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On the basis of similar structure of solution for a second-order linear differential equation’s boundary value problem, and our
analysis of the relationship between this similar structure and its kernel function, the differential equation, and the boundary
conditions, we propose a new simple solution—similar constructive method of solution (SCMS)—and sum up its detailed steps.
We set up a porous media model under three kinds of outer boundary conditions (infinite, constant pressure, and closed), in which
the influences of fractal dimension, spherical flow, skin effect, and storage are taken into consideration. And then we use SCMS
to solve it. The SCMS is a straightforward method for differential equation’s boundary value problems with complex boundary
conditions, especially for solving the reservoir models in petroleum engineering.

1. Introduction

In the early 21st century, Jia and Li [1] put forward an impor-
tant hypothesis that the solutions of differential equations
under different boundary conditions have similarities—
similar structure of solutions, just as a real number can be
expressed in continued fraction and geometric graphic have
certain similarity. After that, many studies have been carried
out on the similar structure of solutions for some boundary
value problems of second-order linear homogeneous differ-
ential equations [2–8].

In the past two decades, many researchers have studied
the fractal nature of reservoir rocks and other porous media.
Fractal theory can be applied to effectively describe the com-
plexities of a real reservoir, especially of the naturally frac-
tured reservoir or heterogeneous media. Chang and Yortsos
[9] were the first to apply the fractal theory to reservoir
model, and then set up the mathematical model of fractal
reservoir. Beier [10] afterwards extended the fractal model
to the study of hydraulically fractured well, and discovered a
power-law behavior during the linear and radial flow period.
Camacho-Velázquez et al. [11] successfully applied the frac-
tal model to explore the naturally fractured reservoir and

obtained a series of decline curves. Using the same model,
Cossio [12] proposed a semianalytic solution for finite-con-
ductive flow in vertical fractures, and from the expression
of the solution, people can easily perceive the relationship
between the fractal parameters {𝑑𝑓, 𝜃} and the pressure waves
or streamlines. Li et al. [13–16] built mathematical models for
fluid flow in porous media, such as homogeneous reservoir
mathematicalmodel, double porosity reservoirmathematical
model, multilayer reservoir mathematical model, and com-
posite reservoir mathematical model. They found that under
three kinds of outer boundary conditions (infinite, constant
pressure, and closed), their pressure can also be expressed in
similar structures in the Laplace space.

When a reservoir is mined with a small opening in the
upper reservoir, or the thickness of reservoir stratum is larger
than the radius of well bore, there still exists the vertical flow
in the flow region, so it cannot be considered as cylindrical
flow. Ershaghi et al. [17] analyzed pressure transient data in
reservoirs with natural fractures and spherical flow. He found
out that the cylindrical flow could not be applied to these
reservoirs, or there would be large errors. Proett and Chin
[18] provided a new exact spherical flow solution with storage
and skin taken into consideration in early-time interpretation
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with applications to wire line formation and early-evaluation
drill stem testing. In recent years, we [19–23] have built some
mathematical models for reservoir with spherical flow, and
through a complicated process of solution, we obtained their
expressions of pressure in the Laplace space.

Cheng et al. [24, 25] put forward the idea of SCMS, but
they did not specify its detailed procedures. Based on their
research, the SCMS is extended in our paper in detail. In this
paper, the first two sections focus on solving the boundary
value problem of a second-order linear differential equation.
Its solution can be expressed in a continued fraction. On the
basis of the relationship among similar structure of solution,
its kernel function, differential equation, and boundary con-
ditions, we sum up the detailed construction steps of SCMS.
In this paper, we also built a new fractal mathematical model
for the reservoirs with spherical flow. To apply SCMS to solve
this reservoir model, in Section 3 we first study a bound-
ary value problem of the modified Bessel equation, which
frequently occurred in reservoir engineering. So we could
conveniently construct formation pressure andwellbore pres-
sure.Through the expressions of formation pressure andwell-
bore pressure and their kernel functions, we could analyze
the influences of the variable flow rate, the wellbore storage,
the skin effect, the fractal dimension, and the fractal index
on them. In a word, SCMS is a straightforward method for
boundary value problems of differential equations with com-
plex boundary conditions, especially for solving the reservoir
models in petroleum engineering.

2. Similar Structure of Solution for
the Boundary Value Problem of
a Second-Order Linear Differential Equation

The boundary value problem of a second-order linear differ-
ential equation:

𝑦

+ 𝑝 (𝑥) 𝑦


+ 𝑞 (𝑥) 𝑦 = 0, (1)

[𝑎𝑦 + (1 + 𝑎𝑏) 𝑦

]
𝑥=𝛼

= 𝑐, (2)

[𝑒𝑦 + 𝑓𝑦

]
𝑥=𝛽

= 0, (3)

where 𝑝(𝑥), 𝑝

(𝑥), and 𝑞(𝑥) are continuous function within

[𝛼, 𝛽]. 𝑎, 𝑏, 𝑐, 𝑒, 𝑓 are real numbers. When 𝑝(𝑥) > 0, 𝑞(𝑥) ≥ 0

and 𝑞(𝑥) is not constantly zero, and 𝑎(1 + 𝑎𝑏) ≤ 0, 𝑒𝑓 ≥ 0,
𝑎
2
+ (1 + 𝑎𝑏)

2
̸= 0, 𝑒2 +𝑓

2
̸= 0, 0 < 𝛼 < 𝛽, this boundary value

problem has a unique solution [26]; this solution can be ex-
pressed in the following continued fraction:

𝑦 (𝑥) = 𝑐 ⋅
1

𝑎 + 1/ (𝑏 + 𝜙 (𝛼))
⋅

1

𝑏 + 𝜙 (𝛼)
⋅ 𝜙 (𝑥) , (4)

where 𝜙(𝑥) is a similar kernel function and defined as

𝜙 (𝑥) =
𝑒𝜑0,0 (𝑥, 𝛽) + 𝑓𝜑0,1 (𝑥, 𝛽)

𝑒𝜑1,0 (𝛼, 𝛽) + 𝑓𝜑1,1 (𝛼, 𝛽)
. (5)

We assume that 𝑦1(𝑥) and 𝑦2(𝑥) are the linearly indepen-
dent solutions of the differential equation (1); then we define
a binary function and calculate its partial derivative for 𝑥1, 𝑥2
respectively, listed as follows:

𝜑0,0 (𝑥1, 𝑥2) = 𝑦1 (𝑥1) 𝑦2 (𝑥2) − 𝑦1 (𝑥2) 𝑦2 (𝑥1) , (6)

𝜑0,0 (𝑥, 𝛽) = 𝑦1 (𝑥) 𝑦2 (𝛽) − 𝑦1 (𝛽) 𝑦2 (𝑥) , (7)

𝜑0,1 (𝛼, 𝛽) =
𝜕

𝜕𝑥2
𝜑0,0 (𝑥1, 𝑥2)

(𝛼,𝛽)

= 𝑦1 (𝛼) 𝑦

2 (𝛽) − 𝑦


1 (𝛽) 𝑦2 (𝛼) ,

(8)

𝜑1,0 (𝛼, 𝛽) =
𝜕

𝜕𝑥1
𝜑0,0 (𝑥1, 𝑥2)

(𝛼,𝛽)

= 𝑦

1 (𝛼) 𝑦2 (𝛽) − 𝑦1 (𝛽) 𝑦


2 (𝛼)

(9)

𝜑1,1 (𝛼, 𝛽) =
𝜕

𝜕𝑥1
𝜑0,1 (𝑥1, 𝑥2)

(𝛼,𝛽)

=
𝜕

𝜕𝑥2
𝜑1,0 (𝑥1, 𝑥2)

(𝛼,𝛽)

= 𝑦

1 (𝛼) 𝑦


2 (𝛽) − 𝑦


1 (𝛽) 𝑦


2 (𝛼) .

(10)

3. Similar Construction Method of
Solution (SCMS)

On the basis of the relationship among the similar structure
of solution (4), its similar kernel function (5), and boundary
conditions (2)-(3), the SCMS steps are presented as below.

Step 1. Solve the linearly independent solutions 𝑦1(𝑥) and
𝑦2(𝑥) of the differential equation (1).

Step 2. Construct a binary function 𝜑0,0(𝑥1, 𝑥2) with 𝑦1(𝑥)

and 𝑦2(𝑥) (e.g., (6)) and calculate its partial derivative for 𝑥1,
𝑥2, respectively (e.g., (7)–(10)).

Step 3. Construct a similar kernel function 𝜙(𝑥), (e.g., (5))
with the coefficients of the right boundary condition (3) and
the binary function 𝜑0,0(𝑥1, 𝑥2) and its partial derivative for
𝑥1, 𝑥2.

Step 4. Construct similar structure of solution (4) with the
similar kernel function 𝜙(𝑥) and the coefficients of the left
boundary condition (2).

4. SCMS for Solving the Boundary Value
Problem of the Modified Bessel Equation

To apply SCMS to solve the reservoir model, we first intro-
duce the boundary value problem of the modified Bessel
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equation, which frequently occurred in reservoir engineer-
ing:

𝑥
2
𝑦

+ 𝐴𝑥𝑦


+ (𝐸 − 𝐹𝑥

𝑑
) 𝑦 = 0, (11)

[𝑎

𝑦 + (1 + 𝑎


𝑏

) 𝑦

]
𝑥=𝛼

= 𝑐

, (12)

[𝑒

𝑦 + 𝑓


𝑦

]
𝑥=𝛽

= 0, (13)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝛼, 𝛽, 𝐴, 𝐸, and 𝐹 are real num-
bers. And they meet the conditions

(1 − 𝐴)
2
≥ 4𝐸, 𝐹 > 0, 𝑎


(1 + 𝑎


𝑏

) ≤ 0,

𝑒

𝑓

≥ 0, 𝑑


̸= 0, 𝑎

2
+ (1 + 𝑎


𝑏

)
2

̸= 0,

(𝑒

)
2
+ (𝑓

)
2

̸= 0, 0 < 𝛼

< 𝛽

.

(14)

According to SCMS in Section 3, we can construct the
similar structure and its similar kernel functions of the solu-
tions of the boundary value problem (11)–(13).

Step 1. The linearly independent solutions of the modified
Bessel equation (11) are as follows (with details in Appendix
A):

𝑥
(1−𝐴)/2

𝐼] (
2√𝐹

𝑑
𝑥
𝑑/2

) , 𝑥
(1−𝐴)/2

𝐾] (
2√𝐹

𝑑
𝑥
𝑑/2

) ,

(15)

where 𝐼𝑖(⋅) denotes the first type of the modified Bessel func-
tion with order 𝑖, 𝐾𝑖(⋅) denotes the second type of the modi-
fied Bessel function with order 𝑖, and ] = √(1 − 𝐴)

2
− 4𝐸/𝑑

.

Step 2. Construct a binary function:

𝑀0,0 (𝑥, 𝜏) = 𝑥
(1−𝐴)/2

𝐾] (
2√𝐹

𝑑
𝑥
𝑑/2

)

× 𝜏
(1−𝐴)/2

𝐼] (
2√𝐹

𝑑
𝜏
𝑑/2

)

− 𝜏
(1−𝐴)/2

𝐾] (
2√𝐹

𝑑
𝜏
𝑑/2

)

× 𝑥
(1−𝐴)/2

𝐼] (
2√𝐹

𝑑
𝑥
𝑑/2

)

= (𝑥𝜏)
(1−𝐴)/2

𝜓],] (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
) ,

(16)

where

𝜓𝑚,𝑛 (𝑥
𝜀
, 𝑦
𝜀
, 𝜉) = 𝐾𝑚 (𝜉𝑥

𝜀
) 𝐼𝑛 (𝜉𝑦

𝜀
)

+ (−1)
𝑚−𝑛+1

𝐼𝑚 (𝜉𝑥
𝜀
)𝐾𝑛 (𝜉𝑦

𝜀
) ,

(17)

where𝑚 and 𝑛 are real numbers.

Then, calculate the binary function’s partial derivatives for
𝑥, 𝜏:

𝑀0,1 (𝑥, 𝜏) =
𝜕

𝜕𝜏
𝑀0,0 (𝑥, 𝜏)

= 𝑥
(1−𝐴)/2

𝜏
−(1+𝐴)/2

×
[
[

[

1 − 𝐴 + √(1 − 𝐴)
2
− 4𝐸

2

× 𝜓],] (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
)

+ √𝐹𝜏
𝑑/2

𝜓],]+1 (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
)
]
]

]

,

𝑀1,0 (𝑥, 𝜏) =
𝜕

𝜕𝑥
𝑀0,0 (𝑥, 𝜏)

= 𝑥
−(1+𝐴)/2

𝜏
(1−𝐴)/2

×
[
[

[

1 − 𝐴 + √(1 − 𝐴)
2
− 4𝐸

2

× 𝜓],] (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
)

− √𝐹𝑥
𝑑/2

𝜓]+1,] (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
)
]
]

]

,

𝑀1,1 (𝑥, 𝜏) =
𝜕

𝜕𝑥
𝑀0,1 (𝑥, 𝜏) =

𝜕

𝜕𝜏
𝑀1,0 (𝑥, 𝜏)

= (𝑥𝜏)
−(1+𝐴)/2

×

{{{

{{{

{

[1 − 𝐴 + √(1 − 𝐴)
2
− 4𝐸]

2

2

× 𝜓],] (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
)

+

√𝐹[1 − 𝐴 + √(1 − 𝐴)
2
− 4𝐸]

2

× 𝜏
𝑑/2

𝜓],]+1 (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
)

−

√𝐹[1 − 𝐴 + √(1 − 𝐴)
2
− 4𝐸]

2
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× 𝑥
𝑑/2

𝜓]+1,] (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
)

− 𝐹(𝑥𝜏)
𝑑/2

𝜓]+1,]+1 (𝑥
𝑑/2

, 𝜏
𝑑/2

,
2√𝐹

𝑑
)

}}}

}}}

}

.

(18)

Step 3. Construct similar kernel functions with the coeffi-
cients of the right boundary condition (13), the binary func-
tion (16), and its partial derivatives (18):

𝜙 (𝑥) =
𝑒

𝑀0,0 (𝑥, 𝛽


) + 𝑓

𝑀0,1 (𝑥, 𝛽


)

𝑒𝑀1,0 (𝛼
, 𝛽) + 𝑓𝑀1,1 (𝛼

, 𝛽)
. (19)

Step 4. Construct the similar structure of solution with the
similar kernel function (19) and coefficients of the left
boundary condition (12):

𝑦 (𝑥) = 𝑐

⋅

1

𝑎 + 1/ (𝑏 + 𝜙 (𝛼))
⋅

1

𝑏 + 𝜙 (𝛼)
⋅ 𝜙 (𝑥) .

(20)

Consequently, (20) is the solution of the boundary value
problem of the modified Bessel equation (11)–(13), which is
similar to the real numbers and can be expressed as continued
fraction.

5. SCMS for Solving the Mathematical Model
of Fractal Reservoir with Spherical Flow

In Appendix B, the dimensionless mathematical model of
fractal reservoir with spherical flow is presented. It takes
dimensionless pressure as variable, and accords with Darcy
flow. The details are as follows.

Fundamental differential equation:

𝜕
2
𝑝𝐷

𝜕𝑟2𝐷
+

𝜁

𝑟𝐷

𝜕𝑝𝐷

𝜕𝑟𝐷
=

𝑟
𝜃
𝐷

𝑒2𝑆
𝜕𝑝𝐷

𝜕𝑡𝐷
, 𝑟𝐷 > 1, 𝑡𝐷 > 0, (21)

where:

𝜁 = 𝑑𝑓 − 𝑑 − 𝜃 + 2. (22)

Initial condition:

𝑝𝐷 (𝑟𝐷, 0) = 0. (23)

Inner boundary condition:

𝑑𝑝𝑤𝐷

𝑑𝑟𝐷
= −𝑞𝐷 (𝑡𝐷) + 𝐶𝐷

𝑑𝑝𝑤𝐷

𝑑𝑡𝐷
. (24)

Three kinds of outer boundary conditions:

𝑝𝐷 (∞, 𝑡𝐷) = 0, 𝑝𝐷 (𝑅𝐷, 𝑡𝐷) = 0,
𝜕𝑝𝐷

𝜕𝑟𝐷

𝑟
𝐷
=𝑅
𝐷

= 0.

(25)

They denote that the outer boundaries of circular reser-
voir are infinite pressure, constant pressure, and closed,
respectively.

All the notations are explained in the nomenclature
section.

Taking the Laplace transform of 𝑝𝐷(𝑟𝐷, 𝑡𝐷) with respect
to 𝑡𝐷 and using the initial condition (23), we get the boundary
value problem of the ordinary differential equation with
parameter 𝑧 (where 𝑧 is Laplace space variable); that is,

𝑑
2
𝑝𝐷

𝑑𝑟2𝐷
+

𝜁

𝑟𝐷

𝑑𝑝𝐷

𝑑𝑟𝐷
=

𝑟
𝜃
𝐷

𝑒2𝑆
𝑧𝑝𝐷,

[−𝐶𝐷𝑧𝑝𝑤𝐷 (𝑟𝐷, 𝑧) +
𝑑

𝑑𝑟𝐷
𝑝𝐷 (𝑟𝐷, 𝑧)]

𝑟
𝐷
=1

= − 𝑞𝐷 (𝑧) ,

𝑝𝐷 (∞, 𝑧) = 0 or 𝑝𝐷 (𝑅𝐷, 𝑧) = 0 or
𝑑𝑝𝐷

𝑑𝑟𝐷

𝑟
𝐷
=𝑅
𝐷

= 0.

(26)

With reference to SCMS in Section 3 and its comparison
with the boundary value problem of the modified Bessel
equation, we can infer

𝑦 = 𝑝𝐷, 𝑥 = 𝑟𝐷, 𝐴 = 𝜁, 𝐸 = 0, 𝐹 =
𝑧

𝑒2𝑆
,

𝑎

= −𝐶𝐷𝑧, 𝑏


= 0, 𝑐


= −𝑞𝐷 (𝑧) ,

𝛼

= 1, ] =

𝜁 − 1

2 + 𝜃
(27)

and setting 𝑒

= 1, 𝑓 = 0, 𝛽 → ∞ or 𝑒 = 1, 𝑓 = 0, 𝛽 =

𝑅𝐷 or 𝑒

= 0, 𝑓 = 1, 𝛽 = 𝑅𝐷 represent the three kinds

of outer boundary conditions, respectively. So we can con-
struct the similar structure of solution of the dimensionless
mathematical model of fractal reservoir with spherical flow
(26):

𝑝 (𝑟𝐷, 𝑧)

= − 𝑞𝐷 (𝑧) ⋅
1

−𝐶𝐷𝑧 + 1/𝜙 (1, 𝑧)
⋅

1

𝜙 (1, 𝑧)
⋅ 𝜙 (𝑟𝐷, 𝑧) ,

(28)

where 𝜙(𝑟𝐷, 𝑧) is also a similar kernel function. Its expression
is the following.

For 𝑝𝐷(∞, 𝑧) = 0,

𝜙 (𝑟𝐷, 𝑧)

= −
𝐾] ((2/ (2 + 𝜃))√𝑧/𝑒2𝑆𝑟

(2+𝜃)/2
𝐷 )

𝑟
𝜃/2
𝐷

√𝑧/𝑒2𝑆 [𝐾]+1 ((2/ (2 + 𝜃))√𝑧/𝑒2𝑆𝑟
(2+𝜃)/2
𝐷 )]

.

(29)

In (29), we use the properties of lim𝑥→∞𝐼𝑖(𝑥) = ∞ and
lim𝑥→∞𝐾𝑖(𝑥) = 0 to obtain the result above.
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For 𝑝𝐷(𝑅𝐷, 𝑧) = 0,

𝜙 (𝑟𝐷, 𝑧)

= −
𝜓],] (𝑟

(2+𝜃)/2
𝐷 , 𝑅

(2+𝜃)/2
𝐷 , (2/ (2 + 𝜃))√𝑧/𝑒2𝑆)

√𝑧𝑟𝜃𝐷/𝑒
2𝑆𝜓]+1,] (𝑟

(2+𝜃)/2
𝐷 , 𝑅

(2+𝜃)/2
𝐷 , (2/ (2 + 𝜃))√𝑧/𝑒2𝑆)

.

(30)

For 𝑑𝑝𝐷/𝑑𝑟𝐷|𝑟
𝐷
=𝑅
𝐷

= 0,

𝜙 (𝑟𝐷, 𝑧)

= −
𝜓],]+1 (𝑟

(2+𝜃)/2
𝐷 , 𝑅

(2+𝜃)/2
𝐷 , (2/ (2 + 𝜃))√𝑧/𝑒2𝑆)

√𝑧𝑟𝜃𝐷/𝑒
2𝑆𝜓]+1,]+1 (𝑟

(2+𝜃)/2
𝐷 , 𝑅

(2+𝜃)/2
𝐷 , (2/ (2 + 𝜃))√𝑧/𝑒2𝑆)

.

(31)

Thus, (28) is the similar structure of formation pressure of
the fractal reservoir with spherical flow in the Laplace space.

Then, setting 𝑟𝐷 = 1, we can obtain the similar structure
of wellbore pressure of the fractal reservoir with spherical
flow in the Laplace space:

𝑝𝑤 (𝑧) = − 𝑞𝐷 (𝑧) ⋅
1

−𝐶𝐷𝑧 + 1/𝜙 (1, 𝑧)
. (32)

Substituting (29), (30), and (31) into (28) and (32), respec-
tively, we can get the expressions of formation pressures and
the wellbore pressures of thefractal reservoir with spherical
flow under three kinds of boundary conditions in the Laplace
space. Then, they can be inverted numerically from the
Laplace space by using the Stehfest algorithm [27].

Note that the solution described above is a general spheri-
cal flow model. Its special case are constant production rate
(𝑞(𝑡) = 𝑞0), no skin effect (𝑆 = 0), nowellbore storage (𝐶 = 0),
and homogeneous reservoir (𝑑𝑓 = 0, 𝜃 = 0).

6. Conclusions

Based on the reasoning mentioned above, the following con-
clusions can be drawn.

(1) When dealing with the boundary value problem of a
general second-order linear differential equation, we
find that the kernel function is related to right (outer)
boundary condition and similar structure of solution
is related to left (inner) boundary condition. So the
SCMS is proposed to solve such complicated prob-
lems in reality.

(2) Many reservoir models can be adapted to the bound-
ary value problem of themodified Bessel equation. So
SCMS is a convenient, effective, and creative method
to solve the problem of fluid flow in porous media
since it can avoid complex procedures. SCMS opti-
mizes the programming process of well test analysis
software and also simplifies the arithmetic process.

(3) The mathematical model of fractal reservoir with
spherical flow is a new model. It is particularly useful
when the thick reservoir is mined in an imperfect

model. On the basis of the continued fractions (see
(28) and (32)), we can directly analyze the wellbore
storage’s influence on the formation pressure and
wellbore pressure. Based on (29)–(31), it is convenient
to see how the fractal dimension, fractal exponent,
skin effect, and the three outer boundary conditions
influence the kernel functions. Then, substituting
(29), (30), and (31) into (28) and (32), respectively,
we can see the influence of these parameters on the
formation pressure and wellbore pressure.

(4) After the pressure data is processed with the Laplace
transformation, well test analysis can be conducted
directly in the Laplace space, which can reflect the
advantage of the similar structure of solutions. Finally,
we can use the Stehfest algorithm to obtain the solu-
tion in real space, whichmeets the demand of well test
analysis.

Appendices

A. Derivation of Two Linearly Independent
Solutions of the Modified Bessel Equation

In this section, details are shown to solve the generalized
solution of the modified Bessel equation (11).

Making the substitution

ℎ = 𝑥
−(1−𝐷)/2

𝑦 (A.1)
into (11), we obtain

𝑑
2
ℎ

𝑑𝑠2
+

1

𝑠

𝑑ℎ

𝑑𝑠
− (1 +

]21
𝑠2

)ℎ = 0, (A.2)

where

𝑠 =
2√𝐹

𝑑
𝑥
𝑑/2

. (A.3)

According to [28], the general solutions of (A.2) can be
obtained to be

ℎ = 𝐴1𝐾] (
2√𝐹

𝑑
𝑥
𝑑/2

) + 𝐴2𝐼] (
2√𝐹

𝑑
𝑥
𝑑/2

) , (A.4)

where

] =
√(1 − 𝐷)

2
− 4𝐸

𝑑
.

(A.5)

By substituting (A.1) into (A.4), the general solution of
(11) is

𝑦 (𝑥) = 𝑥
(1−𝐷)/2

[𝐴1𝐾] (
2√𝐹

𝑑
𝑥
𝑑/2

) + 𝐴2𝐼] (
2√𝐹

𝑑
𝑥
𝑑/2

)] .

(A.6)
We know that

𝑥
(1−𝐷)/2

𝐼] (
2√𝐹

𝑑
𝑥
𝑑/2

) , 𝑥
(1−𝐷)/2

𝐾] (
2√𝐹

𝑑
𝑥
𝑑/2

)

(A.7)
are two linearly independent solutions for themodifiedBessel
equation (11).
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B. Mathematical Model of Fractal Reservoir
with Spherical Flow

Here we demonstrate the derivation of the mathematical
model for fractal reservoir with spherical flow. The main
assumptions of the model include

(i) flow obeys Darcy’s law and isothermal curve;
(ii) spherical flow which has one production or injection

well;
(iii) formation pressure is initial reservoir pressure 𝑝0

before producing. But the well produces or injects at
a variable rate 𝑞(𝑡).

We consider skin effects by 𝑟we = 𝑟𝑤𝑒
−𝑆, where 𝑟𝑤 is well-

bore radius, 𝑟we is effectivewellbore radius, and 𝑆 is skin factor
(𝑆 > 0, damaged; 𝑆 < 0, improved).Here, a simplified formula
introduced by Chang and Yortsos [9], later refined by Acuña
et al. [29], is used to describe the reservoir porosity and
permeability as functions of distance:

𝜙 (𝑟) = 𝜙we(
𝑟

𝑟we
)

𝑑
𝑓
−𝑑

,

𝑘 (𝑟) = 𝑘we(
𝑟

𝑟we
)

𝑑
𝑓
−𝑑−𝜃

,

(B.1)

where 𝑑, 𝑑𝑓, 𝜃, and 𝑟 are Euclid dimension, fractal dimension,
conductivity index, and radial distance in spherical coordi-
nate, respectively.

Darcy’s law says

V𝑟 = −
𝑘

𝜇

𝜕𝑝

𝜕𝑟
, (B.2)

where V𝑟 is spherical flow velocity and 𝜇 is viscosity of fluid.
Due to the conservation law, the continuity equation is

given by

1

𝑟2
𝜕

𝜕𝑟
(𝑟
2
𝜌V𝑟) +

𝜕 (𝜙𝑓𝜌)

𝜕𝑡
= 0. (B.3)

Substituting (B.1)-(B.2) into (B.3), we obtain the funda-
mental differential equation accounting for the fractal reser-
voir with spherical flow:

𝜕
2
𝑝

𝜕𝑟2
+

𝜁

𝑟

𝜕𝑝

𝜕𝑟
= (

𝑟

𝑟we
)

𝜃
𝜇𝜙we𝐶𝑡
𝑘we

𝜕𝑝

𝜕𝑡
, (B.4)

where

𝜁 = 𝑑𝑓 − 𝑑 − 𝜃 + 2,

𝐶𝑡 = 𝐶𝑙 + 𝐶𝑓,

𝐶𝑙 =
1

𝜌

𝜕𝜌

𝜕𝑝
, 𝐶𝑓 =

1

𝜙𝑓

𝜕𝜙𝑓

𝜕𝑝
.

(B.5)

Initial condition is

𝑝 (𝑟, 0) = 0. (B.6)

Inner boundary conditions are

(𝑟
2 𝜕𝑝

𝜕𝑟
)
𝑟=𝑟we

=
𝜇

2𝜋𝑘we
[𝐵𝑞 (𝑡) + 𝐶

𝑑𝑝𝑤

𝑑𝑡
] ,

𝑝𝑤 (𝑡) = 𝑝 (𝑟we, 𝑡) .

(B.7)

The three kinds of outer boundary conditions are the fol-
lowing.

Case 1. Infinite pressure outer boundary condition:

𝑝 (∞, 𝑡) = 𝑝0. (B.8)

Case 2. Constant pressure outer boundary condition:

𝑝 (𝑅, 𝑡) = 𝑝0. (B.9)

Case 3. Closed outer boundary condition:

𝜕𝑝

𝜕𝑟

𝑟=𝑅
= 0. (B.10)

The following dimensionless parameters can be defined
in order to simplify the formulations:

𝑝𝐷 =
6.409 × 10

−12
𝑘we𝑟we

𝐵𝜇𝑞
(𝑝0 − 𝑝) ,

𝑝𝑤𝐷 =
6.409 × 10

−12
𝑘we𝑟we

𝐵𝜇𝑞
(𝑝0 − 𝑝𝑤) ,

𝑞𝐷 (𝑡) =
𝑞 (𝑡)

𝑞𝑒
,

𝑡𝐷 =
10
−2
𝑘we𝑡

𝜇𝜙we𝐶𝑡𝑟
2
𝑤

, 𝐶𝐷 =
𝐶

6.283𝜙we𝐶𝑡𝑟
2
𝑤𝑟we

,

𝑟𝐷 =
𝑟

𝑟we
=

𝑟

𝑟𝑤
𝑒
𝑆
, 𝑅𝐷 =

𝑅

𝑟we
=

𝑅

𝑟𝑤
𝑒
𝑆
.

(B.11)

By substituting the above dimensionless parameters into
(B.4)–(B.10), the dimensionless mathematical model for frac-
tal reservoir with spherical flow is given by

𝜕
2
𝑝𝐷

𝜕𝑟2𝐷
+

𝜁

𝑟𝐷

𝜕𝑝𝐷

𝜕𝑟𝐷
=

𝑟
𝜃
𝐷

𝑒2𝑆
𝜕𝑝𝐷

𝜕𝑡𝐷

𝑝𝐷 (𝑟𝐷, 0) = 0,

𝑑𝑝𝑤𝐷

𝑑𝑟𝐷
= −𝑞𝐷 (𝑡𝐷) + 𝐶𝐷

𝑑𝑝𝑤𝐷

𝑑𝑡𝐷
,

𝑝𝐷 (∞, 𝑡𝐷) = 0 or 𝑝𝐷 (𝑅𝐷, 𝑡𝐷) = 0

or
𝜕𝑝𝐷

𝜕𝑟𝐷

𝑟
𝐷
=𝑅
𝐷

= 0.

(B.12)
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Nomenclature

𝐵: Formation volumefactor, RB/STB
𝐶: Wellbore storage coefficient, m3/Pa
𝐶𝑓: Formation compressibility, Pa−1

𝐶𝑙: Fluid compressibility, Pa−1
𝐶𝑡: Total compressibility, Pa−1
𝑑: Euclid dimension
𝑑𝑓: Fractal dimension
𝑘: Permeability, md
𝑝: Reservoir pressure, Pa
𝑞: Production rate or injection rate, m3/s
𝑅: Radial distance of the outer boundary, m
𝑟: Radial distance in spherical coordinate, m
𝑆: Skin factor
𝑡: Time, s
V𝑟: Spherical flow velocity, m/s
𝑧: Laplace transform variable.

Greek Symbols

𝜃: Fractal exponent
𝜇: Viscosity, cp
𝜙: Porosity.

Subscripts

𝐷: Dimensionless
𝑜: Initial
𝑤: Wellbore parameter
we: Wellbore effective.
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