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The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinear
𝑝-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability,
and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy
CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical
formulae are always described in matrix forms. By way of some variational methods in𝑊1,𝑝

(Ω), Itô formula, Dynkin formula, the
semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust
exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be
computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this
paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness
and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays.

1. Introduction

It is well known that in 1983, Cohen-Grossberg [1] proposed
originally the Cohen-Grossberg neural networks (CGNNs).
Since then the CGNNs have found their extensive appli-
cations in pattern recognition, image and signal process-
ing, quadratic optimization, and artificial intelligence [2–6].
However, these successful applications are greatly dependent
on the stability of the neural networks, which is also a crucial
feature in the design of the neural networks. In practice, time
delays always occur unavoidably due to the finite switching
speed of neurons and amplifiers [2–8], which may cause
undesirable dynamic network behaviors such as oscillation
and instability. Besides delay effects, stochastic effects also
exist in real systems. In fact, many dynamical systems have
variable structures subject to stochastic abrupt changes,
which may result from abrupt phenomena such as sudden

environment changes, repairs of the components, changes in
the interconnections of subsystems, and stochastic failures.
(see [9] and references therein). The stability problems
for stochastic systems, in particular the Ito-type stochastic
systems, become important in both continuous-time case
and discrete-time case [10]. In addition, neural networks
with Markovian jumping parameters have been extensively
studied due to the fact that systems with Markovian jumping
parameters are useful in modeling abrupt phenomena, such
as random failures, operating in different points of a nonlin-
ear plant, and changing in the interconnections of subsystems
[11–15].

Remark 1. Deterministic system is only the simple simulation
for the real system. Indeed, to model a system realistically, a
degree of randomness should be incorporated into the model
due to various inevitable stochastic factors. For example,
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in real nervous systems, synaptic transmission is a noisy
process brought on by random fluctuations from the release
of neurotransmitters and other probabilistic causes. It is
showed that the above-mentioned stochastic factors likewise
cause undesirable dynamic network behaviors and possibly
lead to instability. So it is of significant importance to consider
stochastic effects for neural networks. In recent years, the
stability of stochastic neural networks has become a hot study
topic [3, 16–21].

On the other hand, diffusion phenomena cannot be
unavoidable in real world. Usually diffusion phenomena are
simply simulated by linear Laplace diffusion in much of the
previous literature [2, 22–24]. However, diffusion behavior is
so complicated that the nonlinear reaction-diffusion models
were considered in several papers [3, 25–28]. Very recently,
the nonlinear 𝑝-Laplace diffusion (𝑝 > 1) is applied to the
simulation of some diffusion behaviors [3]. But almost all of
the above mentioned works were focused on the traditional
neural networks models without fuzzy logic. In the factual
operations, we always encounter some inconveniences such
as the complicity, the uncertainty and vagueness. As far as we
know, vagueness is always opposite to exactness. To a certain
degree, vagueness cannot be avoided in the human way
of regarding the world. Actually, vague notations are often
applied to explain some extensive detailed descriptions. As a
result, fuzzy theory is regarded as the most suitable setting
to taking vagueness and uncertainty into consideration. In
1996, Yang and his coauthor [29] originally introduced the
fuzzy cellular neural networks integrating fuzzy logic into
the structure of traditional neural networks and maintaining
local connectedness among cells. Moreover, the fuzzy neural
network is viewed as a very useful paradigm for image
processing problems since it has fuzzy logic between its
template input and/or output besides the sum of prod-
uct operation. In addition, the fuzzy neural network is a
cornerstone in image processing and pattern recognition.
And hence, investigations on the stability of fuzzy neural
networks have attracted a great deal of attention [30–37].
Note that stochastic stability for the delayed 𝑝-Laplace dif-
fusion stochastic fuzzy CGNNs have never been considered.
Besides, the stochastic exponential stability always remains
the key factor of concern owing to its importance in designing
a neural network, and such a situation motivates our present
study. Moreover, the robustness result is also a matter of
urgent concern [10, 38–46], for it is difficult to achieve the
exact parameters in practical implementations. So in this
paper, we will investigate the stochastic global exponential
robust stability criteria for the nonlinear reaction-diffusion
stochastic fuzzy Markovian-jumping CGNNs by means of
linear matrix inequalities (LMIs) approach.

Both the non-linear 𝑝-Laplace diffusion and fuzzy math-
ematical model bring a great difficulty in setting up LMI
criteria for the stability, and stochastic functional differential
equations model with nonlinear diffusionmakes it harder. To
study the stability of fuzzy CGNNs with diffusion, we have
to construct a Lyapunov-Krasovskii functional in non-matrix
form (see, e.g., [4]). But stochastic mathematical formulae
are always described in matrix forms. Note that there is no

stability criteria for fuzzy CGNNs with 𝑝-Laplace diffusion,
let alone Markovian-jumping stochastic fuzzy CGNNs with
𝑝-Laplace diffusion. Only the exponential stability of 𝐼𝑡𝑜-
type stochastic CGNNs with 𝑝-Laplace diffusion was studied
by one literature [3] in 2012. Recently, Ahn use the pas-
sivity approach to derive a learning law to guarantee that
Takagi-Sugeno fuzzy delayed neural networks are passive
and asymptotically stable (see, e.g., [47, 48] and related
literature [49–57]). Especially, LMI optimization approach
for switched neural networks (see, e.g., [53]) may bring
some new edificatory to our studying the stability criteria of
Markovian jumping CGNNs.Muralisankar, Gopalakrishnan,
Balasubramaniam, and Vembarasan investigated the LMI-
based robust stability for Takagi-Sugeno fuzzy neural net-
works [36, 38–41].Mathiyalagan et al. studied robust passivity
criteria and exponential stability criteria for stochastic fuzzy
systems [10, 37, 42–46]. Motivated by some recent related
works ([9, 10, 36–57], and so on), particularly, Zhu and
Li [4], Zhang et al. [2], Pan and Zhong [58], we are to
investigate the exponential stability and robust stability of
𝐼𝑡𝑜-type stochastic Markovian jumping fuzzy CGNNs with
𝑝-Laplace diffusion. By way of some variational methods
in 𝑊1,𝑝

(Ω) (Lemma 6), 𝐼𝑡𝑜 formula, Dynkin formula, the
semi-martingale convergence theorem, Schur Complement
Theorem, and LMI technique, the LMI-based criteria on the
(robust) exponential stability and almost sure exponential
(robust) stability are finally obtained, the feasibility of which
can efficiently be computed and confirmed by computer
matlab LMI toolbox. When 𝑝 = 2, or ignoring some fuzzy or
stochastic effects, the simplified system may be investigated
by existing literature (see, e.g., [2–4, 58]). Another purpose
of this paper is to verify that some corollaries of our main
results improve some existing results in the allowable upper
bounds of time delays, whichmay be illustrated by numerical
examples (see, e.g., Examples 30 and 36).

The rest of this paper is organized as follows. In Section 2,
the new 𝑝-Laplace diffusion fuzzy CGNNs models are for-
mulated, and some preliminaries are given. In Section 3,
new LMIs are established to guarantee the stochastic global
exponential stability and almost sure exponential stability of
the above-mentioned CGNNs. Particularly in Section 4, the
robust exponential stability criteria are given. In Section 5,
Examples 28, 30, 32, 35, 36, and 38 are presented to illustrate
that the proposed methods improve significantly the allow-
able upper bounds of delays over some existing results ([4,
Theorem 1], [4, Theorem 3], [58, Theorem 3.1], [58, Theorem
3.2]). Finally, some conclusions are presented in Section 6.

2. Model Description and Preliminaries

In 2012, Zhu andLi [4] consider the following stochastic fuzzy
Cohen-Grossberg neural networks:
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(1)

where each𝑤
𝑗
(𝑡) is scalar standard Brownianmotion defined

on a complete probability space (Ω,F,P) with a natural
filtration {F

𝑡
}
𝑡⩾0

.The noise perturbation 𝜎
𝑖𝑗
: 𝑅×𝑅 → 𝑅 is a

Borel measurable function.⋀ and⋁ denote the fuzzy AND
and OR operation, respectively. Under several inequalities
conditions and the following five similar assumptions on
System (1), some exponential stability results are obtained in
[4]. Of course, in this paper, we may present the following
conditions which are more flexible than those of [4].
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and
V = (]
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trace [𝜎𝑇 (𝑢, V) 𝜎 (𝑢, V)] ⩽ 𝑢𝑇U𝑢 + V𝑇VV, (4)

where 𝑢, V ∈ 𝑅𝑛, 𝜎(𝑢, V) = (𝜎
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(𝑢, V))

𝑛×𝑛
.
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Remark 2. The condition (A3) is different from that of some
existing literature (e.g., [2–4]). In those previous literature,
𝑓
𝑗
and 𝑔

𝑗
are always assumed to be globally Lipschitz

continuous. Here, we relax this assumption, for 𝑓
𝑗
and 𝑔

𝑗

are only the local Lipschitz continuous functions. From
Rademacher’s theorem [59], a locally Lipschitz continuous
function 𝑓 : 𝑅𝑛 → 𝑅

𝑛 is differentiable almost everywhere.

Let D
𝑓
be the set of those points where 𝑓 is differentiable,

then 𝑓(𝑥) is the Jacobian of 𝑓 at 𝑥 ∈ D
𝑓
and the set D

𝑓

is dense in 𝑅𝑛. The generalized Jacobian 𝜕𝑓(𝑥) of a locally
Lipschitz continuous function 𝑓 : 𝑅𝑛 → 𝑅

𝑛 is a set of
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(5)

where co(⋅) denotes the convex hull of a set.

Remark 3. The conditions (A1) and (A2) relax the corre-
sponding ones in some previous literature (e.g., [2–4]).

The condition (A5) guarantees zero-solution is an equi-
librium of stochastic fuzzy system (1).Throughout this paper,
we always assume that all assumptions (A1)–(A5) hold. In
addition, we assume thatU andV are symmetricmatrices in
consideration of LMI-based criteria presented in this paper.

Besides delays, stochastic effects, the complexity, the
vagueness and diffusion behaviors always occur in real
nervous systems. So in this paper, we are to consider
the following delays stochastic fuzzy Markovian-jumping
Cohen-Grossberg neural networks with nonlinear 𝑝-Laplace
diffusion (𝑝 > 1):
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with boundary condition

B [V
𝑖
(𝑡, 𝑥)] = 0, (𝑡, 𝑥) ∈ [−𝜏, +∞) × 𝜕Ω,

𝑖 = 1, 2, . . . , 𝑛,
(6a)

where 𝑝 > 1 is a given scalar, Ω ∈ 𝑅
𝑚 is a bounded
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at time 𝑡 and in space variable 𝑥. {𝑟(𝑡), 𝑡 ⩾ 0} is a right-
continuous Markov process on the probability space which
takes values in the finite space 𝑆 = {1, 2, . . . , 𝑁} with
generator Π = {𝜋
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connection strengths of the ith neuron on the 𝑗th neuron,
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The boundary condition (6a) is calledDirichlet boundary
condition if B[V
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outward normal derivative on 𝜕Ω. It is well known that
the stability of neural networks with Neumann boundary
condition has been widely studied. The Dirichlet boundary
conditions describe the situation where the space is totally
surrounded by a region in which the states of the neuron
equal zero on the boundary. And the stability analysis of
delayed reaction-diffusion neural networkswith theDirichlet
boundary conditions is very important in theories and
applications, and also has attracted much attention [2, 3,
29, 58]. So in this paper, we consider the CGNNs under
Neumann boundary condition and Dirichlet boundary con-
dition, respectively.

If the complexity and the vagueness of CGNNs are
ignored, the stochastic fuzzy system (6) is simplified to the
following stochastic system:
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. In 2012,
Wang et al. [3] studied the stability of System (8) without
Markovian-jumping.
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diffusion:
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(𝑡, 𝑥))

−

𝑛

⋀

𝑗=1

𝑑
𝑖𝑗
(𝑟 (𝑡) , 𝑡) 𝑔

𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥))

−

𝑛

⋁

𝑗=1

̆𝑑
𝑖𝑗
(𝑟 (𝑡) , 𝑡) 𝑔

𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥))]

]

}

}

}

𝑑𝑡

+

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(V
𝑗
(𝑡, 𝑥) , V

𝑗
(𝑡 − 𝜏, 𝑥)) 𝑑𝑤

𝑗
(𝑡) ,

∀𝑡 ⩾ 𝑡
0
, 𝑥 ∈ Ω,

V (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ [−𝜏, 0] × Ω.

(9)

For any mode 𝑟 ∈ 𝑆, we denote 𝑐
𝑖𝑗
(𝑟(𝑡), 𝑡), ̆𝑐

𝑖𝑗
(𝑟(𝑡), 𝑡),

𝑑
𝑖𝑗
(𝑟(𝑡), 𝑡), ̆𝑑

𝑖𝑗
(𝑟(𝑡), 𝑡) by 𝑐(𝑟)

𝑖𝑗
(𝑡), ̆𝑐

(𝑟)

𝑖𝑗
(𝑡), 𝑑(𝑟)

𝑖𝑗
(𝑡), ̆𝑑

(𝑟)

𝑖𝑗
(𝑡), and

matrices 𝐶
𝑟
(𝑡) = (𝑐

(𝑟)

𝑖𝑗
(𝑡))

𝑛×𝑛
, �̆�

𝑟
(𝑡) = ( ̆𝑐

(𝑟)

𝑖𝑗
(𝑡))

𝑛×𝑛
, 𝐷

𝑟
(𝑡) =

(𝑑
(𝑟)

𝑖𝑗
(𝑡))

𝑛×𝑛
, �̆�

𝑟
(𝑡) = ( ̆𝑑

(𝑟)

𝑖𝑗
(𝑡))

𝑛×𝑛
. Assume

𝐶
𝑟
(𝑡) = 𝐶

𝑟
+ Δ𝐶

𝑟
(𝑡) ; 𝐷

𝑟
(𝑡) = 𝐷

𝑟
+ Δ𝐷

𝑟
(𝑡) ;

�̆�
𝑟
(𝑡) = �̆�

𝑟
+ Δ�̆�

𝑟
(𝑡) ; �̆�

𝑟
(𝑡) = �̆�

𝑟
+ Δ�̆�

𝑟
(𝑡) .

(10)

The Δ𝐶
𝑟
(𝑡), Δ𝐷

𝑟
(𝑡), Δ�̆�

𝑟
(𝑡), and Δ�̆�

𝑟
(𝑡) are parametric

uncertainties, satisfying

(
Δ𝐶

𝑟
(𝑡) Δ�̆�

𝑟
(𝑡)

Δ𝐷
𝑟
(𝑡) Δ�̆�

𝑟
(𝑡)
) = (

𝐸
1𝑟

𝐸
2𝑟

)F (𝑡) (N1𝑟
N

2𝑟) , (11)

where F(𝑡) is an unknown matrix with |F𝑇
(𝑡)||F(𝑡)| ⩽ 𝐼,

and 𝐸
1𝑟
, 𝐸

2𝑟
,N

1𝑟
,N

2𝑟
are known real constant matrices for

all 𝑟 ∈ 𝑆.
Throughout this paper, we denote matrices

𝐴(V(𝑡, 𝑥)) = diag(𝑎
1
(V
1
(𝑡, 𝑥)), 𝑎

2
(V
2
(𝑡, 𝑥)), . . . , 𝑎

𝑛
(V
𝑛
(𝑡, 𝑥))),
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𝐵(V(𝑡, 𝑥)) = (𝑏
1
(V
1
(𝑡, 𝑥)), 𝑏

2
(V
2
(𝑡, 𝑥)), . . . , 𝑏

𝑛
(V
𝑛
(𝑡, 𝑥)))

𝑇,
𝑓(V(𝑡, 𝑥)) = (𝑓

1
(V
1
(𝑡, 𝑥)), 𝑓

2
(V
2
(𝑡, 𝑥)), . . . , 𝑓

𝑛
(V
𝑛
(𝑡, 𝑥)))

𝑇,
𝑔(V(𝑡, 𝑥)) = (𝑔

1
(V
1
(𝑡, 𝑥)), . . . , 𝑔

𝑛
(V
𝑛
(𝑡, 𝑥)))

𝑇. For the
sake of simplicity, let 𝜎(𝑡) = 𝜎(𝑡, V(𝑡, 𝑥), V(𝑡 − 𝜏, 𝑥)),
and 𝑤(𝑡) = (𝑤

1
(𝑡), 𝑤

2
(𝑡), . . . , 𝑤

𝑛
(𝑡))

𝑇 . Matrix
D(𝑡, 𝑥, V) = (D

𝑗𝑘
(𝑡, 𝑥, V))

𝑛×𝑚
satisfies D

𝑗𝑘
(𝑡, 𝑥, V) ⩾ 0

for all 𝑗, 𝑘, (𝑡, 𝑥, V). Denote ∇
𝑝
V = (∇

𝑝
V
1
, . . . , ∇

𝑝
V
𝑛
)
𝑇 with

∇
𝑝
V
𝑖
= (|∇V

𝑖
|
𝑝−2
(𝜕V

𝑖
/𝜕𝑥

1
), . . . , |∇V

𝑖
|
𝑝−2
(𝜕V

𝑖
/𝜕𝑥

𝑚
))
𝑇. And

D(𝑡, 𝑥, V) ∘ ∇
𝑝
V = (D

𝑗𝑘
(𝑡, 𝑥, V)|∇V

𝑖
|
𝑝−2
(𝜕V

𝑖
/𝜕𝑥

𝑘
))
𝑛×𝑚

denotes
the Hadamard product of matrix D(𝑡, 𝑥, V) and ∇

𝑝
V (see,

[60] or [3]).
For convenience’s sake, we need introduce some standard

notations.

(i) 𝐿2(𝑅 × Ω) :The space of real Lebesgue measurable
functions of 𝑅 × Ω, it is a Banach space for the
2-norm ‖V(𝑡)‖

2
= (∑

𝑛

𝑖=1
‖V
𝑖
(𝑡)‖)

1/2 with ‖V
𝑖
(𝑡)‖ =

(∫
Ω
|V
𝑖
(𝑡, 𝑥)|

2
𝑑𝑥)

1/2, where |V
𝑖
(𝑡, 𝑥)| is Euclid norm.

(ii) 𝐿2F0([−𝜏, 0]×Ω; 𝑅
𝑛
):The family of allF

0
-measurable

𝐶([−𝜏, 0]×Ω; 𝑅
𝑛
)-value randomvariable 𝜉 = {𝜉(𝜃, 𝑥) :

−𝜏 ⩽ 𝜃 ⩽ 0, 𝑥 ∈ Ω} such that sup
−𝜏⩽𝜃⩽0

E‖𝜉(𝜃)‖
2

2
< ∞,

where E{⋅} stands for the mathematical expectation
operatorwith respect to the given probabilitymeasure
P.

(iii) 𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛
> 0 (<0): A positive (negative) definite

matrix, that is, 𝑦𝑇𝑄𝑦 > 0 (<0) for any 0 ̸= 𝑦 ∈ 𝑅
𝑛.

(iv) 𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

⩾ 0 (⩽0): A semi-positive (semi-
negative) definite matrix, that is, 𝑦𝑇𝑄𝑦 ⩾ 0 (⩽0) for
any 𝑦 ∈ 𝑅𝑛.

(v) 𝑄
1
⩾ 𝑄

2
(𝑄

1
⩽ 𝑄

2
): This means 𝑄

1
− 𝑄

2
is a semi-

positive (semi-negative) definite matrix.
(vi) 𝑄

1
> 𝑄

2
(𝑄

1
< 𝑄

2
): This means 𝑄

1
− 𝑄

2
is a positive

(negative) definite matrix.
(vii) 𝜆max(Φ), 𝜆min(Φ) denotes the largest and smallest

eigenvalue of matrixΦ, respectively.
(viii) Denote |𝐶| = (|𝑐

𝑖𝑗
|)
𝑛×𝑛

for any matrix 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

;
|𝑢(𝑡, 𝑥)| = (|𝑢

1
(𝑡, 𝑥)|, |𝑢

2
(𝑡, 𝑥)|, . . . , |𝑢

𝑛
(𝑡, 𝑥)|)

𝑇 for any
𝑢(𝑡, 𝑥) = (𝑢

1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), . . . , 𝑢

𝑛
(𝑡, 𝑥))

𝑇.
(ix) 𝐼: Identity matrix with compatible dimension.
(x) The symmetric terms in a symmetric matrix are

denoted by ∗.
(xi) The Sobolev space𝑊

1,𝑝
(Ω) = {𝑢 ∈ 𝐿

𝑝
: 𝐷𝑢 ∈ 𝐿

𝑝
} (see

[61] for detail). Particularly in the case of 𝑝 = 2, then
𝑊

1,𝑝
(Ω) = 𝐻

1
(Ω).

(xii) Denote by 𝜆
1
the lowest positive eigenvalue of the

boundary value problem

−Δ𝜑 (𝑡, 𝑥) = 𝜆𝜑 (𝑡, 𝑥) , 𝑥 ∈ Ω,

B [𝜑 (𝑡, 𝑥)] = 0, 𝑥 ∈ 𝜕Ω.

(12)

Let V(𝑡, 𝑥; 𝜙, 𝑖
0
) be the state trajectory from the initial

condition 𝑟(0) = 𝑖
0
, V(𝜃, 𝑥; 𝜙) = 𝜙(𝜃, 𝑥) on −𝜏 ⩽ 𝜃 ⩽ 0 in

𝐿
2

F0
([−𝜏, 0]×Ω; 𝑅

𝑛
). Below, we always assume (V(𝑡, 𝑥; 𝜙, 𝑖

0
) is

a solution of System (6).

Definition 4. For any given scalar 𝑝 > 1, the null solution of
system (6) is said to be stochastically globally exponentially
stable in the mean square if for every initial condition 𝜙 ∈
𝐿
2

F0
([−𝜏, 0] × Ω; 𝑅

𝑛
), 𝑟(0) = 𝑖

0
, there exist scalars 𝛽 > 0 and

𝛾 > 0 such that for any solution V(𝑡, 𝑥; 𝜙, 𝑖
0
),

E (
V (𝑡; 𝜙, 𝑖0)


2

2
) ⩽ 𝛾𝑒

−𝛽𝑡
[ sup
−𝜏⩽𝜃⩽0

E (
𝜙 (𝜃)


2

2
)] , 𝑡 ⩾ 𝑡

0
.

(13)

Definition 5. The null solution of System (6) is said to be
almost sure exponentially stable if for every 𝜙 ∈ 𝐿2F0([−𝜏, 0]×
Ω; 𝑅

𝑛
), there exists a positive scalar 𝜆 > 0 such that the

following inequality holds:

lim sup
𝑡→∞

log (‖V(𝑡)‖2
2
) ⩽ −𝜆, P − a.s. (14)

Lemma 6. Let 𝑃 = diag(𝑝
1
, 𝑝

2
, . . . , 𝑝

𝑛
) be a positive definite

matrix, and V be a solution of system (6) with the boundary
condition (6a). Then one has

∫
Ω

V
𝑇
𝑃 (∇ ⋅ (D (𝑡, 𝑥, V) ∘ ∇

𝑝
V)) 𝑑𝑥

= −

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

∫
Ω

𝑝
𝑗
D
𝑗𝑘
(𝑡, 𝑥, V)

×

∇V

𝑗



𝑝−2

(
𝜕V

𝑗

𝜕𝑥
𝑘

)

2

𝑑𝑥

= ∫
Ω

(∇ ⋅ (D (𝑡, 𝑥, V) ∘ ∇
𝑝
V))

𝑇

𝑃V 𝑑𝑥 .

(15)

Proof. Since V is a solution of system (6), we can derive it by
Guass formula and the boundary condition (6a) that

∫
Ω

V
𝑇
𝑃 (∇ ⋅ (𝐷 (𝑡, 𝑥, V) ∘ ∇

𝑝
V)) 𝑑𝑥

= ∫
Ω

V
𝑇
𝑃(

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
1𝑘

∇V1

𝑝−2 𝜕V1
𝜕𝑥

𝑘

) , . . . ,

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑛𝑘

∇V𝑛

𝑝−2 𝜕V𝑛
𝜕𝑥

𝑘

))

𝑇

𝑑𝑥

= ∫
Ω

𝑛

∑

𝑗=1

𝑝
𝑗
V
𝑗

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑗𝑘


∇V

𝑗



𝑝−2 𝜕V𝑗

𝜕𝑥
𝑘

)𝑑𝑥

= −

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

∫
Ω

𝑝
𝑗
𝐷
𝑗𝑘


∇V

𝑗



𝑝−2

(
𝜕V

𝑗

𝜕𝑥
𝑘

)

2

𝑑𝑥.

(16)

Then the other three equalities can be proved similarly.

Remark 7. Lemma 9 actually generalizes the conclusion of
[62, Lemma 3.1] from Hilbert space 𝐻1

(Ω) to Banach space
𝑊

1,𝑝
(Ω).
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Lemma 8 (nonnegative semi-martingale convergence the-
orem [63]). Let 𝐴(𝑡) and 𝑈(𝑡) be two continuous adapted
increasing processes on 𝑡 ⩾ 0 with 𝐴(0) = 𝑈(0) = 0, a.s.
Let 𝑀(𝑡) be a real-valued continuous local martingale with
𝑀(0) = 0, a.s. Let 𝜉 be a nonnegativeF

0
-measurable random

variable with 𝐸𝜉 < ∞. Define

𝑋(𝑡) = 𝜉 + 𝐴 (𝑡) − 𝑈 (𝑡) + 𝑀 (𝑡) (17)

for 𝑡 ⩾ 0. If𝑋(𝑡) is nonnegative, then

{ lim
𝑡→∞

𝐴 (𝑡) < ∞} ⊂ { lim
𝑡→∞

𝑋 (𝑡) < ∞}

∩ { lim
𝑡→∞

𝑈 (𝑡) < ∞} , a.s.,
(18)

where 𝐵 ⊂ 𝐷 a.s. means 𝑃(𝐵 ∪ 𝐷𝑐
) = 0. In particular,

if lim
𝑡→∞

𝐴(𝑡) < ∞ a.s., then for almost all 𝜔 ∈ Ω,
lim

𝑡→∞
𝑋(𝑡) < ∞ and lim

𝑡→∞
𝑈(𝑡) < ∞, that is, both 𝑋(𝑡)

and 𝑈(𝑡) converge to finite random variables.

Lemma 9 (see [64]). Let 𝑓 : 𝑅𝑛 → 𝑅
𝑛 be locally Lipschitz

continuous. For any given 𝑥, 𝑦 ∈ 𝑅𝑛, there exists an elementw
in the union ∪

𝑧∈[𝑥,𝑦]
𝜕𝑓(𝑧) such that

𝑓 (𝑦) − 𝑓 (𝑥) = w (𝑦 − 𝑥) , (19)

where [𝑥, 𝑦] denotes the segment connecting 𝑥 and 𝑦.

Lemma 10 (see [65]). Let 𝜀 > 0 be any given scalar, andM,E
andK be matrices with appropriate dimensions. IfK𝑇K ⩽ 𝐼,
then one has

MKE + E
𝑇
K

𝑇
M

𝑇
⩽ 𝜀

−1
MM

𝑇
+ 𝜀E

𝑇
E. (20)

3. Main Results

Theorem 11. Assume that 𝑝 > 1. In addition, there exist a
sequence of positive scalars 𝛼

𝑟
(𝑟 ∈ 𝑆) and positive definite

diagonal matrices 𝑃
𝑟
= diag(𝑝

𝑟1
, 𝑝

𝑟2
, . . . , 𝑝

𝑟𝑛
) (𝑟 ∈ 𝑆) and

𝑄 = diag(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
) such that the following LMI conditions

hold:

Θ
𝑟
≜ −(

A
𝑟
𝑃
𝑟
𝐴(

𝐷
𝑟


+

�̆�
𝑟


) 𝐺

∗ −𝑒
−𝜆𝜏
𝑄 + 𝛼

𝑟
V

) > 0, 𝑟 ∈ 𝑆, (21)

𝑃
𝑟
< 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆, (22)

where matrices 𝐶
𝑟
= (𝑐

(𝑟)

𝑖𝑗
)
𝑛×𝑛
, 𝐷

𝑟
= (𝑑

(𝑟)

𝑖𝑗
)
𝑛×𝑛

, �̆�
𝑟
= ( ̆𝑐

(𝑟)

𝑖𝑗
)
𝑛×𝑛

,
�̆�
𝑟
= ( ̆𝑑

(𝑟)

𝑖𝑗
)
𝑛×𝑛

, and

A
𝑟
= 𝜆𝑃

𝑟
− 2𝑃

𝑟
𝐵 + 𝑃

𝑟
𝐴(

𝐶
𝑟


+

�̆�
𝑟


) 𝐹

+ 𝐹 (

𝐶
𝑇

𝑟


+

�̆�
𝑇

𝑟


) 𝐴𝑃

𝑟
+ 𝛼

𝑟
U

+ 𝑄 +∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
,

(23)

then the null solution of Markovian jumping stochastic fuzzy
system (6) is stochastically exponentially stable in the mean
square.

Proof. Consider the Lyapunov-Krasovskii functional:

𝑉 (𝑡, V (𝑡) , 𝑟) = 𝑒
𝜆𝑡
∫
Ω

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(𝑡, 𝑥) 𝑑𝑥

+ ∫
Ω

∫

𝑡

𝑡−𝜏

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

𝑞
𝑖
V
2

𝑖
(𝑠, 𝑥) 𝑑𝑠 𝑑𝑥,

∀𝑟 ∈ 𝑆,

(24)

where V(𝑡, 𝑥) = (V
1
(𝑡, 𝑥), V

2
(𝑡, 𝑥), . . . , V

𝑛
(𝑡, 𝑥))

𝑇 is a solution
for stochastic fuzzy system (6). Sometimes we may denote
V(𝑡, 𝑥) by V, V

𝑖
(𝑡, 𝑥) by V

𝑖
, and 𝜎(V(𝑡, 𝑥), V(𝑡 − 𝜏, 𝑥)) by 𝜎(𝑡)

for simplicity.
LetL be the weak infinitesimal operator. Then it follows

by Lemma 6 that

L𝑉 (𝑡, V (𝑡) , 𝑟)

= 𝜆𝑒
𝜆𝑡
∫
Ω

V
𝑇
𝑃
𝑟
V𝑑𝑥 − 2𝑒

𝜆𝑡

×

𝑚

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
D
𝑖𝑘
(𝑡, 𝑥, V)

×
∇V𝑖

𝑝−2

(
𝜕V

𝑖

𝜕𝑥
𝑘

)

2

𝑑𝑥

− 2𝑒
𝜆𝑡

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
V
𝑖

×
{

{

{

𝑎
𝑖
(V
𝑖
) [

[

𝑏
𝑖
(V
𝑖
) −

𝑛

⋀

𝑗=1

𝑐
(𝑟)

𝑖𝑗
𝑓
𝑗
(V
𝑗
)

−

𝑛

⋁

𝑗=1

̆𝑐
(𝑟)

𝑖𝑗
𝑓
𝑗
(V
𝑗
)

−

𝑛

⋀

𝑗=1

𝑑
(𝑟)

𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥))

−

𝑛

⋁

𝑗=1

̆𝑑
(𝑟)

𝑖𝑗

× 𝑔
𝑗
(V
𝑗
(𝑡−𝜏, 𝑥)) ]

]

}

}

}

𝑑𝑥

+ 𝑒
𝜆𝑡
∫
Ω

V
𝑇
∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
V𝑑𝑥

+ 𝑒
𝜆𝑡
∫
Ω

trace (𝜎𝑇 (𝑡) 𝑃
𝑟
𝜎 (𝑡)) 𝑑𝑥

+ ∫
Ω

(𝑒
𝜆𝑡
V
𝑇
𝑄V − 𝑒

𝜆(𝑡−𝜏)

× V
𝑇
(𝑡 − 𝜏, 𝑥)𝑄V (𝑡 − 𝜏, 𝑥) ) 𝑑𝑥.

(25)
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Moreover, we get by A4 and A5

L𝑉 (𝑡, V (𝑡) , 𝑟)

⩽ 𝑒
𝜆𝑡
{

{

{

∫
Ω

V
𝑇
(𝜆𝑃

𝑟
+∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
) V𝑑𝑥

+ 0 − 2

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
𝑏
𝑖
V
2

𝑖
𝑑𝑥

+ 2

𝑛

∑

𝑖=1

∫
Ω

[

[

𝑝
𝑟𝑖

V𝑖
 𝑎𝑖

𝑛

⋀

𝑗=1


𝑐
(𝑟)

𝑖𝑗



×

𝑓
𝑗
(V
𝑗
) − 𝑓

𝑗
(0)


+ 𝑝
𝑟𝑖

V𝑖
 𝑎𝑖

𝑛

⋁

𝑗=1


̆𝑐
(𝑟)

𝑖𝑗



×

𝑓
𝑗
(V
𝑗
) − 𝑓

𝑗
(0)


+ 𝑝
𝑟𝑖

V𝑖
 𝑎𝑖

𝑛

⋀

𝑗=1


𝑑
(𝑟)

𝑖𝑗



×

𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥)) − 𝑔

𝑗
(0)


+ 𝑝
𝑟𝑖

V𝑖
 𝑎𝑖

𝑛

⋁

𝑗=1


̆𝑑
(𝑟)

𝑖𝑗



×

𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥)) − 𝑔

𝑗
(0)

]

]

𝑑𝑥

+ 𝛼
𝑟
∫
Ω

(V
𝑇
UV + V

𝑇
(𝑡 − 𝜏, 𝑥)

× VV (𝑡 − 𝜏, 𝑥) ) 𝑑𝑥
}

}

}

+ ∫
Ω

(𝑒
𝜆𝑡
V
𝑇
𝑄V − 𝑒

𝜆(𝑡−𝜏)

× V
𝑇
(𝑡 − 𝜏, 𝑥)𝑄V (𝑡 − 𝜏, 𝑥) ) 𝑑𝑥.

(26)

From A3 and Lemma 9, we know

𝑓 (V (𝑡, 𝑥)) − 𝑓 (0)
 = |F| ⋅ |V (𝑡, 𝑥) − 0| ⩽ 𝐹 |V (𝑡, 𝑥)| ;

𝑔 (V (𝑡 − 𝜏, 𝑥)) − 𝑔 (0)
 = |G| ⋅ |V (𝑡 − 𝜏, 𝑥) − 0|

⩽ 𝐺 |V (𝑡 − 𝜏, 𝑥)| ,

(27)

whereF ∈ ∪
𝑧∈[0,V(𝑡,𝑥)]𝜕𝑓(𝑧), andG ∈ ∪

𝑧∈[0,V(𝑡−𝜏,𝑥)]𝜕𝑓(𝑧).

So it follows by A1–A5 that

L𝑉 (𝑡, V (𝑡) , 𝑟)

⩽ 𝑒
𝜆𝑡
{

{

{

∫
Ω

V
𝑇
(𝜆𝑃

𝑟
+∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
) V𝑑𝑥

− 2

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
𝑏
𝑖
V
2

𝑖
𝑑𝑥

+ 2

𝑛

∑

𝑖=1

∫
Ω

[

[

𝑝
𝑟𝑖

V𝑖
 𝑎𝑖

𝑛

∑

𝑗=1


𝑐
(𝑟)

𝑖𝑗


𝐹
𝑗


V
𝑗



+ 𝑝
𝑟𝑖

V𝑖
 𝑎𝑖

𝑛

∑

𝑗=1


̆𝑐
(𝑟)

𝑖𝑗


𝐹
𝑗


V
𝑗



+ 𝑝
𝑟𝑖

V𝑖
 𝑎𝑖

𝑛

∑

𝑗=1


𝑑
(𝑟)

𝑖𝑗



× 𝐺
𝑗


V
𝑗
(𝑡 − 𝜏, 𝑥)



+ 𝑝
𝑟𝑖

V𝑖
 𝑎𝑖

𝑛

∑

𝑗=1


̆𝑑
(𝑟)

𝑖𝑗



× 𝐺
𝑗


V
𝑗
(𝑡 − 𝜏, 𝑥)


]

]

𝑑𝑥

+ 𝛼
𝑟
∫
Ω

(V
𝑇
UV + V

𝑇
(𝑡 − 𝜏, 𝑥)

×VV (𝑡 − 𝜏, 𝑥) ) 𝑑𝑥
}

}

}

+ ∫
Ω

(𝑒
𝜆𝑡
V
𝑇
𝑄V − 𝑒

𝜆(𝑡−𝜏)

× V
𝑇
(𝑡 − 𝜏, 𝑥)𝑄V (𝑡 − 𝜏, 𝑥) ) 𝑑𝑥,

(28)

or

L𝑉 (𝑡, V (𝑡) , 𝑟)

⩽ 𝑒
𝜆𝑡
{

{

{

𝜆∫
Ω


V
𝑇
(𝜆𝑃

𝑟
+∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
) |V| 𝑑𝑥

− 2∫
Ω


V
𝑇
𝑃
𝑟
𝐵 |V| 𝑑𝑥

+ 2∫
Ω

[

V
𝑇
𝑃
𝑟
𝐴(

𝐶
𝑟


+

�̆�
𝑟


) 𝐹 |V|

+

V
𝑇
𝑃
𝑟
𝐴(

𝐷
𝑟


+

�̆�
𝑟


)

×𝐺 |V (𝑡 − 𝜏, 𝑥)| ] 𝑑𝑥
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+ ∫
Ω

𝛼
𝑟
(

V
𝑇
U |V| +


V
𝑇
(𝑡 − 𝜏, 𝑥)



×V |V (𝑡 − 𝜏, 𝑥)| ) 𝑑𝑥

+ ∫
Ω

(

V
𝑇
𝑄 |V| − 𝑒

−𝜆𝜏

×

V
𝑇
(𝑡 − 𝜏, 𝑥)


𝑄 |V (𝑡 − 𝜏, 𝑥)| ) 𝑑𝑥

}

}

}

.

(29)

Remark 12. In (28), we employ a new method, which is
different from that of [4, (3)]. Therefore, our LMI conditions
in Theorem 11 may be more feasible and effective than [4,
Theorem 1] to some extent, which may be illustrated by a
numerical example below (see, Example 30).

Denote 𝜁𝑇(𝑡, 𝑥) = (|V𝑇(𝑡, 𝑥)|, |V𝑇(𝑡 − 𝜏, 𝑥)|). Then we get
by (21)

L𝑉 (𝑡, V (𝑡) , 𝑟) ⩽ −∫
Ω

𝜁
𝑇
(𝑡, 𝑥)Θ

𝑟
𝜁 (𝑡, 𝑥) 𝑑𝑥 ⩽ 0, 𝑟 ∈ 𝑆.

(30)

Then we can obtain by the Dynkin formula

E𝑉 (𝑡, V (𝑡) , 𝑟) − E𝑉 (0, V (0) , 𝑟) = E∫
𝑡

0

L𝑉 (𝑠, V (𝑠) , 𝑟) 𝑑𝑠

⩽ 0, 𝑟 ∈ 𝑆.

(31)

Hence, we have

E∫
Ω

𝑒
𝜆𝑡

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(𝑡, 𝑥) 𝑑𝑥

⩽ E𝑉 (𝑡, V (𝑡) , 𝑟)

⩽ E𝑉 (0, V (0) , 𝑟)

= E∫
Ω

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(0, 𝑥) 𝑑𝑥

+ E∫
Ω

∫

0

−𝜏

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

𝑞
𝑖
V
2

𝑖
(𝑠, 𝑥) 𝑑𝑠 𝑑𝑥

⩽ [max
𝑟∈𝑆

(max
1⩽𝑗⩽𝑛

𝑝
𝑟𝑗
+ 𝜏max

1⩽𝑗⩽𝑛

𝑞
𝑗
)] sup

−𝜏⩽𝑠⩽0

E
𝜙 (𝑠)


2

2
.

(32)

On the other hand,

E∫
Ω

𝑒
𝜆𝑡

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(𝑡, 𝑥) 𝑑𝑥 ⩾ 𝑒

𝜆𝑡min
𝑟∈𝑆

(min
1⩽𝑗⩽𝑛

𝑝
𝑟𝑗
)E‖V(𝑡)‖

2

2
.

(33)

Combining the above two inequalities, we obtain

E‖V (𝑡)‖
2

2
≤
max

𝑟∈𝑆
(max

1⩽𝑗⩽𝑛
𝑝
𝑟𝑗
+ 𝜏max

1⩽𝑗⩽𝑛
𝑞
𝑗
)

min
𝑟∈𝑆
(min

1⩽𝑗⩽𝑛
𝑝
𝑟𝑗
)

𝑒
−𝜆𝑡

× sup
−𝜏⩽𝑠⩽0

E
𝜙(𝑠)


2

2
.

(34)

Therefore, we can see it by Definition 4 that the null solu-
tion of stochastic fuzzy system (6) is globally stochastically
exponentially stable in the mean square.

Corollary 13. If there exist a positive scalar 𝛼 and positive
definite diagonal matrices 𝑃 and𝑄 such that the following LMI
conditions hold:

Θ ≜ −(
A 𝑃𝐴 (


𝐷

+

�̆�

) 𝐺

∗ −𝑒
−𝜆𝜏
𝑄 + 𝛼V

) > 0,

𝑃 < 𝛼𝐼,

(35)

where matrices 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

,𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

, �̆� = ( ̆𝑐
𝑖𝑗
)
𝑛×𝑛
, �̆� =

( ̆𝑑
𝑖𝑗
)
𝑛×𝑛

, and

A = 𝜆𝑃 − 2𝑃𝐵 + 𝑃𝐴 (

𝐶

+

�̆�

) 𝐹

+ 𝐹 (

𝐶
𝑇
+

�̆�
𝑇
) 𝐴𝑃 + 𝛼U + 𝑄,

(36)

then the null solution of stochastic fuzzy system (1) is stochas-
tically exponentially stable in the mean square.

Remark 14. It is obvious from Remark 12 that our
Corollary 13 is more feasible and effective than [4, Theorem
1]. In addition, the LMI-based criterion of Corollary 13 has
its practical value in real work, for it is available to computer
matlab calculation.

Corollary 15. Assume that 𝑝 > 1. In addition, there exist a
sequence of positive scalars 𝛼

𝑟
(𝑟 ∈ 𝑆) and positive definite

diagonal matrices 𝑃
𝑟
(𝑟 ∈ 𝑆) and𝑄 such that the following LMI

conditions hold:

Θ
𝑟
≜ −(

B
𝑟

𝑃
𝑟
𝐴
𝐷𝑟
 𝐺

∗ −𝑒
−𝜆𝜏
𝑄 + 𝛼

𝑟
V
) > 0, 𝑟 ∈ 𝑆,

𝑃
𝑟
< 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆,

(37)

where

B
𝑟
= 𝜆𝑃

𝑟
− 2𝑃

𝑟
𝐵 + 𝑃

𝑟
𝐴
𝐶𝑟
 𝐹 + 𝐹


𝐶
𝑇

𝑟


𝐴𝑃

𝑟

+ 𝛼
𝑟
U + 𝑄 +∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
,

(38)

then the null solution of Markovian jumping stochastic system
(8) is stochastically exponentially stable in the mean square.

Particularly for the case of 𝑝 = 2, we get from the Poincaré
inequality (see, e.g., [58, Lemma 2.4]) that

𝜆
1
∫
Ω

V𝑖 (𝑡, 𝑥)

2

𝑑𝑥 ⩽ ∫
Ω

∇V𝑖 (𝑡, 𝑥)

2

𝑑𝑥. (39)
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Denote D = min
𝑗,𝑘
( inf

𝑡,𝑥,VD𝑗𝑘
(𝑡, 𝑥, V)). Then Lemma 6

derives that

∫
Ω

V
𝑇
𝑃
𝑟
(∇ ⋅ (D (𝑡, 𝑥, V) ∘ ∇

𝑝
V)) 𝑑𝑥

= −

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

∫
Ω

𝑝
𝑟𝑗
D
𝑗𝑘
(𝑡, 𝑥, V)


∇V

𝑗



2−2

(
𝜕V

𝑗

𝜕𝑥
𝑘

)

2

𝑑𝑥

⩽ −𝜆
1
D𝛼

𝑟
‖V‖

2

2
,

(40)

where 𝑃
𝑟
= diag(𝑝

𝑟1
, 𝑝

𝑟2
, . . . , 𝑝

𝑟𝑛
) > 0, and 𝛼

𝑟
is a positive

scalar, satisfying

𝛼
𝑟
𝐼 < 𝑃

𝑟
, ∀𝑟 ∈ 𝑆. (41)

Moreover, one can conclude the following Corollary from (40)
and the proof of Theorem 11.

Corollary 16. Assume that 𝑝 = 2. In addition, there exist a
sequence of positive scalars 𝛼

𝑟
, 𝛼

𝑟
(𝑟 ∈ 𝑆) and positive definite

diagonalmatrices𝑃
𝑟
(𝑟 ∈ 𝑆) and𝑄 such that the following LMI

conditions hold:

Θ̃
𝑟
≜ −(

B
𝑟
− 2𝜆

1
D𝛼

𝑟
𝐼 𝑃

𝑟
𝐴
𝐷𝑟
 𝐺

∗ −𝑒
−𝜆𝜏
𝑄 + 𝛼

𝑟
V
) > 0, 𝑟 ∈ 𝑆,

𝑃
𝑟
< 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆,

𝛼
𝑟
𝐼 < 𝑃

𝑟
, ∀𝑟 ∈ 𝑆,

(42)

where B
𝑟
satisfies (38), then the null solution of Markovian

jumping stochastic system (8) with 𝑝 = 2 is stochastically
exponentially stable in the mean square.

Remark 17. Corollary 16 not only extends [58, Theorem 3.2]
into the case of Markovian jumping, but also improves its
complicated conditions by presenting the efficient LMI-based
criterion.

Below, we denote ] = max
𝑖,𝑗
]
𝑖𝑗
for convenience’s sake.

Theorem 18. Assume 𝑝 > 1. The null solution of Markovian
jumping stochastic fuzzy system (6) is almost sure exponentially
stable if there exist positive scalars 𝜆, 𝛼

𝑟
(𝑟 ∈ 𝑆), 𝛽 and positive

definitematrices𝑃
𝑟
= diag(𝑝

𝑟1
, 𝑝

𝑟2
, . . . , 𝑝

𝑟𝑛
), (𝑟 ∈ 𝑆) such that

Θ̂
𝑟
≜ −(

Â
𝑟
𝑃
𝑟
𝐴(

𝐷
𝑟


+

�̆�
𝑟


) 𝐺

∗ −𝛼
𝑟
𝛽V

) > 0, 𝑟 ∈ 𝑆,

𝑃
𝑟
< 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆,

(43)

where

Â
𝑟
= 𝜆𝑃

𝑟
− 2𝑃

𝑟
𝐵 + 𝑃

𝑟
(

𝐶
𝑟


+

�̆�
𝑟


) 𝐹

+ 𝐹 (

𝐶
𝑇

𝑟


+

�̆�
𝑇

𝑟


) 𝐴𝑃

𝑟
+ 𝛼

𝑟
U

+ 𝑛]𝑒
𝜆𝜏
𝛼
𝑟
(1 + 𝛽) 𝐼 + ∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
.

(44)

Proof. Consider the Lyapunov-Krasovskii functional:

V (𝑡, V (𝑡) , 𝑟) = 𝑒
𝜆𝑡
∫
Ω

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(𝑡, 𝑥) 𝑑𝑥, 𝑟 ∈ 𝑆. (45)

By applying 𝐼𝑡𝑜 formula (see, e.g., [3, (2.7)]) and
Lemma 6, we can get

V (𝑡, V (𝑡) , 𝑟) −V (0, V (0) , 𝑟)

= ∫

𝑡

0

𝜆𝑒
𝜆𝑠
∫
Ω

V
𝑇
(𝑠, 𝑥) 𝑃

𝑟
V (𝑠, 𝑥) 𝑑𝑥 𝑑𝑠

− 2∫

𝑡

0

𝑒
𝜆𝑠

𝑚

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑖
D
𝑖𝑘
(𝑠, 𝑥, V)

×
∇V𝑖 (𝑠, 𝑥)


𝑝−2

× (
𝜕V

𝑖
(𝑠, 𝑥)

𝜕𝑥
𝑘

)

2

𝑑𝑥 𝑑𝑠

− 2∫

𝑡

0

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
V
𝑖
(𝑠, 𝑥)

×
{

{

{

𝑎
𝑖
(V
𝑖
(𝑠, 𝑥))

× [

[

𝑏
𝑖
(V
𝑖
(𝑠, 𝑥))

−

𝑛

⋀

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(V
𝑗
(𝑠, 𝑥))

−

𝑛

⋁

𝑗=1

̆𝑐
𝑖𝑗
𝑓
𝑗
(V
𝑗
(𝑠, 𝑥))

−

𝑛

⋀

𝑗=1

𝑑
𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑠 − 𝜏, 𝑥))

−

𝑛

⋁

𝑗=1

̆𝑑
𝑖𝑗

× 𝑔
𝑗
(V
𝑗
(𝑠−𝜏, 𝑥))]

]

}

}

}

𝑑𝑥𝑑𝑠

+ ∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

V
𝑇
(𝑠, 𝑥)∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
V (𝑠, 𝑥) 𝑑𝑥 𝑑𝑠

+ 2∫

𝑡

0

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
V
𝑖
(𝑠, 𝑥)

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑠) 𝑑𝑤

𝑗
(𝑠) 𝑑𝑥

+ ∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

trace (𝜎𝑇 (𝑠) 𝑃
𝑟
𝜎 (𝑠)) 𝑑𝑥 𝑑𝑠,

(46)

where 𝜎
𝑖𝑗
(𝑠) = 𝜎

𝑖𝑗
(V
𝑗
(𝑠, 𝑥), V

𝑗
(𝑠 − 𝜏, 𝑥)), and 𝜎(𝑠) = (𝜎

𝑖𝑗
(𝑠))

𝑛×𝑛
.
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Similarly as (26)–(29), we can derive by A1–A5 and
Lemma 9

V (𝑡, V (𝑡) , 𝑟)

⩽ ∫
Ω

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(0, 𝑥) 𝑑𝑥

+ 2∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

{

{

{


V
𝑇
(𝑠, 𝑥)



× (𝜆𝑃
𝑟
+∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
) |V (𝑠, 𝑥)|

−

V
𝑇
(𝑠, 𝑥)


𝑃
𝑟
𝐵 |V (𝑠, 𝑥)|

+

V
𝑇
(𝑠, 𝑥)


𝑃
𝑟
𝐴(

𝐶
𝑟


+

�̆�
𝑟


)

× 𝐹 |V (𝑠, 𝑥)|

+

V
𝑇
(𝑠, 𝑥)


𝑃
𝑟
𝐴(

𝐷
𝑟


+

�̆�
𝑟


)

× 𝐺 |V (𝑠 − 𝜏, 𝑥)|

+
1

2


V
𝑇
(𝑠, 𝑥)


𝛼
𝑟
U |V (𝑠, 𝑥)|

}

}

}

𝑑𝑥𝑑𝑠

+ ∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

V
𝑇
(𝑠 − 𝜏, 𝑥) 𝛼

𝑟
VV (𝑠 − 𝜏, 𝑥) 𝑑𝑥 𝑑𝑠

+ 2∫

𝑡

0

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
V
𝑖
(𝑠, 𝑥)

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑠) 𝑑𝑤

𝑗
(𝑠) 𝑑𝑥.

(47)

On the other hand,

∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

V
𝑇
(𝑠 − 𝜏, 𝑥) 𝛼

𝑟
VV (𝑠 − 𝜏, 𝑥) 𝑑𝑥 𝑑𝑠

= 𝛼
𝑟
∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

]
𝑖𝑗
V
𝑖
(𝑠 − 𝜏, 𝑥) V

𝑗
(𝑠 − 𝜏, 𝑥) 𝑑𝑥 𝑑𝑠

⩽
1

2
𝛼
𝑟
∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

]
𝑖𝑗

× (V
2

𝑖
(𝑠 − 𝜏, 𝑥)

+ V
2

𝑗
(𝑠 − 𝜏, 𝑥) 𝑑𝑥 𝑑𝑠)

⩽ 𝑛]𝛼
𝑟
∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

V
𝑇
(𝑠 − 𝜏, 𝑥) V (𝑠 − 𝜏, 𝑥) 𝑑𝑥 𝑑𝑠

= 𝑛]𝛼
𝑟
∫

𝑡−𝜏

−𝜏

𝑒
𝜆(𝜃+𝜏)

∫
Ω

V
𝑇
(𝜃, 𝑥) V (𝜃, 𝑥) 𝑑𝑥 𝑑𝜃

= 𝑛]𝛼
𝑟
(∫

𝑡

−𝜏

𝑒
𝜆(𝜃+𝜏)

∫
Ω

V
𝑇
(𝜃, 𝑥) V (𝜃, 𝑥) 𝑑𝑥 𝑑𝜃

−∫

𝑡

𝑡−𝜏

𝑒
𝜆(𝜃+𝜏)

∫
Ω

V
𝑇
(𝜃, 𝑥) V (𝜃, 𝑥) 𝑑𝑥 𝑑𝜃)

⩽ 𝑛]𝛼
𝑟
∫

𝑡

−𝜏

𝑒
𝜆(𝑠+𝜏)

∫
Ω


V
𝑇
(𝑠, 𝑥)


|V (𝑠, 𝑥)| 𝑑𝑥 𝑑𝑠.

(48)

Denote V
𝜏
= V(𝑠 − 𝜏, 𝑥) for convenience’s sake. Then we

have

∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

V
𝑇
(𝑠 − 𝜏, 𝑥) 𝛼

𝑟
VV (𝑠 − 𝜏, 𝑥) 𝑑𝑥 𝑑𝑠

= [−𝛽 + (1 + 𝛽)] ∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

V
𝑇

𝜏
𝛼
𝑟
VV

𝜏
𝑑𝑥 𝑑𝑠

⩽ −𝛽∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

V
𝑇

𝜏
𝛼
𝑟
VV

𝜏
𝑑𝑥

+ 𝑛]𝛼
𝑟
(1 + 𝛽)

× ∫

𝑡

−𝜏

𝑒
𝜆(𝑠+𝜏)

∫
Ω


V
𝑇
(𝑠, 𝑥)


|V (𝑠, 𝑥)| 𝑑𝑥 𝑑𝑠.

(49)

Combining (47) and (49) results in

V (𝑡, V (𝑡) , 𝑟)

⩽ ∫
Ω

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(0, 𝑥) 𝑑𝑥

+ ∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

{

{

{


V
𝑇
(𝑠, 𝑥)



× (𝜆𝑃
𝑟
+∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
− 2𝑃

𝑟
𝐵

+ 2𝑃
𝑟
𝐴(

𝐶

+

�̆�

) 𝐹 + 𝛼U

+ 𝑛]𝑒
𝜆𝜏
(1 + 𝛽) 𝛼

𝑟
𝐼) |V (𝑠, 𝑥)|

+ 2

V
𝑇
(𝑠, 𝑥)


𝑃
𝑟
𝐴(

𝐷

+

�̆�

)

×𝐺 |V (𝑠 − 𝜏, 𝑥)|
}

}

}

𝑑𝑥𝑑𝑠

− 𝛽∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

V
𝑇
(𝑠 − 𝜏, 𝑥) 𝛼

𝑟
VV (𝑠 − 𝜏, 𝑥) 𝑑𝑥 𝑑𝑠

+ 𝑛] (1 + 𝛽) 𝛼
𝑟

× ∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

∫
Ω


V
𝑇
(𝑠, 𝑥)


|V (𝑠, 𝑥)| 𝑑𝑥 𝑑𝑠

+ 2∫

𝑡

0

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
V
𝑖
(𝑠, 𝑥)

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑠) 𝑑𝑤

𝑗
(𝑠) 𝑑𝑥

= ∫
Ω

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(0, 𝑥) 𝑑𝑥

− ∫

𝑡

0

𝑒
𝜆𝑠
∫
Ω

𝜁
𝑇
(𝑠, 𝑥) Θ̂

𝑟
𝜁 (𝑠, 𝑥) 𝑑𝑥 𝑑𝑠

+ 𝑛] (1 + 𝛽) 𝛼
𝑟
∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

∫
Ω


V
𝑇
(𝑠, 𝑥)


|V (𝑠, 𝑥)| 𝑑𝑥 𝑑𝑠

+ 2∫

𝑡

0

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

∫
Ω

𝑝
𝑟𝑖
V
𝑖
(𝑠, 𝑥)

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑠) 𝑑𝑤

𝑗
(𝑠) 𝑑𝑥

(50)
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which together with (43) implies

V (𝑡, V (𝑡) , 𝑟)

⩽ max
𝑟∈𝑆

𝛼
𝑟
∫
Ω

𝑛

∑

𝑖=1

V
2

𝑖
(0, 𝑥) 𝑑𝑥

+ 𝑛]𝑒
𝜆𝜏
(1 + 𝛽)max

𝑟∈𝑆

𝛼
𝑟

× ∫

0

−𝜏

𝑒
𝜆𝑠
∫
Ω

V
𝑇
(𝑠, 𝑥) V (𝑠, 𝑥) 𝑑𝑥 𝑑𝑠

+ 2max
𝑟∈𝑆

𝛼
𝑟
∫

𝑡

0

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

∫
Ω

V
𝑖
(𝑠, 𝑥)

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑠) 𝑑𝑤

𝑗
(𝑠) 𝑑𝑥.

(51)

Remark 19. Themethods employed in (38)–(50) are different
from ones in the proof of [4, Theorem 3] so that our efficient
LMI criterion can be constructed. In large numerical calcu-
lations, LMI-based criterion in Theorem 18 is more effective
than the complicated condition (8) in [4, Theorem 3]. To
some extent, Theorem 18 is more effective than [58, Theorem
3.1] to some extent if fuzzy system (6) is simplified to system
(8) without Markovian jumping (see, e.g., Example 38).

It is obvious that the right-hand side of (51) is a non-
negative semi-martingale. And hence the semi-martingale
convergence theorem derives

lim sup
𝑡→∞

V (𝑡, V (𝑡) , 𝑟) < ∞, P − a.s. (52)

Note that

𝑒
𝜆𝑡min

𝑟∈𝑆

(min
𝑖

𝑝
𝑟𝑖
)∫

Ω

V
𝑇
V𝑑𝑥 ⩽ 𝑒

𝜆𝑡
∫
Ω

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(𝑡, 𝑥) 𝑑𝑥

=V (𝑡, V (𝑡) , 𝑟) .

(53)

Then we can conclude from (52)

lim sup
𝑡→∞

1

𝑡
log (‖V‖2

2
) ⩽ −𝜆, P − 𝑎.𝑠. (54)

So we can see it from Definition 5 that the null solution
of stochastic fuzzy system (6) is almost sure exponentially
stable.

Corollary 20. The null solution of stochastic fuzzy system (1)
is almost sure exponentially stable if there exist positive scalars
𝜆, 𝛼, 𝛽 and positive definite diagonal matrices 𝑃 such that

Θ̂ ≜ −(
Â 𝑃𝐴 (


𝐷

+

�̆�

) 𝐺

∗ −𝛼𝛽V
) > 0,

𝑃 < 𝛼𝐼,

(55)

where

Â = 𝜆𝑃 − 2𝑃𝐵 + 𝑃𝐴 (

𝐶

+

�̆�

) 𝐹

+ 𝐹 (

𝐶
𝑇
+

�̆�
𝑇
) 𝐴𝑃 + 𝛼U

+ 𝑛]𝑒
𝜆𝜏
𝛼 (1 + 𝛽) 𝐼.

(56)

Remark 21. It seems from Remark 19 that Corollary 20 is
obviously more effective than [4, Theorem 3] and [58, The-
orem 3.1], which may shown by numerical examples below.

Corollary 22. Assume 𝑝 > 1. The null solution of Markovian
jumping stochastic system (8) is almost sure exponentially
stable if there exist positive scalars 𝜆, 𝛼

𝑟
(𝑟 ∈ 𝑆), 𝛽 and positive

definite matrices 𝑃
𝑟
= diag(𝑝

𝑟1
, 𝑝

𝑟2
, . . . , 𝑝

𝑟𝑛
), (𝑟 ∈ 𝑆) such that

Θ̆
𝑟
≜ −(

B
𝑟
𝑃
𝑟
𝐴
𝐷𝑟
 𝐺

∗ −𝛼
𝑟
𝛽V

) > 0, 𝑟 ∈ 𝑆,

𝑃
𝑟
< 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆,

(57)

where

B
𝑟
= 𝜆𝑃

𝑟
− 2𝑃

𝑟
𝐵 + 𝑃

𝑟
𝐴
𝐶𝑟
 𝐹 + 𝐹


𝐶
𝑇

𝑟


𝐴𝑃

𝑟

+ 𝛼
𝑟
U + 𝑛]𝑒

𝜆𝜏
𝛼
𝑟
(1 + 𝛽) 𝐼 + ∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
.

(58)

Corollary 23. Assumed 𝑝 = 2.The null solution ofMarkovian
jumping stochastic system (8) is almost sure exponentially
stable if there exist positive scalars 𝜆, 𝛼

𝑟
, 𝛼

𝑟
(𝑟 ∈ 𝑆), 𝛽 and

positive definite matrices 𝑃
𝑟
= diag(𝑝

𝑟1
, 𝑝

𝑟2
, . . . , 𝑝

𝑟𝑛
), (𝑟 ∈ 𝑆)

such that

Θ
𝑟
≜ −(

B
𝑟
− 2𝜆

1
D𝛼

𝑟
𝐼 𝑃

𝑟
𝐴
𝐷𝑟
 𝐺

∗ −𝛼
𝑟
𝛽V

) > 0, 𝑟 ∈ 𝑆,

𝑃
𝑟
< 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆,

𝑃
𝑟
> 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆,

(59)

whereB
𝑟
satisfies (58).

Remark 24. As pointed out in Remark 19, Corollary 23 is
obviously more effective than [58,Theorem 3.1] if Markovian
jumping stochastic system (8) is simplified to a stochastic
system without Markovian juamping.

4. The Robust Exponential Stability Criteria

Theorem 25. Assume that 𝑝 > 1. In addition, there exist a
sequence of positive scalars 𝛼

𝑟
(𝑟 ∈ 𝑆) and positive definite

diagonal matrices 𝑃
𝑟
= diag(𝑝

𝑟1
, 𝑝

𝑟2
, . . . , 𝑝

𝑟𝑛
) (𝑟 ∈ 𝑆) and

𝑄 = diag(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
) such that for all 𝑟 ∈ 𝑆,
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(
(

(

A
𝑟
𝑃
𝑟
𝐴(

𝐷
𝑟


+

�̆�
𝑟


) 𝐺 𝑃

𝑟
𝐴
𝐸1𝑟
 𝐹 (


N𝑇

1𝑟


+

N𝑇

2𝑟


) 𝑃

𝑟
𝐴
𝐸2𝑟
 0

∗ −𝑒
−𝜆𝜏
𝑄 + 𝛼

𝑟
V 0 0 0 𝐺 (


N𝑇

1𝑟


+

N𝑇

2𝑟


)

∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝐼

)
)

)

< 0, (60)

𝑃
𝑟
< 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆, (61)

where matrices 𝐶
𝑟
= (𝑐

(𝑟)

𝑖𝑗
)
𝑛×𝑛

, 𝐷
𝑟
= (𝑑

(𝑟)

𝑖𝑗
)
𝑛×𝑛

, �̆�
𝑟
= ( ̆𝑐

(𝑟)

𝑖𝑗
)
𝑛×𝑛

,
�̆�
𝑟
= ( ̆𝑑

(𝑟)

𝑖𝑗
)
𝑛×𝑛

, and

A
𝑟
= 𝜆𝑃

𝑟
− 2𝑃

𝑟
𝐵 + 𝑃

𝑟
𝐴(

𝐶
𝑟


+

�̆�
𝑟


) 𝐹

+ 𝐹 (

𝐶
𝑇

𝑟


+

�̆�
𝑇

𝑟


) 𝐴𝑃

𝑟
+ 𝛼

𝑟
U

+ 𝑄 +∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
,

(62)

then the null solution of Markovian jumping stochastic fuzzy
system (9) is stochastically exponentially robust stable in the
mean square.

Proof. Similarly as the proof of Theorem 11, we consider the
same Lyapunov-Krasovskii functional

𝑉 (𝑡, V (𝑡) , 𝑟) = 𝑒
𝜆𝑡
∫
Ω

𝑛

∑

𝑖=1

𝑝
𝑟𝑖
V
2

𝑖
(𝑡, 𝑥) 𝑑𝑥

+ ∫
Ω

∫

𝑡

𝑡−𝜏

𝑒
𝜆𝑠

𝑛

∑

𝑖=1

𝑞
𝑖
V
2

𝑖
(𝑠, 𝑥) 𝑑𝑠 𝑑𝑥, ∀𝑟 ∈ 𝑆,

(63)

where V(𝑡, 𝑥) = (V
1
(𝑡, 𝑥), V

2
(𝑡, 𝑥), . . . , V

𝑛
(𝑡, 𝑥))

𝑇 is a solution
for stochastic fuzzy system (9).Then it follows by the proof of
Theorem 11 that

L𝑉 (𝑡, V (𝑡) , 𝑟)

⩽ 𝑒
𝜆𝑡
{

{

{

𝜆∫
Ω


V
𝑇
(𝜆𝑃

𝑟
+∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
) |V| 𝑑𝑥

− 2∫
Ω


V
𝑇
𝑃
𝑟
𝐵 |V| 𝑑𝑥

+ 2∫
Ω

[

V
𝑇
𝑃
𝑟
𝐴(

𝐶
𝑟
(𝑡)

+

�̆�
𝑟
(𝑡)

)

× 𝐹 |V| +

V
𝑇
𝑃
𝑟
𝐴

× (

𝐷
𝑟
(𝑡)

+

�̆�
𝑟
(𝑡)

)

×𝐺 |V (𝑡 − 𝜏, 𝑥)| ] 𝑑𝑥

+ ∫
Ω

𝛼
𝑟
(

V
𝑇
U |V| +


V
𝑇
(𝑡 − 𝜏, 𝑥)



×V |V (𝑡 − 𝜏, 𝑥)| ) 𝑑𝑥

+ ∫
Ω

(

V
𝑇
𝑄 |V| − 𝑒

−𝜆𝜏 
V
𝑇
(𝑡 − 𝜏, 𝑥)



×𝑄 |V (𝑡 − 𝜏, 𝑥)| ) 𝑑𝑥
}

}

}

.

(29
∗
)

Denote 𝜁𝑇(𝑡, 𝑥) = (|V𝑇(𝑡, 𝑥)|, |V𝑇(𝑡 − 𝜏, 𝑥)|), and B
𝑟
(𝑡) =

(
A𝑟(𝑡) 𝑃𝑟𝐴(|�̂�𝑟(𝑡)|+|�̆�𝑟(𝑡)|)𝐺

∗ −𝑒
−𝜆𝜏

𝑄+𝛼𝑟V
), where A

𝑟
(𝑡) = 𝜆𝑃

𝑟
− 2𝑃

𝑟
𝐵 +

𝑃
𝑟
𝐴(|𝐶

𝑟
(𝑡)| + |�̆�

𝑟
(𝑡)|)𝐹 + 𝐹(|𝐶

𝑇

𝑟
(𝑡)| + |�̆�

𝑇

𝑟
(𝑡)|)𝐴𝑃

𝑟
+ 𝛼

𝑟
U +

𝑄 + ∑
𝑗∈𝑆
𝜋
𝑟𝑗
𝑃
𝑗
. It is obvious that

𝜁
𝑇
(𝑡, 𝑥)B

𝑟
(𝑡) 𝜁 (𝑡, 𝑥)

⩽ 𝜁
𝑇
(𝑡, 𝑥) [(

A
𝑟
𝑃
𝑟
𝐴(

𝐷
𝑟


+

�̆�
𝑟


) 𝐺

∗ −𝑒
−𝜆𝜏
𝑄 + 𝛼

𝑟
V

)

+ (
𝑃
𝑟
𝐴(

Δ𝐶

𝑟
(𝑡)

+

Δ�̆�

𝑟
(𝑡)

) 𝐹 + 𝐹 (


Δ𝐶

𝑇

𝑟
(𝑡)

+

Δ�̆�

𝑇

𝑟
(𝑡)

) 𝐴𝑃

𝑟
𝑃
𝑟
𝐴(

Δ𝐷

𝑟
(𝑡)

+

Δ�̆�

𝑟
(𝑡)

) 𝐺

∗ 0
)] 𝜁 (𝑡, 𝑥) .

(64)
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Then we can conclude it by (29∗), (11), Lemma 10, and
applying Schur Complement ([66]) to (60) that

L𝑉 (𝑡, V (𝑡) , 𝑟) ⩽ −∫
Ω

𝜁
𝑇
(𝑡, 𝑥)B

𝑟
(𝑡) 𝜁 (𝑡, 𝑥) 𝑑𝑥

⩽ 0, 𝑟 ∈ 𝑆.

(65)

Thereby, we can complete the rest of the proof by the same
methods employed in (32)–(34).

Similarly, we can derive the following Theorem by (11),
Lemma 10, Schur Complement Theorem and the proof of
Theorem 18.

Theorem 26. Assume 𝑝 > 1. The null solution of Markovian
jumping stochastic fuzzy system (9) is the almost sure robust
exponential stability if there exist positive scalars 𝜆, 𝛼

𝑟
(𝑟 ∈ 𝑆),

𝛽 and positive definite matrices 𝑃
𝑟
= diag(𝑝

𝑟1
, 𝑝

𝑟2
, . . . , 𝑝

𝑟𝑛
),

(𝑟 ∈ 𝑆) such that for all 𝑟 ∈ 𝑆,

(
(

(

Â
𝑟
𝑃
𝑟
𝐴(

𝐷
𝑟


+

�̆�
𝑟


) 𝐺 𝑃

𝑟
𝐴
𝐸1𝑟
 𝐹 (


N𝑇

1𝑟


+

N𝑇

2𝑟


) 𝑃

𝑟
𝐴
𝐸2𝑟
 0

∗ 𝛼
𝑟
𝛽V 0 0 0 𝐺 (


N𝑇

1𝑟


+

N𝑇

2𝑟


)

∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝐼

)
)

)

< 0,

𝑃
𝑟
< 𝛼

𝑟
𝐼, 𝑟 ∈ 𝑆,

(66)

where

Â
𝑟
= 𝜆𝑃

𝑟
− 2𝑃

𝑟
𝐵 + 𝑃

𝑟
(

𝐶
𝑟


+

�̆�
𝑟


) 𝐹

+ 𝐹 (

𝐶
𝑇

𝑟


+

�̆�
𝑇

𝑟


) 𝐴𝑃

𝑟
+ 𝛼

𝑟
U

+ 𝑛]𝑒
𝜆𝜏
𝛼
𝑟
(1 + 𝛽) 𝐼 + ∑

𝑗∈𝑆

𝜋
𝑟𝑗
𝑃
𝑗
.

(67)

Remark 27. Although the stability of Laplace diffusion
stochastic neural networks are studied by previous literature.
However, it is the first attempt that the robust stability
criteria about the nonlinear 𝑝-Laplace diffusion stochastic
fuzzy neural networks withMarkovian jumping are obtianed,
and the first time that the exponential stability criteria of
𝑝-Laplace diffusion stochastic fuzzy neural networks with
Markovian jumping are provided. It is also the first attempt
to synthesize the variational methods in 𝑊1,𝑝

(Ω) (see, e.g.,
Lemma 6, Remark 7), 𝐼𝑡𝑜 formula, Dynkin formula, the
semi-martingale convergence theorem, Schur Complement
Theorem, and LMI technique to set up the LMI-based
(robust) exponential stability or almost sure exponential
(robust) stability criteria.

5. Comparisons and Numerical Examples

Example 28. Consider the following stochastic fuzzy
CGNNs:

𝑑V
1
(𝑡, 𝑥)

=
{

{

{

2

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(D
1𝑘
(𝑡, 𝑥, V)

∇V1 (𝑡, 𝑥)

𝑝−2 𝜕V1
𝜕𝑥

𝑘

)

− 𝑎
1
(V
1
(𝑡, 𝑥)) [

[

𝑏
1
(V
1
(𝑡, 𝑥))

−

2

⋀

𝑗=1

𝑐
1𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(V
𝑗
(𝑡, 𝑥))

−

2

⋁

𝑗=1

̆𝑐
1𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(V
𝑗
(𝑡, 𝑥))

−

2

⋀

𝑗=1

𝑑
1𝑗
(𝑟 (𝑡))

× 𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥))

−

2

⋁

𝑗=1

̆𝑑
1𝑗
(𝑟 (𝑡))

×𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥))]

]

}

}

}

𝑑𝑡

+

2

∑

𝑗=1

𝜎
1𝑗
(V
𝑗
(𝑡, 𝑥) , V

𝑗
(𝑡 − 𝜏, 𝑥)) 𝑑𝑤

𝑗
(𝑡) ,

∀𝑡 ⩾ 𝑡
0
, 𝑥 ∈ Ω,

𝑑V
2
(𝑡, 𝑥)

=
{

{

{

2

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(D
2𝑘
(𝑡, 𝑥, V)

∇V2 (𝑡, 𝑥)

𝑝−2 𝜕V2
𝜕𝑥

𝑘

)
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− 𝑎
2
(V
2
(𝑡, 𝑥)) [

[

𝑏
2
(V
2
(𝑡, 𝑥))

−

2

⋀

𝑗=1

𝑐
2𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(V
𝑗
(𝑡, 𝑥))

−

2

⋁

𝑗=1

̆𝑐
2𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(V
𝑗
(𝑡, 𝑥))

−

2

⋀

𝑗=1

𝑑
2𝑗
(𝑟 (𝑡))

× 𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥))

−

2

⋁

𝑗=1

̆𝑑
2𝑗
(𝑟 (𝑡))

× 𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏, 𝑥)) ]

]

}

}

}

𝑑𝑡

+

2

∑

𝑗=1

𝜎
2𝑗
(V
𝑗
(𝑡, 𝑥) , V

𝑗
(𝑡 − 𝜏, 𝑥)) 𝑑𝑤

𝑗
(𝑡) ,

∀𝑡 ⩾ 𝑡
0
, 𝑥 ∈ Ω,

V (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ [−𝜏, 0] × Ω

(68)

under Dirichlet boundary condition, where the initial value
function

𝜙 (𝑠, 𝑥)

= (
0.25 (1 − cos (5𝜋𝑥2)) cos189 (𝑥2 − 0.25) 𝑒−100𝑠

0.2sin2 (4𝜋𝑥2) cos201 (𝑥2 − 0.55) 𝑒−100𝑠
) ,

− 𝜏 ≤ 𝑠 ≤ 0,

(69)

𝑝 = 2.011, V = (V
1
(𝑡, 𝑥), V

2
(𝑡, 𝑥))

𝑇
∈ 𝑅

2, 𝑥 = (𝑥
1
, 𝑥

2
)
𝑇
∈

Ω = {(𝑥
1
, 𝑥

2
)
𝑇
∈ 𝑅

2
: |𝑥

𝑗
| < √2, 𝑗 = 1, 2}, 𝑎

1
(V
1
) = 0.11 +

0.01sin2(V2
1
), 𝑎

2
(V
2
) = 0.12 + 0.01cos2(V2

2
), 𝑏

1
(V
1
) = 0.12V

1
+

2V
1
sin2(V2

1
), 𝑏

2
(V
2
) = 0.125V

2
+ V

2
cos2(V2

2
), 𝑓(V) = 𝑔(V) =

(0.16V
1
, 0.166V

2
+ 0.001V

2
sin2(V2

2
))
𝑇, and

𝐴 = (
0.12 0

0 0.13
) , 𝐵 = (

0.0132 0

0 0.0150
) ,

D (𝑡, 𝑥, V) = (
0.003 0.005

0.004 0.006
) , 𝐹 = (

0.16 0

0 0.167
) = 𝐺,

U = (
0.0003 0

0 0.0003
) =V,

(70)

𝐶
1
= (

0.11 −0.003

−0.003 0.12
) = 𝐷

1
,

�̆�
1
= (

0.16 −0.003

−0.003 0.18
) = �̆�

1
,

𝐶
2
= (

0.13 −0.003

−0.003 0.15
) = 𝐷

2
,

�̆�
2
= (

0.17 −0.003

−0.003 0.19
) = �̆�

2
,

𝐶
3
= (

0.12 −0.003

−0.003 0.13
) = 𝐷

3
,

�̆�
3
= (

0.175 −0.003

−0.003 0.196
) = �̆�

3
.

(71)

The transition rates matrices are considered as

∏ = (

𝜋
11
𝜋
12
𝜋
13

𝜋
21
𝜋
22
𝜋
23

𝜋
31
𝜋
32
𝜋
33

)

= (

−0.6 0.4 0.2

0.2 −0.7 0.5

0.5 0.3 −0.8

) .

(72)

Fix 𝜆 = 0.001. Let 𝜏 = 50.78, then we use matlab LMI
toolbox to solve LMIs (21) and (22), and obtain 𝑡min =

−2.5977 ∗ 10
−5
< 0, 𝛼

1
= 7025.2, 𝛼

2
= 7051.3, 𝛼

3
= 7038.5,

and

𝑃
1
= (
7023.4 0

0 7025.1
) , 𝑃

2
= (
7041.5 0

0 7051.1
) ,

𝑃
3
= (
7035.1 0

0 7038.3
) ,

𝑄 = (
46.4745 0

0 52.8358
) .

(73)

Then by Theorem 11 we know that the null solution of
Markovian jumping stochastic fuzzy system (68) is stochas-
tically exponentially stable in the mean square with the
allowable upper bounds of time delays 𝜏 = 50.78 (see, Figures
1 and 2).

Remark 29. (1)Thanks to some novel techniques employed in
this paper (Remark 12), LMI-based criterion ofTheorem 11 is
more effective and feasible in consideration of its significant
improvement in the allowable upper bounds of time delays.

(2) Because the stability of the stochastic fuzzy CGNN
with 𝑝-Laplace diffusion is never studied by any previous
literature, below we have to compare the corollaries of
Theorem 11 with some existing results to demonstrate the
advantages of the proposed method (see, e.g., Example 30).

(3) Finding a solution 𝑥 to the LMI system 𝐴(𝑥) < 𝐵(𝑥)
is called the feasibility problem. In matlab LMI toolbox, the
feasibility problem is solved by the so-called feasp solver. And



Journal of Applied Mathematics 15

0
5 10 15 20 25 30

0

0.005

0.01

0.015

0.02

0.025

0

0.5

1

Time: 

Sp
ace

: 

�
1

𝑡

𝑥

Sectional curve of the state variable �1(𝑡, 𝑥)

(a)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025
Sectional curve of the state variable �1(𝑡, 𝑥)

�1(𝑡, 0.258)

(b)

Figure 1: The state variable V
1
(𝑡, 𝑥).

the feasp solver always judges the feasibility of the feasibility
problem by solving the following convex optimization prob-
lem:

min 𝑡
s.t. 𝐴 (𝑥) − 𝐵 (𝑥) 𝑡 ⩽ 𝐼.

(74)

The global optimum value of the convex optimization prob-
lem is always denoted by 𝑡min, which is the first datum of
the output data of the feasp solver. Particularly, the system is
feasible if 𝑡min < 0, and infeasible if 𝑡min > 0.

Example 30. Consider the following fuzzy system:

𝑑𝑥
1
(𝑡)

=
{

{

{

−𝑎
1
(𝑥

1
(𝑡)) [

[

𝑏
1
(𝑥

1
(𝑡))

−

2

⋀

𝑗=1

𝑐
1𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

−

2

⋁

𝑗=1

̆𝑐
1𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

−

2

⋀

𝑗=1

𝑑
1𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏))

−

2

⋁

𝑗=1

̆𝑑
1𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏))]

]

}

}

}

𝑑𝑡

+

2

∑

𝑗=1

𝜎
1𝑗
(𝑥

𝑗
(𝑡) , 𝑥

𝑗
(𝑡 − 𝜏)) 𝑑𝑤

𝑗
(𝑡) ,

𝑑𝑥
2
(𝑡)

=
{

{

{

−𝑎
2
(𝑥

2
(𝑡)) [

[

𝑏
2
(𝑥

2
(𝑡))

−

2

⋀

𝑗=1

𝑐
2𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

−

2

⋁

𝑗=1

̆𝑐
2𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

−

2

⋀

𝑗=1

𝑑
2𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏))

−

2

⋁

𝑗=1

̆𝑑
2𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏))]

]

}

}

}

𝑑𝑡

+

2

∑

𝑗=1

𝜎
2𝑗
(𝑥

𝑗
(𝑡) , 𝑥

𝑗
(𝑡 − 𝜏)) 𝑑𝑤

𝑗
(𝑡) ,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , −𝜏 ⩽ 𝑡 ⩽ 0, 𝑖 = 1, 2

(75)

with all the parameters mentioned in Example 28. In addi-
tion, denote

𝐶 =
1

3

3

∑

𝑗=1

𝐶
𝑗
= (

0.1200 −0.0030

−0.0030 0.1333
) = 𝐷,

�̆� =
1

3

3

∑

𝑗=1

�̆�
𝑗
= (

0.1683 −0.0030

−0.0030 0.1887
) = �̆�.

(76)
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Let 𝜏 = 45.37, then we solve LMIs (35), and get 𝑡min =

−1.6257 ∗ 10
−4
< 0, 𝛼 = 194020, and

𝑃 = (
193970 0

0 194020
) ,

𝑄 = (
1278.1 0

0 1453.3
) .

(77)

Then by Corollary 13, the null solution of stochastic fuzzy
system (75) is stochastically exponentially stable in the mean
square with the allowable upper bounds of time delays 𝜏 =
45.37.

Remark 31. With all the above parameters in Example 30, we
solve the inequalities condition (2) in [4, Theorem 1], and
obtain 𝑡min = 1.8569 ∗ 10−11 > 0 which implies infeasible
(see, Remark 29 (3)). However, the inequalities condition (2)
in [4, Theorem 1] is only sufficient, not necessary for the
stability. In Example 30, we can conclude from LMI-base
criterion of Corollary 13 that the null solution of stochastic
fuzzy system (75) is stochastically exponentially stable in the
mean square. Hence, as pointed out in Remarks 12 and 14,
Corollary 13 is more feasible and effective than [4, Theorem
1].

Example 32. Consider the Markovian jumping system (8)
with all the parameters mentioned in Example 28. In addi-
tion, denote

𝐶
1
=
1

2
(𝐶

1
+ �̆�

1
) = (

0.1350 −0.0030

−0.0030 0.1500
) = 𝐷

1
,

𝐶
2
=
1

2
(𝐶

2
+ �̆�

2
) = (

0.1500 −0.0030

−0.0030 0.1700
) = 𝐷

2
,

𝐶
3
=
1

2
(𝐶

3
+ �̆�

3
) = (

0.1475 −0.0030

−0.0030 0.1630
) = 𝐷

3
.

(78)

Let 𝜏 = 108.9. Then one can solve LMIs (37), and obtain
𝑡min = −0.0168 < 0, 𝛼

1
= 51.4646, 𝛼

2
= 51.0590, 𝛼

3
=

50.4225, and

𝑃
1
= (
31.2880 0

0 31.8027
) ,

𝑃
2
= (
31.3729 0

0 31.8989
) ,

𝑃
3
= (
31.3785 0

0 31.8989
) ,

𝑄 = (
0.3659 0

0 0.4103
) .

(79)

And hence Corollary 15 derives that the null solution of
Markovian jumping stochastic system (8) is stochastically
exponentially stable in the mean square with the allowable
upper bounds of time delays 𝜏 = 108.9.

If 𝑝 = 2, we can solve LMIs (42) with 𝜏 = 109.88, and get
𝑡min = −0.0348, 𝛼

1
= 44.8100, 𝛼

2
= 44.4562, 𝛼

3
= 43.6935,

𝛼
1
= 77.9603, 𝛼

2
= 77.5548, 𝛼

3
= 76.8509, and

𝑃
1
= (
60.6629 0

0 60.7682
) ,

𝑃
2
= (
60.8995 0

0 61.0238
) ,

𝑃
3
= (
60.9916 0

0 61.1055
) ,

𝑄 = (
2.1773 0

0 2.2520
) ,

(80)

where 𝜆
1
= 9.8696 for Ω = {(𝑥

1
, 𝑥

2
)
𝑇
∈ 𝑅

2
: |𝑥

𝑗
| < √2, 𝑗 =

1, 2} (see, e.g. [58, Remark 2.5]).Then Corollary 16 yields that
the null solution of Markovian jumping stochastic system (8)
is stochastically exponentially stable in the mean square with
the allowable upper bounds of time delays 𝜏 = 109.88.

Remark 33. Example 32 illustrates that LMI-based criteria of
Corollaries 15 and 16 are more effective and feasible than
some existing results (see, e.g., [58, Theorem 3.2]) due to the
significant improvement in the allowable upper bounds of
time delays.

There are some interesting comparisons among Examples
28, 30, and 32 as follows.

From Table 1, we know that the ambiguity of the fuzzy
system affect the analysis and judgement on the stability. The
maximum allowable upper bounds decrease when the fuzzy
factors occur. In addition, both the randomicity of Marko-
vian jumping and nonlinear 𝑝-Laplace diffusion exercised a
malign influence on judging the stability.

Remark 34. Table 1 also illustrates that the diffusion item
plays an active role in the LMI-based criterion ofCorollary 16.

Example 35. Consider (68) with the parameters (71), (72),
and

𝐴 = (
0.32 0

0 0.31
) , 𝐴 = (

0.38 0

0 0.36
) ,

𝐵 = (
6.433 0

0 6.61
) , 𝐹 = (

0.1 0

0 0.1
) = 𝐺,

U = (
0.0003 0

0 0.0003
) =V,

D (𝑡, 𝑥, V) = (
0.003 0.005

0.004 0.006
) .

(70
∗
)

Assume, in addition, 𝑛 = 2. Fix 𝜆 = 0.0001 and 𝛽 =
0.0001. Let 𝜏 = 27.15, then we solve LMIs (43), and obtain



Journal of Applied Mathematics 17

Table 1: Allowable upper bound of 𝜏 for various cases.

Theorem 11 Corollary 13 Corollary 15 Corollary 16
Value of 𝑝 2.011 2.011 2

Markovian jumping Yes No Yes Yes
Fuzzy Yes Yes No No
Time delays 𝜏 50.78 45.37 108.9 109.88

0 5 10 15 20 25 30

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0
0.5

1
Space: 

Time: 

Computer simulation of the state �2(𝑡, 𝑥)

�
2

𝑡

𝑥

(a)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025
Sectional curve of the state variable �2(𝑡, 𝑥)

�2(𝑡, 0.259)

(b)

Figure 2: The state variable V
2
(𝑡, 𝑥).

𝑡min = −3.6996 ∗ 10−9 < 0, 𝛼
1
= 49955, 𝛼

2
= 92134,

𝛼
3
= 68884, and

𝑃
1
= (
24.0279 0

0 23.8713
) ,

𝑃
2
= (
37.8443 0

0 39.0478
) ,

𝑃
3
= (
30.8866 0

0 30.2698
) .

(82)

Hence, we can conclude from Theorem 18 that the null
solution of Markovian jumping stochastic fuzzy system (6)
is almost sure exponentially stable with the allowable upper
bounds of time delays 𝜏 = 27.15.

Example 36. Consider stochastic fuzzy system (75) with all
the parameters in Example 35. In addition, denote

𝐶 =
1

3

3

∑

𝑗=1

𝐶
𝑗
= (

0.1200 −0.0030

−0.0030 0.1333
) = 𝐷,

�̆� =
1

3

3

∑

𝑗=1

�̆�
𝑗
= (
0.1683 0.0030

0.0030 0.1887
) = �̆�.

(76
∗
)

Let 𝜏 = 88.15, then one can solve LMIs (55), and obtain
𝑡min = −7.5392 ∗ 10−7 < 0, 𝛼 = 22255 and

𝑃 = (
12.3530 0

0 10.6073
) . (84)

Then by Corollary 20, the null solution of stochastic fuzzy
system (75) is almost sure exponentially stable with the
allowable upper bounds of time delays 𝜏 = 88.15.

Remark 37. With all the above data in Example 36, we solve
the inequalities condition (8) in [4, Theorem 3], and obtain
𝑡min = 8.9843 ∗ 10

−12
> 0 which implies infeasible.

However, the inequalities condition (8) in [4, Theorem 3] is
only sufficient, not necessary for the stability. In Example 36,
we can conclude fromLMI-base criterion of Corollary 20 that
the null solution of stochastic fuzzy system (1) is almost sure
exponentially stable. Hence, as pointed out in Remarks 19
and 21, Corollary 20 is more feasible and effective than [4,
Theorem 3].
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Table 2: Allowable upper bound of 𝜏 for various cases.

Theorem 18 Corollary 20 Corollary 22 Corollary 23
Value of 𝑝 2.011 2.011 2

Markovian jumping Yes No Yes Yes
Fuzzy Yes Yes No No
Time delays 𝜏 27.15 88.15 98.85 99.89

Example 38. Consider Markovian jumpimg stochastic sys-
tem (8) with all the parameters in Example 35. In addition,
denote

𝐶
1
=
1

2
(𝐶

1
+ �̆�

1
) = (

0.1350 −0.0030

−0.0030 0.1500
) = 𝐷

1
,

𝐶
2
=
1

2
(𝐶

2
+ �̆�

2
) = (

0.1500 −0.0030

−0.0030 0.1700
) = 𝐷

2
,

𝐶
3
=
1

2
(𝐶

3
+ �̆�

3
) = (

0.1475 −0.0030

−0.0030 0.1630
) = 𝐷

3
.

(78
∗
)

Let 𝜏 = 98.85, then we solve LMIs (43), and obtain 𝑡min =
−7.9520 ∗ 10

−7
< 0, 𝛼

1
= 131.8414, 𝛼

2
= 130.0644, 𝛼

3
=

131.3207, and

𝑃
1
= (
0.4182 0

0 0.3723
) ,

𝑃
2
= (
0.3328 0

0 0.2830
) ,

𝑃
3
= (
0.3525 0

0 0.3155
) .

(86)

Hence, we can conclude from Corollary 22 that the null
solution of Markovian jumping stochastic system (8) is
almost sure exponentially stable with the allowable upper
bounds of time delays 𝜏 = 98.85.

If 𝑝 = 2, then one can solve LMIs (59) with 𝜏 = 99.89, and
get 𝑡min = −3.5692 ∗ 10−7 < 0, 𝛼

1
= 0.8469, 𝛼

2
= 0.6080,

𝛼
3
= 0.6509, 𝛼

1
= 452.9764, 𝛼

2
= 457.1149, 𝛼

3
= 459.5402,

and

𝑃
1
= (
1.6566 0

0 1.4943
) ,

𝑃
2
= (
1.3220 0

0 1.1359
) ,

𝑃
3
= (
1.3732 0

0 1.2426
) ,

(87)

where 𝜆
1
= 9.8696 for Ω = {(𝑥

1
, 𝑥

2
)
𝑇
∈ 𝑅

2
: |𝑥

𝑗
| < √2, 𝑗 =

1, 2}.
Hence, Corollary 23 yields that the null solution of

Markovian jumping stochastic system (8) is almost sure
exponentially stable with the allowable upper bounds of time
delays 𝜏 = 99.89.

Remark 39. Example 38 illustrates that LMI-based criteria of
Corollaries 22 and 23 are more effective and feasible than

some existing results (see, e.g., [58, Theorem 3.1]) due to the
significant improvement in the allowable upper bounds of
time delays.

There are some interesting comparisons among Examples
35, 36, and 38 as follows.

From Table 2, we know that the ambiguity of the fuzzy
system affect the analysis and judgement on the stability. The
maximum allowable upper bounds decrease when the fuzzy
factors occur. In addition, both the randomicity of Marko-
vian jumping and nonlinear 𝑝-Laplace diffusion exercised a
malign influence on judging the stability.

Remark 40. Table 2 also illustrates that the diffusion
item plays an active role in the LMI-based criterion of
Corollary 23.

Remark 41. From Examples 28, 30, 32, 35, 36, and 38 we learn
that owing to some novel techniques employed in this paper
(see, Remarks 12 and 19), LMI-based criteria of Theorems 11
and 18, and their corollaries are more effective and feasible
than recent related results (Remarks 12, 14, 17, 19, 21, and 24),
and improve significantly the allowable upper bounds of time
delays (Remarks 29, 31, 33, 34, 37, and 39).

6. Conclusions

In this paper, the stability for delayed nonlinear reaction-
diffusion Markovian jumping stochastic fuzzy Cohen-
Grossberg neural networks is investigated. The fuzzy factors
and the nonlinear 𝑝-Laplace diffusion bring a great difficulty
in setting up the LMI-based criteria for the stability. By
way of some variational methods in 𝑊1,𝑝

(Ω), 𝐼𝑡𝑜 formula,
Dynkin formula, the semi-martingale convergence theorem,
Schur Complement Theorem and LMI technique, the
LMI-based criteria on the (robust) exponential stability
and almost sure exponential (robust) stability are finally
obtained, the feasibility of which can efficiently be computed
and confirmed by computer matlab LMI toolbox. As the
stability of the nonlinear 𝑝-Laplace diffusion fuzzy CGNNs
has never been studied before, we compare some corollaries
of our main results with existing results in numerical
examples. In Examples 30 and 36, Corollaries 13 and 20 judge
what existing criteria cannot do. Numerical examples and
simulations illustrate the effectiveness and less conservatism
of the proposed method due to the significant improvement
in the allowable upper bounds of time delays (see, Remarks
29, 31, 33 and Remarks 34, 37, 39). Tables 1 and 2 show that
fuzzy factors and stochastic factors give some difficulties to
judge the stability, for the allowable upper bounds of time
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delays decrease when fuzzy factors and stochastic factors
occur. In addition, when 𝑝 = 2, the diffusion item plays a
positive role. So for the future work, the 𝑝-Laplace diffusion
item (𝑝 > 1 and 𝑝 ̸= 2) should play its role in stability criteria,
which still remains open and challenging.
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