is a novel
probabilistic method, and it is based on renewal process
theory and 𝑧 transforms and is different from the above two
methods. Tang et al. [11] use this method to analyze the queue
length distribution and its stochastic decomposition property
for a discrete-timeGeo𝑋/G/1 repairable queueing systemwith
multiple adaptive delayed vacations. Recently, they have also
obtained several reliability quantities of the service station
[12].

The purpose of this paper is to introduce Tang’s decom-
position technique for the reliability of a discrete-time
repairable Geom𝑋/G/1 queueing system, in which the server
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Figure 1: Various time epochs in a late arrival system with delayed access.

takes exhaustive service and multiple adaptive delayed vaca-
tion discipline, and the service station is subject to failures
and repairs. According to such a novel analytic technique,
we discuss the main reliability indices of the service station,
including the probability that the time 𝑛 is during server
busy period, the unavailability and the average failure number
during (0, 𝑛]. What is more, we derive some important relia-
bility relation equations, which indicate the structures of the
service station indices. It should be noted that these reliability
relation equations are new results and are not obtained by
the existing discrete analytic techniques, such as the discrete
supplementary variable technique [1–8] or matrix-geometric
solution method [9, 10]. Some special cases and numerical
examples validate the derived results and show that Tang’s
decomposition technique is applicable to reliability analy-
sis of some complex discrete-time repairable bulk arrival
queues.

The rest of the paper is organized as follows. The next
section gives the model assumptions and some preliminaries.
In Section 3, we use Tang’s decomposition technique to study
the main reliability indices of the service station, including
the probability that the time 𝑛 is during server busy period,
the unavailability and the average failure number during
(0, 𝑛]. We also derive some important reliability relation
equations, which indicate the structures of the service
station indices. Sections 4 and 5 present some special cases
and numerical examples. Conclusions are finally drawn in
Section 6.

2. Assumptions and Preliminaries

We consider the following discrete-time Geom𝑋/G/1 queue-
ing system with multiple adaptive delayed vacations and
repairable service station.

(1) Let the time axis be slotted into intervals of equal
length with the length of a slot being unity. To be more
specific, let the time axis be marked by 0, 1, . . . , 𝑛, . . .. Here,
we discuss the model for a late arrival system with delayed
access (LAS-DA), and therefore a potential batch arrival takes
place in (𝑛−, 𝑛), and a potential departure occurs in (𝑛, 𝑛+);
for details, see Hunter [13]. The various time epochs involved
in our model can be viewed through a self-explanatory

figure (see Figure 1). The interarrival times between bulk
customers, {𝜏

𝑖
, 𝑖 ≥ 1}, are independent identically distributed

(i.i.d) randomvariables generated by a geometric distribution
𝑃{𝜏
𝑖
= 𝑗} = 𝑝(1 − 𝑝)

𝑗−1, (𝑗 ≥ 1, 0 < 𝑝 < 1). Each
group size 𝐷 is a random variable satisfying distribution
𝑃{𝐷 = 𝑘} = 𝑒

𝑘
, 𝑘 ≥ 1 with finite mean 𝑒 and

probability-generating function (PGF) 𝐴(𝑧) = ∑
∞

𝑘=1
𝑒
𝑘
𝑧
𝑘,

|𝑧| < 1.
(2) The customers in different bulk arrivals are served in

FCFS order, and the order in one bulk arrival is arbitrary.
At a time, the server only serves a customer at the service
station. The service times, {𝜒

𝑛
, 𝑛 ≥ 1}, are i.i.d random

variables having distribution 𝑔
𝑗
= 𝑃{𝜒

𝑛
= 𝑗}, 𝑗 ≥ 1 with

PGF 𝐺(𝑧) = ∑
∞

𝑗=1
𝑔
𝑗
𝑧
𝑗, |𝑧| < 1 and average service time

𝜇.
(3) The server will take at most 𝐻 vacations when the

system becomes empty. Before each vacation, the server
will spend some time for preparation. If a batch of cus-
tomers arrives in the preparation (delayed) time, the server
will abort the upcoming vacation and begin to serve the
customers immediately. A vacation will be taken if no
customer arrives in delayed time. Upon returning from a
vacation, the server immediately serves if there is a wait-
ing queue at the service station or prepares for another
vacation if there is an empty queue at the service station,
and the number of vacations taken is less than 𝐻. If
the total 𝐻 vacations have been finished and no arrival
occurs, the server will stay idle and wait for the customer
arrival.

(4) Assume that𝐻 obeys an arbitrary distribution 𝑃{𝐻 =

𝑗} = ℎ
𝑗
, 𝑗 ≥ 1 with PGF 𝐻(𝑧) = ∑∞

𝑗=1
ℎ
𝑗
𝑧
𝑗, |𝑧| < 1. Denote

the server’s the 𝑖th vacation time by 𝑉
𝑖
, 𝑖 ≥ 1. Suppose that

𝑉
𝑖
, 𝑖 ≥ 1 are independent and follow an identical arbitrary

distribution V
𝑗
= 𝑃{𝑉

𝑖
= 𝑗}, 𝑗 ≥ 1 with PGF V(𝑧) = ∑

∞

𝑗=1
V
𝑗
𝑧
𝑗,

|𝑧| < 1. The delayed times, denoted by {𝑊
𝑖
, 𝑖 ≥ 1}, are i.i.d

discrete random variables having an arbitrary distribution
𝑤
𝑗
= 𝑃{𝑊

𝑖
= 𝑗}, 𝑗 ≥ 1 with PGF 𝑤(𝑧) = ∑∞

𝑗=1
𝑤
𝑗
𝑧
𝑗, |𝑧| < 1.

(5) The service station may possibly fail when and only
when it is serving a customer. The failed service station
will be repaired by the server immediately. After repair,
the service station is as good as new and continues to
serve the customer whose service has not been finished
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yet. We assume that the service time for a customer is
cumulative.

(6) The lifetime 𝑋 of the service station has a geometric
distribution 𝑃{𝑋 = 𝑗} = 𝛼(1 − 𝛼)

𝑗−1
, (𝑗 ≥ 1, 0 < 𝛼 <

1), and its repair time 𝑌 obeys an arbitrary distribution
𝑦
𝑗
= 𝑃{𝑌 = 𝑗}, 𝑗 ≥ 1 with PGF 𝑦(𝑧) = ∑∞

𝑗=1
𝑦
𝑗
𝑧
𝑗
, |𝑧| < 1

and a mean repair time 𝛽.
(7) All randomvariables aremutually independent. At the

initial time 𝑛 = 0, the server begins to serve when the number
of customers presented in the system𝑁(0) > 0, or the server
is idle and waits for the first arrival when𝑁(0) = 0.

Remark 1. From the assumptions (3) and (7), we know that
after the first busy period, the server will begin to prepare
for a vacation. Obviously, the assumption (7) is practical and
reasonable. However, with Tang’s decomposition technique,
we will later prove that the steady-state reliability indices of
the service station are independent of the initial state𝑁(0) =
𝑖, 𝑖 ≥ 0, and they have nothing to do with multiple adaptive
delayed vacations.

Remark 2. Themultiple adaptive delayed vacation presented
by this paper is introduced by Tang et al. [11], which is
a generalization of multiple adaptive vacations [14]. The
analysis in this work shows that Tang’smethod is applicable to
reliability analysis of some complex discrete-time repairable
queueing systems with generalized vacation.

Throughout this paper, we adopt the following notations.
𝐸(𝑋) is the mean of random variable𝑋. 𝑃(𝑄) is the probabil-
ity of event 𝑄. 𝐶𝑘

𝑙
= 𝑙!/(𝑘!(𝑙 − 𝑘)!), 0 ≤ 𝑘 ≤ 𝑙.

Definition 3. The “generalized service time of a customer”
𝜒 denotes the time interval from the time when the server
begins to serve a customer until the service of this customer
ends, which includes some possible repair times of the service
station due to its failures in the process of serving this
customer.

Lemma 4 (see [11]). The PGF and the mean of 𝜒 are given,
respectively, by

𝐺 (𝑧) =

∞

∑

𝑗=0

𝑃 (𝜒 = 𝑗) 𝑧
𝑗
= 𝐺 [𝑧𝛼𝑦 (𝑧) + 𝑧 (1 − 𝛼)] , |𝑧| < 1,

𝐸 (𝜒) =

𝑑𝐺 (𝑧)

𝑑𝑧









𝑧=1

= 𝜇 (1 + 𝛼𝛽) ,

(1)

where 𝐺(𝑧) = ∑
∞

𝑗=1
𝑔
𝑗
𝑧
𝑗 and 𝑦(𝑧) = ∑

∞

𝑗=1
𝑦
𝑗
𝑧
𝑗 are given by

assumptions (2) and (6).

Definition 5. The “server busy period” denotes the time
interval from the time when the server begins to serve a
customer until the system becomes empty, which contains

some possible repair times of service station due to its failures
in the process of service.

Let ̃𝑏 denote the server busy period initiated with one
customer and let its PGF be ̃𝑏(𝑧) = ∑∞

𝑗=0
𝑃(
̃
𝑏 = 𝑗)𝑧

𝑗
, |𝑧| < 1.

According to [15], the following lemma holds.

Lemma 6. ̃𝑏(𝑧) satisfies the equation ̃𝑏(𝑧) = 𝐺[(1 − 𝑝)𝑧 +

𝑝𝐴(
̃
𝑏(𝑧))𝑧], and

𝐸 (
̃
𝑏) =

{
{
{

{
{
{

{

𝜇 (1 + 𝛼𝛽)

[1 − 𝑝𝑒𝜇 (1 + 𝛼𝛽)]

, 𝜌 < 1,

∞, 𝜌 ≥ 1,

(2)

where 𝜌 = 𝑝𝑒𝜇(1 + 𝛼𝛽) is the traffic intensity of the considered
queueing system.

The server busy period initiated with 𝑖 customers is denoted
by ̃𝑏⟨𝑖⟩. Then, ̃𝑏⟨𝑖⟩ can be expressed as ̃𝑏⟨𝑖⟩ = ̃

𝑏
1
+ ⋅ ⋅ ⋅ +

̃
𝑏
𝑖
,

where ̃𝑏
1
, . . . ,

̃
𝑏
𝑖
are independent of each other and have the

same distribution as ̃𝑏. Thus, the PGF of ̃𝑏⟨𝑖⟩ is ̃𝑏𝑖(𝑧).

Definition 7. The “idle period of the system” denotes the time
interval from the time the system becomes empty until bulk
customers arrive and enter the system.

Let 𝐼
𝑘
denote the 𝑘th idle period of the system, and then

according to the system assumptions, {𝐼
𝑘
, 𝑘 ≥ 1} are mutually

independent and follow an identical geometric distribution
𝑃(𝐼
𝑘
= 𝑗) = 𝑝(1 − 𝑝)

𝑗−1
, 𝑘, 𝑗 = 1, 2, 3, . . ..

Lemma 8 (see [13]). If |𝑧| < 1, 𝑐
𝑛
> 0 and 𝑐(𝑧) = ∑∞

𝑛=0
𝑐
𝑛
𝑧
𝑛,

then

lim
𝑧↑1

(1 − 𝑧) 𝑐 (𝑧) = 𝑐 < ∞ ⇐⇒ lim
𝑛→∞

1

𝑛

𝑛

∑

𝑘=1

𝑐
𝑘
= 𝑐 < ∞.

(3)

Lemma 9 (see [13]). If lim
𝑛→∞

𝑐
𝑛

= 𝑐 < ∞, then
lim
𝑛→∞

(1/𝑛)∑
𝑛

𝑘=1
𝑐
𝑘
= 𝑐.

3. Reliability Analysis of the Service Station

In this section, with the help of Tang’s decomposition tech-
nique, we will discuss main reliability indices of the service
station and analyze their structures.

3.1. The Probability That the Time 𝑛 Is during
Server Busy Period

Theorem 10. Let 𝐴
𝑖
(𝑛) = 𝑃 (the time 𝑛 is during server busy

period | 𝑁(0) = 𝑖), 𝑖 ≥ 0, and let 𝑎
𝑖
(𝑧) = ∑

∞

𝑛=0
𝐴
𝑖
(𝑛)𝑧
𝑛
, |𝑧| <

1, and then for 𝑖 ≥ 0, the PGF of 𝐴
𝑖
(𝑛) is
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𝑎
0 (𝑧) =

𝜏 (𝑧)

1 − 𝑧

{1−

𝐴 (
̃
𝑏 (𝑧)) [1−𝑤 (𝑝𝑧) V (𝑧)−𝑤 (𝑝𝑧)𝐻 (𝜃 (𝑧)) (V (𝑝𝑧)−V (𝑧))]

1−𝑡 (𝑧)

+

𝐴 (
̃
𝑏 (𝑧)) 𝜏 (𝑧) [1 − 𝑤 (𝑝𝑧)+𝐻 (𝜃 (𝑧)) (𝑤 (𝑝𝑧)−𝜃 (𝑧))]

1 − 𝑡 (𝑧)

} ,

(4)

𝑎
𝑖 (𝑧) =

1

1 − 𝑧

{1−

̃
𝑏
𝑖
(𝑧) [1−𝑤 (𝑝𝑧) V (𝑧)−𝑤 (𝑝𝑧)𝐻 (𝜃 (𝑧)) (V (𝑝𝑧)−V (𝑧))]

1 − 𝑡 (𝑧)

+

̃
𝑏
𝑖
(𝑧) 𝜏 (𝑧) [1−𝑤 (𝑝𝑧)+𝐻 (𝜃 (𝑧)) (𝑤 (𝑝𝑧)−𝜃 (𝑧))]

1 − 𝑡 (𝑧)

} , 𝑖 ≥ 1.

(5)

Further, one has

lim
𝑛→∞

𝐴
𝑖 (𝑛) = lim

𝑧↑1

(1 − 𝑧) 𝑎𝑖 (𝑧) = {

𝑝𝑒𝜇 (1 + 𝛼𝛽) , 𝜌 < 1,

1, 𝜌 ≥ 1,

(6)

where

𝑝=1−𝑝, 𝜏 (𝑧)=

𝑝𝑧

1−𝑝𝑧

, 𝜃 (𝑧)=𝑤 (𝑝𝑧) V (𝑝𝑧) ,

Λ (𝑧) = 𝑝𝑧 + 𝑝𝑧𝐴 (
̃
𝑏 (𝑧)) ,

𝑡 (𝑧)= 𝐴 (
̃
𝑏 (𝑧)) 𝜏 (𝑧) [1−𝑤 (𝑝𝑧)+𝐻 (𝜃 (𝑧)) (𝑤 (𝑝𝑧)−𝜃 (𝑧))]

+ 𝑤 (𝑝𝑧) V (Λ (𝑧)) + 𝑤 (𝑝𝑧)𝐻 (𝜃 (𝑧))

× (V (𝑝𝑧) − V (Λ (𝑧))) .

(7)

And 𝑤(𝑧), V(𝑧), 𝐴(𝑧),𝐻(𝑧), ̃𝑏(𝑧), and 𝜌 are given by assump-
tions (1)–(6), Definition 5, and Lemma 6, respectively.

Proof. Let

𝑠
𝑘
=

𝑘

∑

𝑖=1

(𝑊
𝑖
+ 𝑉
𝑖
) , 𝛿

𝑘
=

𝑘

∑

𝑖=1

𝜏
𝑖
, 𝑘 ≥ 1, 𝑠

0
= 𝛿
0
= 0,

∞

∑

𝑚[𝑖]=𝑖

=

∞

∑

𝑚
1
=1

⋅ ⋅ ⋅

∞

∑

𝑚
𝑖
=1

, 𝑚 [𝑖] =

𝑖

∑

𝑗=1

𝑚
𝑗
,

(8)

and 𝜉(𝑛) = 1 represents the event that the time 𝑛 is during
server busy period. Denote by 𝐼

𝑖
the 𝑖th idle period of the

system with a geometric distribution (see Definition 7), and
̃
𝑏
⟨𝑘⟩ is the server busy period initiated with 𝑘 customers with
PGF ̃𝑏𝑘(𝑧) (see Lemma 6). Since the ending points of server
busy period and server vacation are renewal points, by noting
that the server stays idle and waits for the first arrival when
𝑁(0) = 0, we get

𝐴
0 (𝑛) = 𝑃 (𝐼1 ≤ 𝑛, 𝜉 (𝑛) = 1)

=

∞

∑

𝑘=1

𝑒
𝑘
𝑃 (𝐼
1
≤ 𝑛 < 𝐼

1
+
̃
𝑏
⟨𝑘⟩
)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗
𝑃 (𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝐼
2
≤ 𝑛, 𝑠
𝑗
< 𝐼
2
, 𝜉 (𝑛) = 1)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

𝑃 (𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝐼
2
≤𝑛,

𝑠
𝑙−1
<𝐼
2
≤𝑠
𝑙−1
+𝑊
𝑙
, 𝜉 (𝑛)=1)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑖=1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
< 𝐼
2
≤ 𝑠
𝑙
,

𝐼
2
+ 𝛿
𝑖−1
< 𝑠
𝑙
≤ 𝐼
2
+ 𝛿
𝑖
,

𝑛 ≥ 𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝑠
𝑙
, 𝜉 (𝑛) = 1)

=

∞

∑

𝑘=1

𝑒
𝑘

𝑛

∑

𝑖=1

𝑃 (𝐼
1
= 𝑖) [

[

1 −

𝑛−𝑖

∑

𝑗=𝑘

𝑃 (
̃
𝑏
⟨𝑘⟩
= 𝑗)]

]

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑟=1

𝑃 (𝐼
1
+𝑏
⟨𝑘⟩
=𝑢)𝐴

𝑚 (𝑛−𝑢−𝑟)

× 𝑃 (𝐼
2
= 𝑟)

𝑟−1

∑

𝑤=2𝑗−2

𝑃 (𝑠
𝑗
= 𝑤)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑟=1

𝑃 (𝐼
1
+𝑏
⟨𝑘⟩
=𝑢)𝑃 (𝐼

2
=𝑟)𝐴

𝑚 (𝑛−𝑢−𝑟)

× [

𝑟−1

∑

𝑤=2𝑙−2

𝑃 (𝑠
𝑙−1
= 𝑤) −

𝑟−1

∑

𝑤=2𝑙−1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
= 𝑤)]
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+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

×

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑡=2𝑙−1

𝑛−𝑢−𝑡

∑

𝑟=1

𝐴
𝑚[𝑖] (𝑛 − 𝑢 − 𝑡 − 𝑟)

× 𝑃 (𝐼
1
+ 𝑏
⟨𝑘⟩
= 𝑢)𝑃 (𝑠

𝑙−1
+𝑊
𝑙
= 𝑡) 𝑃 (𝑉

𝑙
= 𝑟)

× 𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
(1 − 𝑝)

𝑡
.

(9)

By the same way, for 𝑖 ≥ 1, we have

𝐴
𝑖 (𝑛) = 1 −

𝑛

∑

𝑗=𝑖

𝑃 (
̃
𝑏
⟨𝑖⟩
= 𝑗)

∞

∑

𝑗=1

ℎ
𝑗

∞

∑

𝑚=1

𝑒
𝑚

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑟=1

𝑃 (
̃
𝑏
⟨𝑖⟩
= 𝑢)

× 𝑃 (𝐼
1
= 𝑟)𝐴

𝑚 (𝑛 − 𝑢 − 𝑟)

𝑟−1

∑

𝑤=2𝑗

𝑃 (𝑠
𝑗
= 𝑤)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑟=1

𝑃 (𝑏
⟨𝑖⟩
= 𝑢)𝐴

𝑚 (𝑛 − 𝑢 − 𝑟)

× 𝑃 (𝐼
1
=𝑟)

× [

𝑟−1

∑

𝑤=2𝑙−2

𝑃 (𝑠
𝑙−1
=𝑤)−

𝑟−1

∑

𝑤=2𝑙−1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
=𝑤)]

+

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

×

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑡=2𝑙−1

𝑛−𝑢−𝑡

∑

𝑟=1

𝐴
𝑚[𝑖] (𝑛 − 𝑢 − 𝑡 − 𝑟)

× 𝑃 (𝑏
⟨𝑖⟩
= 𝑢)𝑃 (𝑠

𝑙−1
+𝑊
𝑙
= 𝑡) 𝑃 (𝑉

𝑙
= 𝑟)

× 𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
(1 − 𝑝)

𝑡
.

(10)

Taking 𝑧-transforms of (9) and (10), respectively, we get

𝑎
0 (𝑧)=

𝜏 (z)
1 − 𝑧

[1−𝐴 (
̃
𝑏 (𝑧))]

+[𝜏 (𝑧)]
2
𝐴(
̃
𝑏 (𝑧))𝐻 (𝜃 (𝑧))

∞

∑

𝑚=1

𝑒
𝑚
𝑎
𝑚 (𝑧)

+[𝜏 (𝑧)]
2
𝐴(
̃
𝑏 (𝑧)) [1−𝑤 (𝑝𝑧)]

×

1 − 𝐻 (𝜃 (𝑧))

1 − 𝜃 (𝑧)

∞

∑

𝑚=1

𝑒
𝑚
𝑎
𝑚 (𝑧)

+ 𝜏 (𝑧) 𝐴 (
̃
𝑏 (𝑧))𝑤 (𝑝𝑧)

1 − 𝐻 (𝜃 (𝑧))

1 − 𝜃 (𝑧)

×

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

𝑎
𝑚[𝑖] (𝑧)

∞

∑

𝑟=1

V
𝑟
𝑧
𝑟
𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
,

(11)

𝑎
𝑖 (𝑧) =

1 −
̃
𝑏
𝑖
(𝑧)

1 − 𝑧

+ 𝜏 (𝑧)
̃
𝑏
𝑖
(𝑧)𝐻 (𝜃 (𝑧))

∞

∑

𝑚=1

𝑒
𝑚
𝑎
𝑚 (𝑧)

+𝜏 (𝑧)
̃
𝑏
𝑖
(𝑧) [1−𝑤 (𝑝𝑧)]

1−𝐻 (𝜃 (𝑧))

1−𝜃 (𝑧)

∞

∑

𝑚=1

𝑒
𝑚
𝑎
𝑚 (𝑧)

+
̃
𝑏
𝑖
(𝑧) 𝑤 (𝑝𝑧)

1−𝐻 (𝜃 (𝑧))

1−𝜃 (𝑧)

×

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

𝑎
𝑚[𝑖] (𝑧)

×

∞

∑

𝑟=1

V
𝑟
𝑧
𝑟
𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
, 𝑖 ≥ 1.

(12)

It follows from (11) and (12) that

𝑎
𝑖 (𝑧) =

1

1 − 𝑧

−

̃
𝑏
𝑖
(𝑧)

1 − 𝑧

[

𝜏 (𝑧) − (1 − 𝑧) 𝑎0 (𝑧)

𝜏 (𝑧) 𝐴 (
̃
𝑏 (𝑧))

] , 𝑖 ≥ 1.

(13)

Substituting (13) into (11) and noting

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

̃
𝑏
𝑚[𝑖]

(𝑧)

∞

∑

𝑟=1

V
𝑟
𝑧
𝑟
𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖

=

∞

∑

𝑟=1

V
𝑟
𝑧
𝑟

∞

∑

𝑖=1

𝐶
𝑖

𝑟
[𝑝𝐴 (

̃
𝑏 (𝑧))]

𝑖

(1 − 𝑝)
𝑟−𝑖

= V (𝑝𝑧 + 𝑝𝑧𝐴 (̃𝑏 (𝑧))) − V (𝑝𝑧) ,

(14)

we easily get (4). Equation (5) is obtained by (4) and (13).
By Lemmas 8 and 9, we have lim

𝑛→∞
𝐴
𝑖
(𝑛) = lim

𝑧↑1
(1 −

𝑧)𝑎
𝑖
(𝑧). So, (6) follows by (4), (5), L’ Hospital’s rule, and direct

calculations.

To study the unavailability and the failure number during
(0, 𝑛] of the service station, we first consider a classical
discrete-time single-unit repairable system. Whenever the
unit fails, the system breaks down. The failed unit is repaired
immediately, and it is as good as new after repair. As soon
as the repair of the failed unit is completed, the system
starts to operate immediately. The lifetime 𝑋 of the unit is
geometrically distributed with parameter 𝛼, 0 ≤ 𝛼 < 1, and
its repair time𝑌 obeys an arbitrary discrete-time distribution
with a mean repair time 𝛽. Suppose that the unit is new at the
initial time 𝑛 = 0. 𝑋 and 𝑌 are mutually independent. For
𝑛 ≥ 0, let

Φ (𝑛) = 𝑃 (the system is repaired at time 𝑛) ,

𝑀 (𝑛) = 𝐸 (the failure number of

the system during (0, 𝑛]) ,

(15)

and 𝜑(𝑧) = ∑∞
𝑛=0

Φ(𝑛)𝑧
𝑛, 𝑚(𝑧) = ∑∞

𝑛=0
𝑀(𝑛)𝑧

𝑛
, |𝑧| < 1.

Similar to the discussions in a continuing-time single-
unit system [16], we have the following lemma.
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Lemma 11. For |𝑧| < 1, then

𝜑 (𝑧) =

𝑧𝛼 [1 − 𝑦 (𝑧)]

(1 − 𝑧) [1 − 𝑧 + 𝑧𝛼 (1 − 𝑦 (𝑧))]

,

𝑚 (𝑧) =

𝑧𝛼

(1 − 𝑧) [1 − 𝑧 + 𝑧𝛼 (1 − 𝑦 (𝑧))]

,

lim
𝑛→∞

Φ (𝑛) = lim
𝑧↑1

(1 − 𝑧) 𝜑 (𝑧) =

𝛼𝛽

1 + 𝛼𝛽

,

lim
𝑛→∞

𝑀(𝑛)

𝑛

= lim
𝑧↑1

(1 − 𝑧)
2
𝑚(𝑧) =

𝛼

1 + 𝛼𝛽

,

(16)

where 𝑦(𝑧) = ∑∞
𝑗=0
𝑃(𝑌 = 𝑗)𝑧

𝑗
, |𝑧| < 1.

Remark 12. Let 𝑀
𝑓
(𝑘) = 𝑀(𝑘) − 𝑀(𝑘 − 1), 𝑘 ≥ 1, and

let 𝑚
𝑓
(𝑧) = ∑

∞

𝑛=0
𝑀
𝑓
(𝑛)𝑧
𝑛
, |𝑧| < 1, and then according to

Lemmas 8 and 9, we have

lim
𝑛→∞

𝑀(𝑛)

𝑛

= lim
𝑧↑1

(1 − 𝑧)𝑚𝑓 (𝑧) = lim
𝑧↑1

(1 − 𝑧)
2
𝑚(𝑧) .

(17)

3.2.TheUnavailability of the Service Station. Theunavailabil-
ity of the service station at time 𝑛, that is, the probability that
the service station is repaired at time 𝑛.

Theorem 13. Let Φ
𝑖
(𝑛) = 𝑃 (the service station is repaired at

time 𝑛 | 𝑁(0) = 𝑖), 𝑖 ≥ 0, and let 𝜑
𝑖
(𝑧) = ∑

∞

𝑛=0
Φ
𝑖
(𝑛)𝑧
𝑛
, |𝑧| <

1, and then the PGF of Φ
𝑖
(𝑛) is

𝜑
𝑖 (𝑧) = 𝜑 (𝑧) [(1 − 𝑧) 𝑎𝑖 (𝑧)] , 𝑖 ≥ 0, (18)

and the steady-state unavailability of the service station is given
by

lim
𝑛→∞

Φ
𝑖 (𝑛) = lim

𝑧↑1

(1 − 𝑧) 𝜑𝑖 (𝑧) =

{
{

{
{

{

𝑝𝑒𝜇𝛼𝛽, 𝜌 < 1

𝛼𝛽

1 + 𝛼𝛽

, 𝜌 ≥ 1,

(19)

where 𝜑(𝑧), 𝑎
𝑖
(𝑧), 𝑖 ≥ 0, and 𝜌 are given by Lemma 11,

Theorem 10, and Lemma 6, respectively.

Proof. (i) Let 𝜂(𝑛) = 1 denote the event that the service
station is repaired at time 𝑛. The service station is repaired
at time 𝑛 if and only if the time 𝑛 is during one server
busy period, and the service station is repaired at time 𝑛.

Therefore, by total probability decomposition and renewal
point technique,Φ

0
(𝑛) is decomposed as

Φ
0 (𝑛) =

∞

∑

𝑘=1

𝑒
𝑘
𝑃 (𝐼
1
≤ 𝑛 < 𝐼

1
+
̃
𝑏
⟨𝑘⟩
, 𝜂 (𝑛) = 1)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗
𝑃 (𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝐼
2
≤ 𝑛, 𝑠
𝑗
< 𝐼
2
, 𝜂 (𝑛) = 1)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

𝑃 (𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝐼
2
≤ 𝑛,

𝑠
𝑙−1
< 𝐼
2
≤ 𝑠
𝑙−1
+𝑊
𝑙
, 𝜂 (𝑛) = 1)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑖=1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
≤ 𝐼
2
≤ 𝑠
𝑙
,

𝐼
2
+ 𝛿
𝑖−1
< 𝑠
𝑙
≤ 𝐼
2
+ 𝛿
𝑖
,

𝑛 ≥ 𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝑠
𝑙
, 𝜂 (𝑛) = 1)

=

∞

∑

𝑘=1

𝑒
𝑘

𝑛

∑

𝑖=1

𝑃 (𝐼
1
= 𝑖) 𝑆
𝑘 (𝑛 − 𝑖)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

∞

∑

𝑚=1

𝑒
𝑚

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑟=1

𝑃 (𝐼
1
+ 𝑏
⟨𝑘⟩
= 𝑢)

× Φ
𝑚 (𝑛 − 𝑢 − 𝑟) 𝑃 (𝐼2 = 𝑟)

𝑟−1

∑

𝑤=2𝑗

𝑃 (𝑠
𝑗
= 𝑤)

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑟=1

𝑃 (𝐼
1
+ 𝑏
⟨𝑘⟩
=𝑢)𝑃 (𝐼

2
=𝑟)Φ

𝑚 (𝑛−𝑢−𝑟)

× [

𝑟−1

∑

𝑤=2𝑙−2

𝑃 (𝑠
𝑙−1
= 𝑤) −

𝑟−1

∑

𝑤=2𝑙−1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
= 𝑤)]

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

×

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑡=2𝑙−1

𝑛−𝑢−𝑡

∑

𝑟=1

Φ
𝑚[𝑖] (𝑛 − 𝑢 − 𝑡 − 𝑟)

× 𝑃 (𝐼
1
+ 𝑏
⟨𝑘⟩
= 𝑢)𝑃 (𝑠

𝑙−1
+𝑊
𝑙
= 𝑡) 𝑃 (𝑉

𝑙
= 𝑟)

× 𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
(1 − 𝑝)

𝑡
,

(20)

where 𝑆
𝑘
(𝑛) = 𝑃 (0 ≤ 𝑛 <

̃
𝑏
⟨𝑘⟩
, and the service station

is repaired at time 𝑛), 𝑘 ≥ 1.
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Similarly, for 𝑖 ≥ 1, we have the decomposition of Φ
𝑖
(𝑛)

as follows:

Φ
𝑖 (𝑛)= 𝑆𝑖 (𝑛)+

∞

∑

𝑗=1

ℎ
𝑗

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑟=1

𝑃 (
̃
𝑏
⟨𝑖⟩
=𝑢)Φ

𝑚 (𝑛−𝑢−𝑟) 𝑃 (𝐼1=𝑟)

×

𝑟−1

∑

𝑤=2𝑗

𝑃 (𝑠
𝑗
= 𝑤) +

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑟=1

𝑃 (𝑏
⟨𝑖⟩
= 𝑢)Φ

𝑚 (𝑛 − 𝑢 − 𝑟)

× 𝑃 (𝐼
1
=𝑟)

× [

𝑟−1

∑

𝑤=2𝑙−2

𝑃 (𝑠
𝑙−1
=𝑤)−

𝑟−1

∑

𝑤=2𝑙−1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
=𝑤)]

+

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

×

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑡=2𝑙−1

𝑛−𝑢−𝑡

∑

𝑟=1

Φ
𝑚[𝑖] (𝑛−𝑢−𝑡−𝑟)

× 𝑃 (𝑏
⟨𝑖⟩
= 𝑢)𝑃 (𝑠

𝑙−1
+𝑊
𝑙
= 𝑡) 𝑃 (𝑉

𝑙
= 𝑟)

× 𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
(1 − 𝑝)

𝑡
.

(21)

(ii) For 𝑖 ≥ 1,

𝑆
𝑖 (𝑛) = Φ (𝑛) −

𝑛

∑

𝑘=𝑖

𝑃 (
̃
𝑏
⟨𝑖⟩
= 𝑘)Φ (𝑛 − 𝑘) ,

∞

∑

𝑛=0

𝑆
𝑖 (𝑛) 𝑧

𝑛
= 𝜑 (𝑧) [1 −

̃
𝑏
𝑖
(𝑧)] , |𝑧| < 1,

(22)

where Φ(𝑛) and 𝜑(𝑧) are given by Lemma 11.
In fact, Φ(𝑛) can be decomposed as

Φ (𝑛) = 𝑃 (the system is repaired at time 𝑛, ̃𝑏⟨𝑖⟩ ≤ 𝑛)

+𝑃 (the system is repaired at time 𝑛, ̃𝑏⟨𝑖⟩>𝑛)

=

𝑛

∑

𝑘=𝑖

𝑃 (
̃
𝑏
⟨𝑖⟩
= 𝑘)Φ (𝑛 − 𝑘) + 𝑆𝑖 (𝑛) .

(23)

So, (22) is easily obtained.

(iii) Taking 𝑧-transforms of (20) and (21), respectively,
and by means of (22), we have the following results:

𝜑
0 (𝑧)= 𝜏 (𝑧) 𝜑 (𝑧) [1−𝐴 (

̃
𝑏 (𝑧))]

+[𝜏 (𝑧)]
2
𝐴(
̃
𝑏 (𝑧))𝐻 (𝜃 (𝑧))

∞

∑

𝑚=1

𝑒
𝑚
𝜑
𝑚 (𝑧)

+[𝜏 (𝑧)]
2
𝐴(
̃
𝑏 (𝑧)) [1−𝑤 (𝑝𝑧)]

1−𝐻 (𝜃 (𝑧))

1−𝜃 (𝑧)

×

∞

∑

𝑚=1

𝑒
𝑚
𝜑
𝑚 (𝑧)

+𝜏 (𝑧) 𝐴 (
̃
𝑏 (𝑧))𝑤 (𝑝𝑧)

1−𝐻 (𝜃 (𝑧))

1−𝜃 (𝑧)

×

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

𝜑
𝑚[𝑖] (𝑧)

×

∞

∑

𝑟=1

V
𝑟
𝑧
𝑟
𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
,

𝜑
𝑖 (𝑧)= 𝜑 (𝑧) [1−

̃
𝑏
𝑖
(𝑧)]+𝜏 (𝑧)

̃
𝑏
𝑖
(𝑧)𝐻 (𝜃 (𝑧))

∞

∑

𝑚=1

𝑒
𝑚
𝜑
𝑚 (𝑧)

+𝜏 (𝑧)
̃
𝑏
𝑖
(𝑧) [1−𝑤 (𝑝𝑧)]

1−𝐻 (𝜃 (𝑧))

1−𝜃 (𝑧)

∞

∑

𝑚=1

𝑒
𝑚
𝜑
𝑚 (𝑧)

+
̃
𝑏
𝑖
(𝑧) 𝑤 (𝑝𝑧)

1−𝐻 (𝜃 (𝑧))

1−𝜃 (𝑧)

×

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

𝜑
𝑚[𝑖] (𝑧)

×

∞

∑

𝑟=1

V
𝑟
𝑧
𝑟
𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
, 𝑖 ≥ 1.

(24)

Performing similar operations in the proof of Theorem 10 on
(24), we can complete the proof byTheorem 10 and Lemma 11
above.

3.3. The Mean Failure Number of Service Station during (0, 𝑛]

Theorem 14. Let 𝑀
𝑖
(𝑛) = 𝐸 (the failure number of service

station during (0, 𝑛] | 𝑁(0) = 𝑖), 𝑖 ≥ 0, and let 𝑚
𝑖
(𝑧) =

∑
∞

𝑛=0
𝑀
𝑖
(𝑛)z𝑛, |𝑧| < 1, and then the PGF of𝑀

𝑖
(𝑛) is

𝑚
𝑖 (𝑧) = 𝑚 (𝑧) [(1 − 𝑧) 𝑎𝑖 (𝑧)] , 𝑖 ≥ 0, (25)

and the steady-state failure frequency of service station is given
by

lim
𝑛→∞

𝑀
𝑖 (𝑛)

𝑛

= lim
𝑧↑1

(1 − 𝑧)
2
𝑚
𝑖 (𝑧) =

{

{

{

𝑝𝑒𝜇𝛼, 𝜌 < 1

𝛼

1 + 𝛼𝛽

, 𝜌 ≥ 1,

(26)
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where 𝑚(𝑧), 𝑎
𝑖
(𝑧), 𝑖 ≥ 0, and 𝜌 are given by Lemma 11,

Theorem 10, and Lemma 6, respectively.

Proof. (1) For 𝑖 ≥ 1, let

𝐽
𝑖 (𝑛) = 𝐸 (0≤𝑛<

̃
𝑏
⟨𝑖⟩
, the failure number of

service station during (0, 𝑛] ) ,

𝐿
𝑖 (𝑛) = 𝐸 (

̃
𝑏
⟨𝑖⟩
≤𝑛, the failure number of

service station during (0,
̃
𝑏
⟨𝑖⟩
]) .

(27)

Then, similar to (22) above, we have

𝐽
𝑖 (𝑛) + 𝐿 𝑖 (𝑛) = 𝑀 (𝑛) −

𝑛

∑

𝑘=𝑖

𝑃 (
̃
𝑏
⟨𝑖⟩
= 𝑘)𝑀 (𝑛 − 𝑘) , 𝑖 ≥ 1,

∞

∑

𝑛=0

[𝐽
𝑖 (𝑛) + 𝐿 𝑖 (𝑛)] 𝑧

𝑛
= 𝑚 (𝑧) [1 −

̃
𝑏
𝑖
(𝑧)] , |𝑧| < 1,

(28)

where𝑀(𝑛) and𝑚(𝑧) are given by Lemma 11.
(2) Using total probability decomposition and renewal

point technique, we have the decomposition of 𝑀
0
(𝑛) as

follows:

𝑀
0 (𝑛)

=

∞

∑

𝑘=1

𝑒
𝑘
{𝐸 (𝐼
1
≤ 𝑛 < 𝐼

1
+
̃
𝑏
⟨𝑘⟩
, the failure number of

service station during (𝐼
1
, 𝑛] )

+ 𝐸 (𝑛 ≥ 𝐼
1
+
̃
𝑏
⟨𝑘⟩
, the failure number of

service station during (𝐼
1
, 𝐼
1
+
̃
𝑏
⟨𝑘⟩
])}

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗
𝐸 (𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝐼
2
≤ 𝑛, 𝑠
𝑗
< 𝐼
2
,

the failure number of

service station during

(𝐼
1
+
̃
𝑏
⟨𝑘⟩
+𝐼
2
, 𝑛])

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

×

𝑗

∑

𝑙=1

𝐸 (𝑠
𝑙−1
< 𝐼
2
≤ 𝑠
𝑙−1
+𝑊
𝑙
, 𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝐼
2
≤ 𝑛,

the failure number of service station during

(𝐼
1
+
̃
𝑏
⟨𝑘⟩
+ 𝐼
2
, 𝑛])

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

×

𝑗

∑

𝑙=1

∞

∑

𝑖=1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
≤𝐼
2
≤𝑠
𝑙
, 𝐼
2
+𝛿
𝑖−1
<𝑠
𝑙
≤𝐼
2
+𝛿
𝑖
,

𝑛≥𝐼
1
+
̃
𝑏
⟨𝑘⟩
+𝑠
𝑙
, the failure number of

service station during (𝐼
1
+
̃
𝑏
⟨𝑘⟩
+𝑠
𝑙
, 𝑛])

=

∞

∑

𝑘=1

𝑒
𝑘

𝑛

∑

𝑖=1

𝑃 (𝐼
1
= 𝑖) [𝐽

𝑘 (𝑛 − 𝑖) + 𝐿𝑘 (𝑛 − 𝑖)]

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑟=1

𝑃 (𝐼
1
+𝑏
⟨𝑘⟩
= 𝑢)𝑀

𝑚 (𝑛−𝑢−𝑟) 𝑃 (𝐼2=𝑟)

×

𝑟−1

∑

𝑤=2𝑗

𝑃 (𝑠
𝑗
= 𝑤) +

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑟=1

𝑃 (𝐼
1
+ 𝑏
⟨𝑘⟩
= 𝑢)

× 𝑃 (𝐼
2
= 𝑟)𝑀

𝑚 (𝑛 − 𝑢 − 𝑟)

× [

𝑟−1

∑

𝑤=2𝑙−2

𝑃 (𝑠
𝑙−1
= 𝑤) −

𝑟−1

∑

𝑤=2𝑙−1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
= 𝑤)]

+

𝑛

∑

𝑘=1

𝑒
𝑘

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

×

𝑛

∑

𝑢=𝑘+1

𝑛−𝑢

∑

𝑡=2𝑙−1

𝑛−𝑢−𝑡

∑

𝑟=1

𝑀
𝑚[𝑖] (𝑛 − 𝑢 − 𝑡 − 𝑟)

× 𝑃 (𝐼
1
+ 𝑏
⟨𝑘⟩
= 𝑢)𝑃 (𝑠

𝑙−1
+𝑊
𝑙
= 𝑡) 𝑃 (𝑉

𝑙
= 𝑟)

× 𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
(1 − 𝑝)

𝑡
.

(29)

Similarly,𝑀
𝑖
(𝑛), 𝑖 ≥ 1 are decomposed as

𝑀
𝑖 (𝑛) = 𝐽𝑖 (𝑛) + 𝐿 𝑖 (𝑛) +

∞

∑

𝑗=1

ℎ
𝑗

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑟=1

𝑃 (
̃
𝑏
⟨𝑖⟩
= 𝑢)𝑀

𝑚 (𝑛 − 𝑢 − 𝑟) 𝑃 (𝐼1 = 𝑟)
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×

𝑟−1

∑

𝑤=2𝑗

𝑃 (s
𝑗
= 𝑤) +

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑚=1

𝑒
𝑚

×

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑟=1

𝑃 (𝑏
⟨𝑖⟩
= 𝑢)𝑀

𝑚 (𝑛 − 𝑢 − 𝑟)

× 𝑃 (𝐼
1
=𝑟)

× [

𝑟−1

∑

𝑤=2𝑙−2

𝑃 (𝑠
𝑙−1
=𝑤)−

𝑟−1

∑

𝑤=2𝑙−1

𝑃 (𝑠
𝑙−1
+𝑊
𝑙
=𝑤)]

+

∞

∑

𝑗=1

ℎ
𝑗

𝑗

∑

𝑙=1

∞

∑

𝑖=1

∞

∑

𝑚[𝑖]=𝑖

𝑒
𝑚
1

⋅ ⋅ ⋅ 𝑒
𝑚
𝑖

×

𝑛

∑

𝑢=𝑖

𝑛−𝑢

∑

𝑡=2𝑙−1

𝑛−𝑢−𝑡

∑

𝑟=1

𝑀
𝑚[𝑖] (𝑛 − 𝑢 − 𝑡 − 𝑟)

× 𝑃 (𝑏
⟨𝑖⟩
= 𝑢)𝑃 (𝑠

𝑙−1
+𝑊
𝑙
= 𝑡) 𝑃 (𝑉

𝑙
= 𝑟)

× 𝐶
𝑖

𝑟
𝑝
𝑖
(1 − 𝑝)

𝑟−𝑖
(1 − 𝑝)

𝑡
.

(30)

Taking 𝑧-transforms of (29) and (30), and performing similar
operations in the proof of Theorem 10, we can complete the
proof byTheorem 10 and Lemma 11 above.

Remark 15. Equations (18) and (25) show that studying the
unavailability and the mean failure number during (0, 𝑛] of
the service station is equivalent to studying the corresponding
indices in the classical discrete-time single-unit system and
the probability that the time 𝑛 is during server busy period
presented in this paper. It is important that (18) and (25)
indicate the structures of the service station indices.

Remark 16. It is seen from (6), (19), (26), and
Lemma 11 that the steady-state relation equations
lim
𝑛→∞

Φ
𝑖
(𝑛) = lim

𝑛→∞
Φ(𝑛) lim

𝑛→∞
𝐴
𝑖
(𝑛) and

lim
𝑛→∞

𝑀
𝑖
(𝑛)/𝑛 = lim

𝑛→∞
(𝑀(𝑛)/𝑛) lim

𝑛→∞
𝐴
𝑖
(𝑛), 𝑖 ≥ 0

also hold. Further, the two steady-state results are
independent of the initial state 𝑁(0) = 𝑖, 𝑖 ≥ 0, and
they have nothing to do with server vacations and delayed
times.

Remark 17. It should be noted that (18), (25), and two steady-
state relation equations derived in Remark 16 are new results,
and these important reliability relation equations are not
obtained by the existing discrete analytic techniques, such
as the discrete supplementary variable technique [1–8] or
matrix-geometric solution method [9, 10].

4. Special Cases

Case 1. If 𝐻(𝑧) = 𝑧
𝐽 and 𝑃(𝑊

𝑖
= 0) = 1, 𝑖 ≥ 1, then

our model becomes a discrete-time Geom𝑋/G/1 queue with
an unreliable service station and at most 𝐽 vacations. In this
special case, for 𝜌 = 𝑝𝑒𝜇(1 + 𝛼𝛽) < 1, the busy probabilities

of the server lim
𝑛→∞

𝐴
𝑖
(𝑛), the unavailability lim

𝑛→∞
Φ
𝑖
(𝑛),

and the failure frequency lim
𝑛→∞

𝑀
𝑖
(𝑛)/𝑛 are as follows:

lim
𝑛→∞

𝐴
𝑖 (𝑛) = 𝑝𝑒𝜇 (1 + 𝛼𝛽) = 𝜌, lim

𝑛→∞
Φ
𝑖 (𝑛) = 𝑝𝑒𝜇𝛼𝛽,

lim
𝑛→∞

𝑀
𝑖 (𝑛)

𝑛

= 𝑝𝑒𝜇𝛼.

(31)

These results are very similar to those for the continuous-
time counterpart, which also have nothing to do with server
vacations (see [17, Sections 3 and 4, p 9-10] and the following
fact).

In fact, for the continuous-time counterpart, that is, the
M𝑋/G/1 queue with an unreliable service station and at most
𝐽 vacations (setting 𝑝 = 0 in Ke’s model [17]), under steady-
state condition 𝜌

𝐻
< 1 (𝜌

𝐻
= 𝜆𝐸[𝑋]𝐸[𝑆](1+𝛼𝐸[𝑅]), the busy

probability of the server 𝑃busy, the unavailability 𝑃𝑟, and the
failure frequency𝑀

𝑓
are given, respectively, by

𝑃busy =
𝐸 [𝐻]

𝐸 [𝐶]

= 𝜆𝐸 [𝑋] 𝐸 [𝑆] (1 + 𝛼𝐸 [𝑅]) = 𝜌𝐻,

𝑃
𝑟
=

𝐸 [𝐷]

𝐸 [𝐶]

=𝜆𝐸 [𝑋] 𝐸 [𝑆] 𝛼𝐸 [𝑅] , 𝑀
𝑓
=𝜆𝐸 [𝑋] 𝐸 [𝑆] 𝛼,

(32)

where

𝐸 [𝐻]=(

(1 − 𝛾
𝐽

0
) 𝜆𝐸 [𝑉]

1 − 𝛾
0

+𝛾
𝐽

0
)(

𝐸 [𝑋] 𝐸 [𝑆] (1+𝛼𝐸 [𝑅])

1−𝜌
𝐻

)

(33)

is the expected length of completion period (here, 𝛾
0
=

∫

∞

0
𝑒
−𝜆𝑡

𝑑𝑉(𝑡), and 𝑉(𝑡) and 𝐸[𝑉] are the vacation distri-
bution function and the expected length of each vacation),

𝐸 [𝐷] = (

(1 − 𝛾
𝐽

0
) 𝜆𝐸 [𝑉]

1 − 𝛾
0

+ 𝛾
𝐽

0
)(

𝐸 [𝑋] 𝐸 [𝑆] 𝛼𝐸 [𝑅]

1 − 𝜌
𝐻

)

(34)

is the expected length of breakdown period of service station,

𝐸 [𝐶] = (

(1 − 𝛾
𝐽

0
) 𝜆𝐸 [𝑉]

1 − 𝛾
0

+ 𝛾
𝐽

0
)(

1

𝜆 (1 − 𝜌
𝐻
)

) (35)

is the expected length of busy cycle, and 𝜆, 𝐸[𝑋], 𝐸[𝑆], 𝛼, and
𝐸[𝑅] are corresponding to 𝑝, 𝑒, 𝑢, 𝛼, and 𝛽 in our model,
respectively, (see [17, Sections 3 and 4, p 9-10] for details).

Case 2. If 𝐻(𝑧) = 𝑧, 𝑃(𝐷 = 1) = 1 and 𝑃(𝑊
𝑖
= 0) = 1, 𝑖 ≥

1, then our model becomes a discrete-time Geom/G/1 queue
with an unreliable service station and a single vacation. In this
case, for 𝜌 = 𝑝𝜇(1 + 𝛼𝛽) < 1, we get

lim
𝑛→∞

𝐴
𝑖 (𝑛) = 𝑝𝜇 (1 + 𝛼𝛽) = 𝜌, lim

𝑛→∞
Φ
𝑖 (𝑛) = 𝑝𝜇𝛼𝛽,

lim
𝑛→∞

𝑀
𝑖 (𝑛)

𝑛

= 𝑝𝜇𝛼,

(36)
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Table 1: The effects of batch packet arrival rate 𝑝 on IP controller (𝑛 = 1, 𝛼 = 0.25).

𝑝 𝜌 lim
𝑛→∞

𝐴
𝑖
(𝑛) lim

𝑛→∞
Φ
𝑖
(𝑛) lim

𝑛→∞
(𝑀
𝑖
(𝑛)/𝑛)

0.10 0.2100 0.2100 0.0900 0.0300
0.25 0.5250 0.5250 0.2250 0.0750
0.40 0.8400 0.8400 0.3600 0.1200
0.55 1.1550 1 0.4286 0.1429
0.70 1.4700 1 0.4286 0.1429
0.85 1.7850 1 0.4286 0.1429

Table 2: The effects of batch size parameter 𝑛 on IP controller (𝑝 = 0.15, 𝛼 = 0.25).

𝑛 𝜌 lim
𝑛→∞

𝐴
𝑖
(𝑛) lim

𝑛→∞
Φ
𝑖
(𝑛) lim

𝑛→∞
(𝑀
𝑖
(𝑛)/𝑛)

1 0.3150 0.3150 0.1350 0.0450
3 0.6300 0.6300 0.2700 0.0900
5 0.9450 0.9450 0.4050 0.1350
7 1.2600 1 0.4286 0.1429
9 1.5750 1 0.4286 0.1429
11 1.8900 1 0.4286 0.1429

which are very similar to those for the continuous-time
counterpart [18].

5. Numerical Examples

To demonstrate our model and analysis results, the switched-
virtual-connection- (SVC-) based IP-over-ATMnetwork [19]
is presented as a practical example of our model. In such
a system, packets arrive in batch and can be modelled as
a Bernoulli process with rate 𝑝. The distribution for batch
size 𝐷 is taken as 𝑃(𝐷 = 𝑘) = 1/𝑛, 𝑘 = 1, 2, . . . , 𝑛.
The service time of each packet is assumed to follow a
geometric distribution with mean 𝜉 = 1.2. Whenever the
last packet is served, IP controller (server) releases the SVC
(vacations). Before each release, the server checks the packets
(delayed vacation). If no packets occur, a decision is made
for another release to be performed next. Otherwise, if
packets occur, service restarts. Moreover, the service may be
interrupted (server breakdown) due to some unpredictable
events. Suppose that unpredictable events occur according
to a Bernoulli process with rate 𝛼 and broken server is
immediately recovered. The recovery time obeys negative
binomial with generating function 𝑌(𝑥) = (2𝑥/(3 − 𝑥))2 with
mean 𝛽 = 3. The service will continuously start when the
interruption is recovered.

Several numerical results in Tables 1–3 analyze the effects
of ATM network parameters on IP controller (server) per-
formance, including the busy probability of IP controller
lim
𝑡→∞

𝐴
𝑖
(𝑛), the unavailability lim

𝑡→∞
Φ
𝑖
(𝑛), and the fail-

ure frequency lim
𝑡→∞

𝑀(𝑛)/𝑛. In addition, the system load
𝜌 is also considered.

With analysis results in Section 3, the effects of batch
packet arrival rate 𝑝 on IP controller indices are reported in
Table 1, where we set (𝑛, 𝛼) = (1, 0.25). It is seen from Table 1
that as 𝑝 increases, four performance indices all increase,
but when 𝑝 ≥ 0.55, the system load 𝜌 is more than one,

and the other three indices do not change. This is because
the queueing system becomes unstable. Table 2 shows the
effects of batch size on IP controller indices, where we set
(𝑝, 𝛼) = (0.15, 0.25). We observe that the influence of batch
size on four indices is very similar to that of 𝑝. The effects of
unpredictable events arrival rate𝛼 on IP controller indices are
shown in Table 3 for the set of parameters (𝑝, 𝑛) = (0.15, 1).
We note that all IP controller indices increase monotonously
as the value 𝛼 increases. Moreover, as 𝛼 ≥ 1.65, IP controller
is always busy.

Finally, we conclude that batch packet arrival, batch
size, and unpredictable events arrival affect IP controller
performance under the stability condition; that is, 𝜌 < 1.
As 𝜌 ≥ 1, IP controller indices will not be affected by batch
packet arrival and batch size, and IP controller is always busy.
This phenomenon is due to the unstability property of the
ATM network.

6. Conclusions

In this paper, we use Tang’s decomposition technique for
reliability indices of a discrete-time repairable Geom𝑋/G/1
queue, in which the server takes exhaustive service and
multiple adaptive delayed vacation discipline, and the service
station is subject to failures and repairs. According to such
a novel analytic technique, we discuss main reliability indices
of the service station, such as the probability that the time 𝑛 is
during server busy period, the unavailability and the average
failure number during (0, 𝑛]. Also, we derive some important
reliability relation equations, which indicate the structures
of the service station indices. It should be noted that these
reliability relation equations are new results and are not
obtained by existing discrete analytic techniques, such as the
discrete supplementary variable technique [1–8] or matrix-
geometric solution method [9, 10]. Some special cases and
numerical examples validate the derived results and show that
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Table 3: The effects of unpredictable events arrival rate 𝛼 on IP controller (𝑝 = 0.15, 𝑛 = 1).

𝛼 𝜌 lim
𝑛→∞

𝐴
𝑖
(𝑛) lim

𝑛→∞
Φ
𝑖
(𝑛) lim

𝑛→∞
(𝑀
𝑖
(𝑛)/𝑛)

0.25 0.3150 0.3150 0.1350 0.0450
0.45 0.4230 0.4770 0.2430 0.0810
0.65 0.5310 0.5310 0.3510 0.1170
0.85 0.6390 0.6390 0.4590 0.1530
1.05 0.7470 0.7470 0.5670 0.1890
1.25 0.8550 0.8550 0.6750 0.2250
1.45 0.9630 0.9630 0.7830 0.2610
1.65 1.0710 1 0.8319 0.2773
1.85 1.1790 1 0.8473 0.2824

Tang’s analytic technique is applicable to reliability analysis of
complex discrete-time repairable bulk arrival queues.
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