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This paper is concerned with the controllability of linear fractional differential systems with delay in state and impulses.The factors
of such systems including fractional derivative, impulses, and delay are taken into account synchronously. The expression of state
response for such systems is derived, and the sufficient and necessary conditions of controllability criteria are established. Both the
proposed criteria and illustrative examples show that the controllability property of the linear systems is dependent neither on the
order of fractional derivative, on delay nor on impulses.

1. Introduction

In this paper, we consider the controllability of linear frac-
tional differential systems with state delay and impulses as
follows:

𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) + 𝐶𝑢 (𝑡) ,

𝑡 ∈ [0, 𝑇] \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑘
} ,

Δ𝑥 (𝑡
𝑖
) = 𝑥 (𝑡

+

𝑖
) − 𝑥 (𝑡

−

𝑖
) = 𝐼
𝑖
(𝑥 (𝑡
𝑖
)) , 𝑖 = 1, 2, . . . , 𝑘,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝐷𝛼𝑥(𝑡) denotes an 𝛼 order Caputo’s fractional deriva-
tive of 𝑥(𝑡), 0 < 𝛼 < 1, 𝐴, 𝐵, and 𝐶 are the known constant
matrices and satisfy 𝐴, 𝐵 ∈ R𝑛×𝑛, 𝐶 ∈ R𝑛×𝑚, 𝜏 is a positive
constant, 𝑥 ∈ R𝑛 is the state variable, 𝑢 ∈ R𝑚 is the control
input, 𝜑 ∈ C([−𝜏, 0],R𝑛) is the initial state function, where
C([−𝜏, 0],R𝑛) denotes the space of all continuous functions
mapping the interval [−𝜏, 0] into R𝑛, 𝐼

𝑖
: R𝑛 → R𝑛 is

continuous for 𝑖 = 1, 2, . . . , 𝑘, and

𝑥 (𝑡
+

𝑖
) = lim
𝜀→0
+

𝑥 (𝑡
𝑖
+ 𝜀) , 𝑥 (𝑡

−

𝑖
) = lim
𝜀→0
−

𝑥 (𝑡
𝑖
+ 𝜀) (2)

represent the right and left limits of 𝑥(𝑡) at 𝑡 = 𝑡
𝑖
and the

discontinuous points

𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑖
< ⋅ ⋅ ⋅ < 𝑡

𝑘
, (3)

where 0 = 𝑡
0
< 𝜏 < 𝑡

1
, 𝑡
𝑘
< 𝑡
𝑘+1

= 𝑇 < +∞, and 𝑥(𝑡
𝑖
) = 𝑥(𝑡

−

𝑖
)

which implies that the solution of system (1) is left continuous
at 𝑡
𝑖
.
The subject of fractional differential equations is gaining

much importance and attention (see [1–11] and references
therein). Fractional differential equations have been proved
to be an excellent tool in the modelling of many phenomena
in various fields of engineering, physics, and economics.
In fact, fractional differential equations are considered as
an alternative model to nonlinear differential equations. At
the same time, time delay is one of the inevitable pro-
blems in practical engineering applications, which has an
important effect on the stability and performance of sys-
tem. In the last few years, the results with regard to the
fractional delay differential systems have been presented in
[12–15].

Although most dynamical systems are analyzed in either
the continuous or discrete-time domain, many real systems
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in physics, chemistry, biology, engineering, and information
science may experience abrupt changes as certain instants
during the continuous dynamical processes. This kind of
impulsive behaviors can be modeled by impulsive systems.
The basic theory of impulsive differential equations can
be found in the monographs of Baı̆nov and Simeonov
[16], Benchohra et al. [17], and the paper of Fečkan et al.
[18].

On the other hand, controllability is the most fundamen-
tal concept in modern control theory, which has close con-
nections to pole assignment, structural decomposition, quad-
ratic optimal control, and so forth. Some important results
concerning the control theory for various kinds of sys-
tems have been obtained in [19–36] and references therein.
Kalman et al. [19] have investigated the controllability of
linear dynamical systems based on the algebraic approach.
Wonham andMorse [20] have discussed the pole assignment
problems of linear systems based on the geometric approach.
In [21–24], the authors have discussed the controllability of
integer derivative delay systems. In [25, 26], the controllability
of the descriptor (singular) systems has been considered.
Impulsive control systems with integer derivative have been
investigated in [27–29]. For integer derivative control systems
with state delay and impulses, Zhang et al. [27] have derived
the sufficient conditions for the controllability based on the
fixed point theorem. It is worth pointing out that notable
contributions have been made to fractional control systems
in [30–36]. The different techniques have been developed to
investigate the control problems of fractional differential sys-
tems, such as fractional sliding manifold approach [30], fixed
point theorems [31–34], functional analysis method [33, 34],
and algebraic method [35, 36]. To the best of our knowledge,
there are no relevant reports on the controllability of frac-
tional differential systems with state delay and impulses as
treated in the current literature. In this paper, the factors of
control systems including the Caputo’s fractional derivative,
impulses, and delay are taken into account synchronously.
The purpose of this paper is to establish the sufficient and
necessary conditions of controllability for system (1) based on
the algebraic approach.The recent research surge in develop-
ing the theory of fractional control systems hasmotivated and
inspired our present work.

This paper is organized as follows. In Section 2, we recall
some definitions and preliminary facts, and the expression
of state response for system (1) is derived. In Section 3, the
sufficient and necessary conditions of controllability criteria
are established. In Section 4, some examples are given to illus-
trate the effectiveness and applicability of controllability cri-
teria. Finally, some concluding remarks are drawn in Section
5.

2. Preliminaries

Throughout this paper, denote by C
𝑝
([0, 𝑇],R𝑛) the space of

all piecewise left continuous functions mapping the interval
[0, 𝑇] into R𝑛.

Let us recall some definitions and preliminary facts. For
more details, one can see [1–4].

Definition 1. The Riemann-Liouville’s fractional integral of
order 𝛼 > 0with the lower limit zero for a function 𝑓 : 𝑅+ →
𝑅
𝑛 is defined as

𝐷
−𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, (4)

provided the right side is pointwise defined on [0, +∞),
where Γ(⋅) is the Gamma function.

Definition 2. TheCaputo’s fractional derivative of order 𝛼 for
a function 𝑓 : 𝑅+ → 𝑅

𝑛 is defined as

𝐷
𝛼

𝑓 (𝑡) =
1

Γ (𝑚 − 𝛼 + 1)
∫

𝑡

0

(𝑡 − 𝑠)
𝑚−𝛼

𝑓
(𝑚+1)

(𝑠) 𝑑𝑠,

0 ≤ 𝑚 ≤ 𝛼 < 𝑚 + 1.

(5)

Definition 3. The Mittag-Leffler function in two parameters
is defined as

𝐸
𝛼,𝛽

(𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 𝛽)
, (6)

where 𝛼 > 0, 𝛽 > 0, and 𝑧 ∈ C, C denotes the complex plane.

Definition 4. The Laplace transform of a function 𝑓(𝑡) is
defined as

𝐹 (𝑠) = £ [𝑓 (𝑡)] = ∫

+∞

0

𝑒
−𝑠𝑡

𝑓 (𝑡) 𝑑𝑡, 𝑠 ∈ C, (7)

where 𝑓(𝑡) is 𝑛-dimensional vector-valued function.

Remark 5. If 𝛼 ∈ (0, 1), then

£ [(𝐷𝛼𝑓) (𝑡)] = 𝑠
𝛼£ [𝑓 (𝑡)] − 𝑠𝛼−1𝑓 (0) . (8)

Lemma 6 (see [2]). Let C be complex plane, for any 𝛼 > 0,
𝛽 > 0, and 𝐴 ∈ C𝑛×𝑛; then

£ [𝑡𝛽−1𝐸
𝛼,𝛽

(𝐴𝑡
𝛼

)] = 𝑠
𝛼−𝛽

(𝑠
𝛼

𝐼 − 𝐴)
−1

, R (𝑠) > ‖𝐴‖
1/𝛼

(9)

holds, whereR(𝑠) represents the real part of the complex num-
ber 𝑠 and 𝐼 denotes the identity matrix.

In order to obtain the state response of system (1),
we firstly consider the representation of solution for linear
fractional delay differential systems without impulses as fol-
lows:

𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) + 𝑓 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] .

(10)

Lemma 7. Let 0 < 𝛼 < 1; if 𝑓 : [0, 𝑇] → R𝑛 is continuous
and exponentially bounded, then the solution of system (10) can
be represented as

𝑥 (𝑡) = 𝜑 (0) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (s − 𝜏) + f (s)] ds,

t ∈ [0,T]

(11)

and 𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝜏, 0].
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Proof. Applying the method of steps which has been pre-
sented in [12], then there exists a unique solution to system
(10).

For 𝑡 ∈ [0, 𝑇], taking the Laplace transform with respect
to 𝑡 in both sides of system (10), we obtain

𝑠
𝛼£ [𝑥 (𝑡)] − 𝑠𝛼−1𝜑 (0) = 𝐴£ [𝑥 (𝑡)] + £ [𝐵𝑥 (𝑡 − 𝜏) + 𝑓 (𝑡)] .

(12)

Then (12) can be written as

£ [𝑥 (𝑡)] = (𝑠
𝛼

𝐼 − 𝐴)
−1

𝑠
𝛼−1

𝜑 (0)

+ (𝑠
𝛼

𝐼 − 𝐴)
−1£ [𝐵𝑥 (𝑡 − 𝜏) + 𝑓 (𝑡)] .

(13)

From Definition 4 and Lemma 6, then (13) is equivalent to

£ [𝑥 (𝑡)] = (𝑠
𝛼

𝐼 − 𝐴)
−1

𝑠
𝛼−1

𝜑 (0)

+ (𝑠
𝛼

𝐼 − 𝐴)
−1£ [𝐵𝑥 (𝑡 − 𝜏) + 𝑓 (𝑡)]

= (𝑠
𝛼

𝐼 − 𝐴)
−1

𝑠
𝛼£ [𝜑 (0)]

+ (𝑠
𝛼

𝐼 − 𝐴)
−1£ [𝐵𝑥 (𝑡 − 𝜏) + 𝑓 (𝑡)]

= £ [𝜑 (0)] + (𝑠𝛼𝐼 − 𝐴)−1

× £ [𝐴𝜑 (0) + 𝐵𝑥 (𝑡 − 𝜏) + 𝑓 (𝑡)]

= £ [𝜑 (0)] + £ [𝑡𝛼−1𝐸
𝛼,𝛼

(𝐴𝑡
𝛼

)]

× £ [𝐴𝜑 (0) + 𝐵𝑥 (𝑡 − 𝜏) + 𝑓 (𝑡)] .

(14)

The convolution theorem of the Laplace transform applied to
(14) yields the form

£ [𝑥 (𝑡)] = £ [𝜑 (0)]

+ £{∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝑓 (𝑠)] 𝑑𝑠} .

(15)

Applying the inverse Laplace transform, we obtain

𝑥 (𝑡) = 𝜑 (0) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝑓 (𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 𝑇] .

(16)

Therefore, we have the stated result.

Lemma 8. Let 0 < 𝛼 < 1 and 𝑢 ∈ C
𝑝
([0, 𝑇],R𝑚); then state

response of system (1) can be represented as follows.
For 𝑡 ∈ [−𝜏, 0],

𝑥 (𝑡) = 𝜑 (𝑡) . (17)

For 𝑡 ∈ [0, 𝑡
1
],

𝑥 (𝑡) = 𝜑 (0) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(18)

For 𝑡 ∈ (𝑡
1
, 𝑡
2
],

𝑥 (𝑡) = 𝜑 (0) + 𝐼
1
(𝑥 (𝑡
−

1
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(19)

For 𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 1, 2, . . . , 𝑘,

𝑥 (𝑡) = 𝜑 (0) +

𝑖

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(20)

Proof. If 𝑡 ∈ [−𝜏, 0], then the conclusion obviously holds. If
𝑡 ∈ [0, 𝑡

1
], then, from Lemma 7,

𝑥 (𝑡) = 𝜑 (0) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠,

𝑥 (𝑡
1
) = 𝜑 (0) + ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡
1
− 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(21)

If 𝑡 ∈ (𝑡
1
, 𝑡
2
], applying the idea used in [18], we have

𝑥 (𝑡) = 𝑥 (𝑡
+

1
)

− ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡
1
− 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠
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= 𝑥 (𝑡
−

1
) + 𝐼
1
(𝑥 (𝑡
−

1
))

− ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡
1
− 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

= 𝜑 (0) + 𝐼
1
(𝑥 (𝑡
−

1
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(22)
If 𝑡 ∈ (𝑡

2
, 𝑡
3
], then

𝑥 (𝑡) = 𝑥 (𝑡
+

2
) − ∫

𝑡
2

0

(𝑡
2
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡
2
− 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

= 𝑥 (𝑡
−

2
) + 𝐼
2
(𝑥 (𝑡
−

2
))

− ∫

𝑡
2

0

(𝑡
2
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡
2
− 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

= 𝜑 (0) +

2

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(23)
If 𝑡 ∈ (𝑡

𝑖
, 𝑡
𝑖+1
] (𝑖 = 1, 2, . . . , 𝑘), then the same argument

implies the following expression:

𝑥 (𝑡) = 𝜑 (0) +

𝑖

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(24)

Thus, the proof is completed.

3. Controllability Criteria for System (1)
In this section, we establish the sufficient and necessary con-
ditions of controllability criteria for system (1) based on the
algebraic approach.

Definition 9. System (1) is called controllable on [0, 𝜔] (𝜔 ∈

(0, 𝑇]); for any initial function 𝜑 ∈ C([−𝜏, 0],R𝑛) and any
state 𝑥

𝜔
∈ R𝑛, there exists a control input 𝑢(𝑡) ∈ C

𝑝
([0, 𝜔],

R𝑚), such that the corresponding solution of (1) satisfies
𝑥(𝜔) = 𝑥

𝜔
.

Theorem 10. System (1) is controllable on [0, 𝜔] if and only if
the Gramian matrix

𝑊
𝑐
[0, 𝜔] = ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

[𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝑠)
𝛼

)]

× 𝐶𝐶
∗

[𝐸
𝛼,𝛼

(𝐴
∗

(𝜔 − 𝑠)
𝛼

)] 𝑑𝑠

(25)

is nonsingular for some 𝜔 ∈ [0, 𝑇], where 𝐸
𝛼,𝛼
(⋅) is the Mittag-

Leffler function and ∗ denotes the matrix transpose.

Proof. We firstly prove sufficiency of Theorem 10. If𝑊
𝑐
[0, 𝜔]

is nonsingular, then𝑊−1
𝑐
[0, 𝜔] is well defined. For any initial

state 𝜑 ∈ C([−𝜏, 0],R𝑛), when 𝜔 ∈ [0, 𝑡
1
], we take the control

function as

𝑢 (𝑡) = 𝐶
∗

[𝐸
𝛼,𝛼

(𝐴
∗

(𝜔 − 𝑡)
𝛼

)]𝑊
−1

𝑐
[0, 𝜔]

× [𝑥
𝜔
− 𝜑 (0) − ∫

𝜔

0

(𝜔 − 𝜃)
𝛼−1

𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝜃)
𝛼

)

× (𝐴𝜑 (0) + 𝐵𝑥 (𝜃 − 𝜏)) 𝑑𝜃] .

(26)

Substituting 𝑡 = 𝜔 in (18) and inserting (26) yield

𝑥 (𝜔) = 𝜑 (0) + ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× {𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏)

+ 𝐶𝐶
∗

[𝐸
𝛼,𝛼

(𝐴
∗

(𝜔 − 𝑠)
𝛼

)]

× 𝑊
−1

𝑐
[0, 𝜔]

× [𝑥
𝜔
− 𝜑 (0)

− ∫

𝜔

0

(𝜔 − 𝜃)
𝛼−1

× 𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝜃)
𝛼

)

× (𝐴𝜑 (0)

+𝐵𝑥 (𝜃 − 𝜏)) 𝑑𝜃] } 𝑑𝑠
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= 𝜑 (0) + ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏)] 𝑑𝑠

+ [𝑥
𝜔
− 𝜑 (0) − ∫

𝜔

0

(𝜔 − 𝜃)
𝛼−1

𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝜃)
𝛼

)

× (𝐴𝜑 (0) + 𝐵𝑥 (𝜃 − 𝜏)) 𝑑𝜃]

= 𝑥
𝜔
.

(27)
Thus system (1) is controllable on [0, 𝜔], 𝜔 ∈ [0, 𝑡

1
].

For 𝜔 ∈ (𝑡
1
, 𝑡
2
], we take the control function as

𝑢 (𝑡) = 𝐶
∗

[𝐸
𝛼,𝛼

(𝐴
∗

(𝜔 − 𝑡)
𝛼

)]𝑊
−1

𝑐
[0, 𝜔]

× [𝑥
𝜔
− 𝜑 (0) − 𝐼

1
(𝑥 (𝑡
−

1
))

− ∫

𝜔

0

(𝜔 − 𝜃)
𝛼−1

𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝜃)
𝛼

)

× (𝐴𝜑 (0) + 𝐵𝑥 (𝜃 − 𝜏)) 𝑑𝜃] .

(28)

Substituting 𝑡 = 𝜔 in (19) and inserting (28) yield
𝑥 (𝜔) = 𝜑 (0) + 𝐼

1
(𝑥 (𝑡
−

1
))

+ ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× {𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏)

+ 𝐶𝐶
∗

[𝐸
𝛼,𝛼

(𝐴
∗

(𝜔 − 𝑠)
𝛼

)]𝑊
−1

𝑐
[0, 𝜔]

× [𝑥
𝜔
− 𝜑 (0) − 𝐼

1
(𝑥 (𝑡
−

1
))

− ∫

𝜔

0

(𝜔 − 𝜃)
𝛼−1

𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝜃)
𝛼

)

× (𝐴𝜑 (0) + 𝐵𝑥 (𝜃 − 𝜏)) 𝑑𝜃] } 𝑑𝑠

= 𝜑 (0) + 𝐼
1
(𝑥 (𝑡
−

1
))

+ ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏)] 𝑑𝑠

+ [𝑥
𝜔
− 𝜑 (0) − 𝐼

1
(𝑥 (𝑡
−

1
))

− ∫

𝜔

0

(𝜔 − 𝜃)
𝛼−1

𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝜃)
𝛼

)

× (𝐴𝜑 (0) + 𝐵𝑥 (𝜃 − 𝜏)) 𝑑𝜃] = 𝑥
𝜔
.

(29)
Thus system (1) is controllable on [0, 𝜔], 𝜔 ∈ (𝑡

1
, 𝑡
2
].

For 𝜔 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 1, 2, . . . , 𝑘, we take the control func-

tion as

𝑢 (𝑡) = 𝐶
∗

[𝐸
𝛼,𝛼

(𝐴
∗

(𝜔 − 𝑡)
𝛼

)]𝑊
−1

𝑐
[0, 𝜔]

× [

[

𝑥
𝜔
− 𝜑 (0) −

𝑖

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

− ∫

𝜔

0

(𝜔 − 𝜃)
𝛼−1

𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝜃)
𝛼

)

× (𝐴𝜑 (0) + 𝐵𝑥 (𝜃 − 𝜏)) 𝑑𝜃]

]

.

(30)

Substituting 𝑡 = 𝜔 in (20) and inserting (30), then the same
argument implies 𝑥(𝜔) = 𝑥

𝜔
. Therefore system (1) is con-

trollable on [0, 𝜔].
Next, we prove necessity ofTheorem 10. Suppose𝑊

𝑐
[0, 𝜔]

is singular, without loss of generality; for 𝜔 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 =

1, 2, . . . , 𝑘, there exists a nonzero vector 𝑧
0
such that

𝑧
∗

0
𝑊
𝑐
[0, 𝜔] 𝑧

0
= 0. (31)

That is,

∫

𝜔

0

𝑧
∗

0
(𝜔 − 𝑠)

𝛼−1

[𝐸
𝛼,𝛼

(𝐴(𝜔 − 𝑠)
𝛼

)]

× 𝐶𝐶
∗

[𝐸
𝛼,𝛼

(𝐴
∗

(𝜔 − 𝑠)
𝛼

)] 𝑧
0
𝑑𝑠 = 0.

(32)

Then it follows

𝑧
∗

0
𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

] 𝐶 = 0 (33)

on 𝑠 ∈ [0, 𝜔]. Since system (1) is controllable, there exist con-
trol inputs 𝑢

1
(𝑡) and 𝑢

2
(𝑡) such that

𝑥 (𝜔) = 𝜑 (0) +

𝑖

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+ ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢
1
(𝑠)] 𝑑𝑠 = 0,

(34)

𝑧
0
= 𝜑 (0) +

𝑖

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+ ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢
2
(𝑠)] 𝑑𝑠.

(35)

Combining (34) and (35) yields

𝑧
0
− ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

] 𝐶 [𝑢
2
(𝑠) − 𝑢

1
(𝑠)] 𝑑𝑠 = 0.

(36)
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Multiplying 𝑧∗
0
on both sides of (36), we get

𝑧
∗

0
𝑧
0
− ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝑧
∗

0
𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× 𝐶 [𝑢
2
(𝑠) − 𝑢

1
(𝑠)] 𝑑𝑠 = 0.

(37)

According to 𝑧∗
0
𝐸
𝛼,𝛼
[𝐴(𝜔−𝑠)

𝛼

]𝐶 = 0, we have 𝑧∗
0
𝑧
0
= 0.Thus

𝑧
0
= 0. This contradiction therefore completes the proof.

Theorem 10 presents a geometric type criterion. By the
algebraic transform and computation, we can obtain an
algebraic criterion which is similar to the famous Kalman’s
rank condition [19].

Theorem 11. System (1) is controllable on [0, 𝜔] if and only if

rank [𝐶 | 𝐴𝐶 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐶] = 𝑛. (38)

Proof. According to Cayley-Hamilton theorem,
𝑡
𝛼−1

𝐸
𝛼,𝛼
(𝐴𝑡
𝛼

) can be represented as

𝑡
𝛼−1

𝐸
𝛼,𝛼

(𝐴𝑡
𝛼

) =

+∞

∑

𝑘=0

𝑡
𝑘𝛼+𝛼−1

Γ (𝑘𝛼 + 𝛼)
𝐴
𝑘

=

𝑛−1

∑

𝑘=0

𝐺
𝑘
(𝑡) 𝐴
𝑘

. (39)

For 𝜔 ∈ [0, 𝑡
1
],

𝑥 (𝜔) = 𝜑 (0) + ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

= 𝜑 (0) +

𝑛−1

∑

𝑘=0

∫

𝜔

0

𝐺
𝑘
(𝜔 − 𝑠) 𝐴

𝑘

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(40)

Let

Ψ = 𝜑 (0) +

𝑛−1

∑

𝑘=0

∫

𝜔

0

𝐺
𝑘
(𝜔 − 𝑠) 𝐴

𝑘

[𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏)] 𝑑𝑠.

(41)

Then combining (40) with (41) yields

𝑥 (𝜔) − Ψ =

𝑛−1

∑

𝑘=0

𝐴
𝑘

𝐶∫

𝜔

0

𝐺
𝑘
(𝜔 − 𝑠) 𝑢 (𝑠) 𝑑𝑠

= [𝐶 | 𝐴𝐶 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐶]

[
[
[
[

[

𝑑
0

𝑑
1

...
𝑑
𝑛−1

]
]
]
]

]

,

(42)

where 𝑑
𝑘
= ∫
𝜔

0

𝐺
𝑘
(𝜔 − 𝑠)𝑢(𝑠)𝑑𝑠, 𝑘 = 0, 1, . . . , 𝑛 − 1. Note that,

for arbitrary 𝜑 ∈ C([−𝜏, 0],R𝑛) and 𝑥(𝜔) ∈ R𝑛, the sufficient
and necessary condition to have a control input𝑢(𝑡) satisfying
(42) is that

rank [𝐶 | 𝐴𝐶 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐶] = 𝑛. (43)

For 𝜔 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 1, 2, . . . , 𝑘,

𝑥 (𝜔) = 𝜑 (0) +

𝑖

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+ ∫

𝜔

0

(𝜔 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼

[𝐴(𝜔 − 𝑠)
𝛼

]

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠

= 𝜑 (0) +

𝑖

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+

𝑛−1

∑

𝑘=0

∫

𝜔

0

𝐺
𝑘
(𝜔 − 𝑠) 𝐴

𝑘

× [𝐴𝜑 (0) + 𝐵𝑥 (𝑠 − 𝜏) + 𝐶𝑢 (𝑠)] 𝑑𝑠.

(44)

Combining (41) with (44) yields

𝑥 (𝜔) − Ψ −

𝑖

∑

𝑗=1

𝐼
𝑗
(𝑥 (𝑡
−

𝑗
)) =

𝑛−1

∑

𝑘=0

𝐴
𝑘

𝐶∫

𝜔

0

𝐺
𝑘
(𝜔 − 𝑠) 𝑢 (𝑠) 𝑑𝑠

= [𝐶 | 𝐴𝐶 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐶]

[
[
[
[

[

𝑑
0

𝑑
1

...
𝑑
𝑛−1

]
]
]
]

]

.

(45)

Note that, for arbitrary 𝜑 ∈ C([−𝜏, 0],R𝑛) and 𝑥(𝜔) ∈ R𝑛,
the sufficient and necessary condition to have a control input
𝑢(𝑡) satisfying (45) is that

rank [𝐶 | 𝐴𝐶 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐶] = 𝑛. (46)

Thus, the proof is completed.

Remark 12. System (1) is controllable if and only if the
resolvent condition 𝜆(𝜆𝐼+𝑄

𝜔
)
−1

→ 0 as 𝜆 → 0 holds (here
𝑄
𝜔
is the respective Gramian matrix in the nonfractional,

nondelay, and nonimpulsive case) since this is equivalent to
the rank condition in the finite dimensional case [19, 35, 36].

4. Illustrative Examples

In this section, we give two examples to illustrate the pre-
sented criteria.
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Example 13. Consider the controllability of linear fractional
differential systems with state delay and impulses as follows:

𝐷
1/2

𝑥 (𝑡) = [
0 1

0 0
] 𝑥 (𝑡) + [

−1 2

3 1
] 𝑥 (𝑡 −

1

3
)

+ [
2

1
] 𝑢 (𝑡) , 𝑡 ∈ [0, 4] \ {1, 2, 3} ,

Δ𝑥 (𝑡
𝑖
) =

1

2
𝑥 (𝑡
−

𝑖
) , 𝑡

𝑖
= 𝑖, 𝑖 = 1, 2, 3,

𝑥 (𝑡) = 𝑒
𝑡

, 𝑡 ∈ [−
1

3
, 0] .

(47)

Now, we apply Theorem 10 to prove that system (47) is con-
trollable on [0, 4]. Let us take

𝛼 =
1

2
, 𝐴 = [

0 1

0 0
] , 𝐵 = [

−1 2

3 1
] , 𝐶 = [

2

1
] .

(48)

By computation, we have

𝐶𝐶
∗

= [
2

1
] [2 1] = [

4 2

2 1
] , (49)

𝐸
1/2,1/2

(𝐴(4 − 𝑠)
1/2

) =

1

∑

𝑘=0

𝐴
𝑘

(4 − 𝑠)
𝑘/2

Γ (𝑘/2 + 1/2)

=

[
[
[
[

[

1

√𝜋
(4 − 𝑠)

1

2

0
1

√𝜋

]
]
]
]

]

,

(50)

𝐸
1/2,1/2

(𝐴
∗

(4 − 𝑠)
1/2

) =

1

∑

𝑘=0

𝐴
𝑘

(4 − 𝑠)
𝑘/2

Γ (𝑘/2 + 1/2)

=
[
[

[

1

√𝜋
0

(4 − 𝑠)
1/2

1

√𝜋

]
]

]

.

(51)

Substituting 𝜔 = 4 in (25) and combining (25) with (49)–(51)
yield

𝑊
𝑐
[0, 4] = ∫

4

0

(4 − 𝑠)
−1/2

[𝐸
1/2,1/2

(𝐴(4 − 𝑠)
1/2

)]

× 𝐶𝐶
∗

[𝐸
1/2,1/2

(𝐴
∗

(4 − 𝑠)
1/2

)] 𝑑𝑠

=

[
[
[

[

16

𝜋
+

16

√𝜋
+
16

3

8

𝜋
+

4

√𝜋

8

𝜋
+

4

√𝜋

4

𝜋

]
]
]

]

.

(52)

Obviously, 𝑊
𝑐
[0, 4] is nonsingular. Thus by Theorem 10,

system (47) is controllable on [0, 4].

Example 14. Consider the controllability of linear fractional
differential systems with state delay and impulses as follows:

𝐷
1/3

𝑥 (𝑡) = [

[

0 1 0

0 0 1

−2 −4 −3

]

]

𝑥 (𝑡) + [

[

1 0 1

2 1 1

2 −1 0

]

]

𝑥(𝑡 −
𝜋

3
)

+ [

[

1 0

0 1

−1 1

]

]

𝑢 (𝑡) ,

𝑡 ∈ [0,
5

2
𝜋] \ {

𝜋

2
, 𝜋,

3

2
𝜋, 2𝜋} ,

Δ𝑥 (𝑡
𝑖
) =

1

3
𝑥 (𝑡
−

𝑖
) , 𝑡

𝑖
=
𝑖𝜋

2
, 𝑖 = 1, 2, 3, 4,

𝑥 (𝑡) = sin 𝑡, 𝑡 ∈ [−
𝜋

3
, 0] .

(53)

Now, we apply Theorem 11 to prove that system (53) is con-
trollable on [0, (5/2)𝜋]. Let us take

𝛼 =
1

3
, 𝐴 = [

[

0 1 0

0 0 1

−2 −4 −3

]

]

,

𝐵 = [

[

1 0 1

2 1 1

2 −1 0

]

]

, 𝐶 = [

[

1 0

0 1

−1 1

]

]

.

(54)

Then one can obtain

rank [𝐶 | 𝐴𝐶 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐶]

= rank[

[

1 0 0 ⋆ ⋆ ⋆

0 1 −1 ⋆ ⋆ ⋆

0 0 2 ⋆ ⋆ ⋆

]

]

= 3.

(55)

Thus byTheorem 11, system (53) is controllable on [0, (5/2)𝜋].

5. Conclusions

In this paper, the controllability criteria for linear fractional
differential systems with delay in the state and impulses have
been investigated. The sufficient and necessary conditions
for the controllability of such systems have been established.
Furthermore, both the proposed criteria and illustrative
examples have shown that the controllability property of the
linear systems is dependent neither on the order of fractional
derivative, on delay nor on impulses.
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[16] D. Băınov and P. Simeonov, Impulsive Differential Equations:
Periodic Solutions and Applications, John Wiley & Sons, New
York, NY, USA, 1993.

[17] M. Benchohra, J. Henderson, and S. Ntouyas, Impulsive Dif-
ferential Equations and Inclusions, vol. 2, Hindawi Publishing
Corporation, New York, NY, USA, 2006.
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