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Nonautonomous systems with periodic solutions are encountered frequently in applications. In this paper, we will consider
simple systems whose solutions are periodic with a known period. Their transformation under linearized collocation methods
is investigated, using a technique called stroboscopic sampling, a discrete version of the well-known Poincaré map. It is shown that
there is an inextricable relationship between AN stability (or BN stability) of the numerical methods and the correct qualitative
behaviour of solutions.

1. Introduction

Let

𝑥

= 𝑓 (𝑥, 𝑡) , 𝑥 (0) = 𝑥

0
, (1)

where 𝑓 : 𝐼 ⊂ R × R → R, be a scalar ordinary differential
equation in which 𝑓(𝑥, 𝑡) is a periodic function of 𝑡 with
prime period 𝑇.

The detailed dynamics of numerics for nonautonomous
ODEs has notably been lacking. Although any nonau-
tonomous ODE can be transformed to an autonomous
one, thereby increasing the dimension by one, the familiar
dynamics of autonomous equations which is centered around
the notion of equilibrium points [1] is lost. In certain special
cases, this notion is replaced by that of periodicity. It is on
these special cases that we will focus our attention. Stuart
[2] proved using the bifurcation theory that for reaction-
diffusion-convection equations, linearized instability implies
the existence of spurious periodic solutions. Our approach
differs from that of Stuart, who considered partial differential
equations. NonautonomousODEswhere𝑓 is periodic in 𝑡 are
very common in applications such as population dynamics
with seasonal parameters or periodically forced systems.

Under certain conditions on 𝑓, (1) has a unique 𝑇-
periodic solution [3]. We will assume that the solution is
approximated by a linearized one-point collocation method
as in Foster and Khumalo [4]. Our objective is to determine,

for each 𝑓 under consideration, whether the numerical
scheme has the same dynamical behaviour as the differential
equation. In particular, we will consider cases in which the
ODE has a unique, asymptotically stable periodic solution
and establish conditions under which the numerical methods
have the same dynamics. These special cases will take the
following form:

(i) 𝑓 linear: 𝑓(𝑥, 𝑡) = 𝑎(𝑡)𝑥 + 𝑏(𝑡), where 𝑎(𝑡) and 𝑏(𝑡)

are 𝐶
1
𝑇-periodic functions of 𝑡,

(ii) 𝑓 nonlinear: 𝑓 = 𝑎(𝑡)𝑔(𝑥) + 𝑏(𝑡), where 𝑔(𝑥) is a 𝐶
2

nonlinear function of 𝑥.

The linearized one-point collocation methods for the
scalar nonautonomous equation (1) are given by

𝑥
𝑛+1

= (𝑥
𝑛
+ ℎ𝑓 (𝑡

𝑛
, 𝑥
𝑛
) + 𝑐
1
ℎ
2
(𝜕𝑓/𝜕𝑡) (𝑡

𝑛
, 𝑥
𝑛
)

−𝑐
1
ℎ𝑥
𝑛
(𝜕𝑓/𝜕𝑥) (𝑡

𝑛
, 𝑥
𝑛
))

× (1 − 𝑐
1
ℎ (𝜕𝑓/𝜕𝑥) (𝑡

𝑛
, 𝑥
𝑛
))
−1

,

(2)

where 0 ≤ 𝑐
1
≤ 1.

For a discussion of collocation methods in general, see
Hairer et al. [5].

We begin with a description of the dynamical systems
theory approach, which will be used in determining the con-
ditions under which the methods have the same dynamical
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behaviour as the differential equations. Upon establishing
these conditions, we compare them with those imposed by
nonautonomous stability theory.

1.1. Dynamical SystemsApproach. Inwhat follows, wewill use
a technique known as stroboscopic sampling to reduce the
problem of determining existence and stability of periodic
solutions to existence and stability of fixed points.

Let 𝑥
𝑛+1

= 𝑝(𝑥
𝑛
; 𝑛; ℎ) be the discrete system representing

the numerical method, applied with fixed stepsize, to the
nonautonomous differential equation.

Step 1. Using inductive arguments, write the method in the
form 𝑥

𝑛+1
= 𝜙(𝑥

0
; 𝑛; ℎ).

Step 2. Choose ℎ such that the period 𝑇 = ℎ𝑘. Then, 𝑥
𝑘

=

𝜙(𝑥
0
; 𝑘; ℎ), and then we establish the new discrete system

𝑋
𝑛+1

= 𝜙(𝑋
𝑛
; 𝑘; ℎ). This is known as stroboscopic sampling.

Step 3. The fixed points of the last system correspond to 𝑇-
periodic solutions of the method. These are determined with
their stability types.

The above procedure is analogous to the Poincaré map
of (1). Let Φ(𝑡, 𝑥

0
) be the 𝑇-periodic solution of (1), with the

starting value 𝑥(0) = 𝑥
0
. Then, the Poincaré map of (1) is the

scalar mapping

Π : R → R; 𝑥 → Φ (𝑇, 𝑥) . (3)

2. Linear Case

Suppose that 𝑓 = 𝑎(𝑡)𝑥 + 𝑏(𝑡), where 𝑎 and 𝑏 are 𝑇-periodic
functions of 𝑡. Then, the linear nonautonomous differential
equation (1) becomes

𝑥

= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) , for 𝑡 ≥ 0, 𝑥 (0) = 𝑥

0
. (4)

If ]
1

= ∫

𝑇

0
𝑎(𝑡)𝑑𝑡 < 0, then (4) has a unique 𝑇-periodic

asymptotically stable solution. If 𝑎(𝑡) = 0, then (4) has a
unique 𝑇-periodic solution that is asymptotically stable if
]
2
= ∫

𝑇

0
𝑏(𝑠)𝑑𝑠 = 0 (Hale and Koçak, [3]).

Now, the linearized one-point collocation methods are
given by

𝑥
𝑛+1

= 𝑥
𝑛
+

ℎ

1 − ℎ𝑐
1
𝑎 (𝑛ℎ)

{𝑎 (𝑛ℎ) 𝑥
𝑛
+ 𝑏 (𝑛ℎ)

+ℎ𝑐
1
[𝑎


(𝑛ℎ) 𝑥
𝑛
+ 𝑏


(𝑛ℎ)]} .

(5)

2.1. Linear Case with 𝑎(𝑡) = 0

Theorem 1. Suppose that a linearized one-point collocation
method is used to solve the linear nonautonomous differential
equation (4) with 𝑎(𝑡) = 0. The method tends (as 𝑛 → ∞,

ℎ > 0 fixed) to a periodic solution for any starting value if and
only if

𝑘−1

∑

𝑟=0

̃
𝑏
𝑟
= 0, (6)

where 𝑏
𝑟
= 𝑏(𝑟ℎ) + ℎ𝑐

1
𝑏

(𝑟ℎ) for each 𝑟.

Proof. Assume that ]
2

= ∫

𝑇

0
𝑏(𝑠)𝑑𝑠 = 0. Taking 𝑎(𝑡) = 0 in

(5), we obtain

𝑥
𝑛+1

= 𝑥
𝑛
+ ℎ {𝑏 (𝑛ℎ) + ℎ𝑐

1
𝑏


(𝑛ℎ)} . (7)

We define

̃
𝑏
𝑖
= 𝑏 (𝑖ℎ) + ℎ𝑐

1
𝑏


(𝑖ℎ) for 𝑖 = 0, 1, 2, . . . (8)

and denote

Π(𝑥
𝑛
) = 𝑥
𝑛
+ ℎ {𝑏 (𝑛ℎ) + ℎ𝑐

1
𝑏


(𝑛ℎ)} , (9)

so that for a given value of 𝑥
0
,

𝑥
𝑛+1

= 𝑥
0
+ ℎ

𝑛

∑

𝑟=0

̃
𝑏
𝑟
. (10)

Fix 𝑘 ∈ N such that 𝑇 = ℎ𝑘. Consider the 𝑘th iterate of 𝑥
0

under Π:

𝑥
𝑘
= Π
𝑘
(𝑥
0
) = 𝑥
0
+

𝑇

𝑘

𝑘−1

∑

𝑟=0

̃
𝑏
𝑟

(11)

and the related iteration, which corresponds to stroboscopic
sampling

𝑋
𝑛+1

= 𝑋
𝑛
+

𝑇

𝑘

𝑘−1

∑

𝑟=0

̃
𝑏
𝑟
, (12)

where 𝑋
0

= 𝑥
0
. If the summation on the right-hand side

of (12) is zero, then the discrete system is fixed at 𝑋
0
for

all 𝑛, which corresponds to a periodic solution. If it is
nonzero, then the stroboscopic iteration has no fixed point
and diverges.

Remark 2. Thesecond termon the right-hand side of (12) can
be viewed as an application of the left rectangular quadrature
rule to the integral

∫

𝑇

0

(𝑏 (𝑠) + 𝑐
1

𝑇

𝑘

𝑏


(𝑠)) 𝑑𝑠, (13)

and (12) can be written as the simple map

𝑋
𝑛+1

= 𝑋
𝑛
+ 𝑐, (14)

where

|𝑐| =

𝑇

𝑘












𝑘−1

∑

𝑟=0

̃
𝑏
𝑟












. (15)
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Figure 1: Numerical results for (12) with 𝑐
1
= 1/2. 𝑘 = 4 (× ×), and

𝑘 = 5 (—), 𝑘 = 10 (– – –).

The above theorem can then be restated as follows.
Suppose that a linearized one-point collocation method is
used to solve the linear nonautonomous differential equation
(4) with 𝑎(𝑡) = 0. Themethod tends (as 𝑛 → ∞, ℎ > 0 fixed)
to a periodic solution for any starting value if and only if the
rectangular quadrature rule, used to approximate the integral
in (13), gives a zero.

Illustration. We examine the stroboscopic sampling of the
numerical solution of the differential equation 𝑥


= cos 𝑡𝑒sin 𝑡,

𝑥(0) = 1. Figure 1 shows the numerical results for 𝑘 = 4, 5,
and 10 with 𝑐

1
= 0.5. For 𝑘 = 4, the method diverges quicker

from the periodic solution than for 𝑘 = 5. For 𝑘 = 10, the
divergence is negligible.

2.2. Linear Case with 𝑎(𝑡) = −1. If 𝑎(𝑡) is a negative constant,
(4) could be scaled in such a way that 𝑎(𝑡) = −1.Then, clearly,
]
1
= ∫

𝑇

0
𝑎(𝑠)𝑑𝑠 < 0, and the differential equation has a unique,

asymptotically stable periodic solution.

Theorem 3. Suppose that a linearized one-point collocation
method is used to solve the linear nonautonomous differential
equation (4) with 𝑎(𝑡) = −1. Then, for fixed 𝑐

1
and 𝑘, the

method admits a unique periodic solution that is asymptotically
stable, provided

𝑘 >

𝑇

2

(1 − 2𝑐
1
) . (16)

Proof. If 𝑎(𝑡) = −1, (5) simplifies to

𝑥
𝑛+1

= 𝑥
𝑛
+

𝑇

𝑘 + 𝑇𝑐
1

[−𝑥
𝑛
+ 𝑏 (

𝑛𝑇

𝑘

) +

𝑇𝑐
1

𝑘

𝑏

(

𝑛𝑇

𝑘

)] , (17)

or,

𝑥
𝑛+1

= 𝑥
𝑛
(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

+

𝑇

𝑘 + 𝑇𝑐
1

[𝑏 (

𝑛𝑇

𝑘

) +

𝑇𝑐
1

𝑘

𝑏

(

𝑛𝑇

𝑘

)] .

(18)

Proceeding in a manner analogous to the above, we can show
by induction that

𝑥
𝑛+1

= 𝑥
0
(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑛+1

+

𝑇

𝑘 + 𝑇𝑐
1

𝑛

∑

𝑟=0

(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑟

̃
𝑏
𝑛−𝑟

,

(19)

where each ̃
𝑏
𝑖
is defined by (8).

Denoting the right-hand side of (19) by Π(𝑥
𝑛
), we can

perform stroboscopic sampling and consider

𝑥
𝑘
= Π
𝑘
(𝑥
0
) = 𝑥
0
(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑘

+

𝑇

𝑘 + 𝑇𝑐
1

𝑘−1

∑

𝑟=0

(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑟

̃
𝑏
𝑘−𝑟−1

(20)

and the associated map

𝑋
𝑛+1

= 𝑋
𝑛
(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑘

+

𝑇

𝑘 + 𝑇𝑐
1

𝑘−1

∑

𝑟=0

(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑟

̃
𝑏
𝑘−𝑟−1

.

(21)

Equation (21) is just the linear map

𝑋
𝑛+1

= 𝑐𝑋
𝑛
+ 𝑑 (22)

with

𝑐 = (

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑘

,

𝑑 =

𝑇

𝑘 + 𝑇𝑐
1

𝑘−1

∑

𝑟=0

(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑟

̃
𝑏
𝑘−𝑟−1

.

(23)

The map has a single fixed point,

𝑋
∗

=

𝑑

1 − 𝑐

, (24)

which is asymptotically stable if and only if |𝑐| < 1; that is,

𝑘 >

𝑇 (1 − 2𝑐
1
)

2

, (25)

and the result is established.
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The following results are simple consequences of the
above theorem.

Corollary 4. The linearized one-point collocation method
with any 𝑐

1
∈ [1/2, 1] applied to the linear nonautonomous

differential equation with 𝑎(𝑡) = −1 admits a unique periodic
solution that is asymptotically stable for all 𝑘 > 0.

Corollary 5. The explicit Euler method for the linear nonau-
tonomous differential equation with 𝑎(𝑡) = −1 admits a
unique, asymptotically stable periodic solution if and only if
𝑘 > 𝑇/2.

We now attempt to bound |𝑋
∗
|. The following lemma

gives a bound on the solution Φ(𝑡) of (4).

Lemma 6. Let 𝑏(𝑡) be a 𝐶
1
𝑇-periodic function of 𝑡, and

assume that (4) with 𝑎(𝑡) = −1 has a unique 𝑇-periodic
solution.There exist a number𝑀 > 0 such that |𝑏(𝑡)|, |𝑏(𝑡)| ≤
𝑀 and the 𝑇-periodic solution, Φ(𝑡), satisfies

|Φ (𝑡)| ≤ 𝑀 (26)

for 𝑡 → ∞.

Proof. The boundedness of 𝑏(𝑡) and 𝑏

(𝑡) follows from the

periodicity and continuity of both functions.
Let𝜙(𝑡) be a periodic solution of (4) with 𝑎(𝑡) = −1.Then,

𝜙(𝑡) satisfies the inequality

−𝜙 − 𝑀 ≤ 𝜙

≤ −𝜙 + 𝑀 ∀ 𝑡. (27)

This implies that

𝑒
−𝑡

(𝑥
0
+ 𝑀) − 𝑀 ≤ 𝜙 ≤ 𝑒

−𝑡
(𝑥
0
− 𝑀) + 𝑀; (28)

see [3]. Thus, 𝜙(𝑡) is bounded for 𝑡 ≥ 0; therefore, it
approaches a 𝑇-periodic solution Φ(𝑡). Taking 𝑡 → ∞ in
(28) establishes the lemma.

From the above lemma, we have |𝑥| ≤ 𝑀. Then, we have
the following theorem.

Theorem 7. Let 𝑋
∗, given by (24), denote the fixed point

generated by the stroboscopic sampling of the numerical solu-
tion of the linear nonautonomous differential equation with
𝑎(𝑡) = −1 by a linearized one-point collocation method. Then,
the inequality





𝑋
∗



≤ 𝑀(1 +

𝑇𝑐
1

𝑘

) (29)

holds.

Proof. Since 𝑏(𝑡) is continuous, there is a number𝑀 such that
|𝑏(𝑡)|, |𝑏(𝑡)| ≤ 𝑀 for all 𝑡 ∈ R. Then, for large 𝑡, the solution
|Φ(𝑡)| < 𝑀, and hence |𝑥| < 𝑀.

Observe that







̃
𝑏
𝑟






≤ 𝑀
1
= 𝑀(1 + 𝑐

1

𝑇

𝑘

) ,

|𝑑| ≤

𝑇

𝑘 + 𝑇𝑐
1

⋅ 𝑀
1
⋅

𝑘−1

∑

𝑟=0

(

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑟

=

𝑇

𝑘 + 𝑇𝑐
1

⋅ 𝑀
1

⋅ {1 +

𝑘 + 𝑇 (𝑐
1
− 1)

𝑇

[1 − (

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑘−1

]}

= 𝑀
1
⋅ [1 − (

𝑘 + 𝑇 (𝑐
1
− 1)

𝑘 + 𝑇𝑐
1

)

𝑘

]

= 𝑀
1
(1 − 𝑐) .

(30)

Therefore,





𝑋
∗



≤

𝑀
1
(1 − 𝑐)

1 − 𝑐

= 𝑀
1
= 𝑀(1 +

𝑇𝑐
1

𝑘

) . (31)

Hence,𝑋∗ has essentially the same bound as the periodic
solution.

Example 8. Consider the linear nonautonomous equation

𝑥

= −𝑥 + sin 𝑡, 𝑥 (0) = 0, (32)

which has solution 𝑥(𝑡) = (1/2)[sin 𝑡 − cos 𝑡 + 𝑒
−𝑡
]. Figure 2

shows the numerical results (stroboscopic sampling) of the
linearized implicit midpoint method (𝑐

1
= 1/2) with 𝑘 = 3

and 𝑘 = 10. Figure 3 shows the results of the explicit Euler
method (𝑐

1
= 0) with 𝑘 = 3 and 𝑘 = 10. In these experiments,

𝑇 = 2𝜋; hence, the convergence to a unique periodic solution
is expected for 𝑘 > 𝜋(1 − 2𝑐

1
).

2.3. Linear Case with 𝑎(𝑡) = −1 + 𝜖𝜌(𝑡). Let

𝑎 (𝑡) = −1 + 𝜖𝜌 (𝑡) , (33)

where 𝜖 ≥ 0 is a constant and 𝜌(𝑡) is a 𝑇-periodic function
of 𝑡. We assume that −𝑇 + 𝜖 ∫

𝑇

0
𝜌(𝑠)𝑑𝑠 < 0 so that (4) has a

unique asymptotically stable periodic solution.

2.3.1. Linearized One-Point Collocation Methods. We estab-
lish conditions under which a one-point collocation method
with fixed 𝑐

1
and step-size ℎ > 0 exhibits the same dynamical

behaviour as the nonautonomous linear differential equation
with 𝑎(𝑡) = −1 + 𝜖𝜌(𝑡).

Notation. In what follows, we will denote 𝑏
𝑛

= 𝑏(𝑛ℎ), 𝑏
𝑛

=

𝑏

(𝑛ℎ), 𝜌

𝑛
= 𝜌(𝑛ℎ), and 𝜌



𝑛
= 𝜌(𝑛ℎ). Here, as before, 𝑇 = ℎ𝑘

(𝑘 ∈ N).
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Figure 2: Numerical results of (32) using linearized implicit
midpoint method: 𝑘 = 3 (—) and 𝑘 = 10 (– – –).
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Figure 3: Numerical results of (32) using the explicit Euler method:
𝑘 = 3 (—) and 𝑘 = 10 (– – –).

Theorem 9. Suppose that a linearized one-point collocation
method is used to solve a linear nonautonomous differential
equation with 𝑎(𝑡) = −1 + 𝜖𝜌(𝑡). Then, for fixed 𝑐

1
and

𝑘, the method will admit a unique periodic solution that is
asymptotically stable, provided












𝑘−1

∏

𝑖=0

[1 +

𝑘𝑇 (−1 + 𝜖𝜌
𝑖
) + 𝑐
1
𝑇
2
𝜖𝜌


𝑖

𝑘
2
− 𝑘𝑇𝑐
1
(−1 + 𝜖𝜌

𝑖
)

]












< 1. (34)

Proof. From (5), we deduce that the linearized collocation
methods, applied to the nonautonomous linear ODE with
𝑎(𝑡) given by (33), are

𝑥
𝑛+1

= [1 +

ℎ (−1 + 𝜖𝜌
𝑛
) + 𝑐
1
ℎ
2
𝜖𝜌


𝑛

1 − ℎ𝑐
1
(−1 + 𝜖𝜌

𝑛
)

] 𝑥
𝑛

+

ℎ

1 − ℎ𝑐
1
(−1 + 𝜖𝜌

𝑛
)

⋅ [𝑏
𝑛
+ 𝑐
1
ℎ𝑏


𝑛
] .

(35)

We can write the above as

𝑥
𝑛+1

= 𝑇
𝑛
𝑥
𝑛
+ 𝐻
𝑛

̃
𝑏
𝑛
:= Π (𝑥

𝑛
) , (36)

where

𝑇
𝑛
= 1 +

ℎ (−1 + 𝜖𝜌
𝑛
) + 𝑐
1
ℎ
2
𝜖𝜌


𝑛

1 − ℎ𝑐
1
(−1 + 𝜖𝜌

𝑛
)

,

𝐻
𝑛
=

ℎ

1 − ℎ𝑐
1
(−1 + 𝜖𝜌

𝑛
)

,

̃
𝑏
𝑛
= 𝑏
𝑛
+ 𝑐
1
ℎ𝑏


𝑛
.

(37)

Proceeding by induction, we establish that

𝑥
𝑛+1

= 𝑥
0

𝑛

∏

𝑖=0

𝑇
𝑖
+

𝑛

∑

𝑖=0

𝐻
𝑖

̃
𝑏
𝑖

𝑛

∏

𝑗=𝑖+1

𝑇
𝑗
, (38)

from which we deduce that

𝑥
𝑘
= 𝑥
0

𝑘−1

∏

𝑖=0

𝑇
𝑖
+

𝑘−1

∑

𝑖=0

𝐻
𝑖

̃
𝑏
𝑖

𝑘−1

∏

𝑗=𝑖+1

𝑇
𝑗
:= Π
𝑘
(𝑥
0
) . (39)

The discrete system that corresponds to stroboscopic
sampling is the linear system

𝑋
𝑛+1

= 𝑐 (𝜖)𝑋
𝑛
+ 𝑑 (𝜖) , (40)

where

𝑐 (𝜖) =

𝑘−1

∏

𝑖=0

𝑇
𝑖
,

𝑑 (𝜖) =

𝑘−1

∑

𝑖=0

𝐻
𝑖

̃
𝑏
𝑖

𝑘−1

∏

𝑗=𝑖+1

𝑇
𝑗
.

(41)

This system has a unique fixed point, 𝑋∗, given by (24). It
is asymptotically stable if and only if |𝑐(𝜖)| < 1; that is,
|∏
𝑘−1

𝑖=0
𝑇
𝑖
| < 1, or












𝑘−1

∏

𝑖=0

[1 +

ℎ (−1 + 𝜖𝜌
𝑖
) + 𝑐
1
ℎ
2
𝜖𝜌


𝑖

1 − ℎ𝑐
1
(−1 + 𝜖𝜌

𝑖
)

]












< 1. (42)

Substituting ℎ = 𝑇/𝑘 gives the result.

2.3.2. Examples. For each of the three special values of 𝑐
1
,

𝜌(𝑡) = sin 𝑡, and the increasing values of 𝜖, we determined,
using (42), the minimum value of 𝑘 such that each method
has dynamical behaviour that is the same as that of the
differential equation. The results are illustrated in Figure 4.

For 𝜖 < 2, the explicit Euler method is themost restrictive
of the three (i.e., comparatively larger minimum values of 𝑘
must be used to obtain dynamical behaviour that is the same
as that of the differential equation).However, as 𝜖 is increased,
the Explicit Eulermethod outperforms the linearized implicit
Euler method by becoming less restrictive than that method
for 𝜖 ≥ 3. For 𝜖 ≥ 3, the explicit Euler and linearizedmidpoint
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Figure 4: Least 𝑘 for unique periodic solution. The explicit Euler
(– – –), linearized implicit midpt (—), and the linearized implicit
Euler (× ×).

methods give comparable results, and for those values of 𝜖,
the linearized implicit Eulermethod becomesmore andmore
restrictive in comparison to the other two.

Finally, we develop a bound on |𝑋
∗
|. For the comparison

purposes, we present the following lemma, which can be
proved in a manner analogous to Lemma 6.

Lemma 10. Let 𝑏(𝑡), 𝜌(𝑡) be𝐶1 𝑇-periodic functions of 𝑡.There
exist numbers 𝑀, 𝑀

2
> 0 such that |𝑏(𝑡)|, |𝑏(𝑡)| ≤ 𝑀, |𝜌(𝑡)|,

|𝜌

(𝑡)| ≤ 𝑀

2
, and the solution Φ(𝑡) satisfies

|Φ (𝑡)| ≤

𝑀





1 − 𝜖𝑀

2






(43)

as 𝑡 → ∞.

From the lemma, we have |𝑥| ≤ 𝑀/|1 − 𝜖𝑀
2
|.

Theorem11. Let𝑋∗, given by (24), be the fixed point generated
by the stroboscopic sampling of the numerical solution of the
linear nonautonomous differential equation with 𝑎(𝑡) = −1 +

𝜖𝜌(𝑡) by a linearized collocation method. Then, the following
inequality holds:





𝑋
∗



≤

𝑀 (1 + 𝑇𝑐
1
/𝑘)





1 − ℎ𝑐

1
𝜖𝑀
2
− 𝜖𝑀
2






. (44)

Proof. Since 𝑏(𝑡) and 𝜌(𝑡) are 𝐶
1 and periodic, there are

numbers 𝑀, 𝑀
2
such that |𝑏(𝑡)|, |𝑏


(𝑡)| ≤ 𝑀 and |𝜌(𝑡)|,

|𝜌

(𝑡)| ≤ 𝑀

2
for all 𝑡 ∈ R.

For each 𝑖,





𝑇
𝑖





≤










1 + ℎ𝑐
1
+ ℎ𝜖𝑀

2
− ℎ

1 + ℎ𝑐
1
− ℎ𝑐
1
𝜖𝑀
2










,





𝐻
𝑖





≤

ℎ





1 + ℎ𝑐

1
− ℎ𝑐
1
𝜖𝑀
2






,







̃
𝑏
𝑖






≤ 𝑀
1
= 𝑀(1 + 𝑐

1
ℎ) ,

(45)

where ℎ = 𝑇/𝑘. If

V (𝜖) =

1 + ℎ𝑐
1
− ℎ𝑐
1
𝜖𝑀
2
+ ℎ𝜖𝑀

2
+ ℎ
2
𝑐
1
𝜖𝑀
2
− ℎ

1 + ℎ𝑐
1
− ℎ𝑐
1
𝜖𝑀
2

, (46)

then

|𝑑 (𝜖)| ≤

ℎ





1 + ℎ𝑐

1
− ℎ𝑐
1
𝜖𝑀
2






⋅ 𝑀
1
⋅












𝑘−1

∑

𝑖=0

V
𝑘−𝑖−1












=

ℎ𝑀
1





1 + ℎ𝑐

1
− ℎ𝑐
1
𝜖𝑀
2






⋅











1 − V𝑘

ℎ (1 − 𝑐
1
ℎ𝜖𝑀
2
− 𝜖𝑀
2
)











⋅




1 + ℎ𝑐

1
− ℎ𝑐
1
𝜖𝑀
2






= 𝑀
1
⋅











1 − V𝑘

(1 − 𝑐
1
ℎ𝜖𝑀
2
− 𝜖𝑀
2
)











.

(47)

On the other hand, we deduce from the definition of 𝑐(𝜖)
that

|1 − 𝑐 (𝜖)|

≥













1 − (

1 + ℎ𝑐
1
− ℎ + ℎ𝜖𝑀

2
− ℎ𝑐
1
𝜖𝑀
2
+ ℎ
2
𝑐
1
𝜖𝑀
2

1 + ℎ𝑐
1
− ℎ𝑐
1
𝜖𝑀
2

)

𝑘










.

(48)

Hence,





𝑋
∗

(𝜖)




≤

𝑀
1





1 − 𝑐
1
ℎ𝜖𝑀
2
− 𝜖𝑀
2






=

𝑀 (1 + 𝑐
1
ℎ)





1 − 𝑐
1
ℎ𝜖𝑀
2
− 𝜖𝑀
2






,

(49)

which is identical to the inequality (44).

If we substitute 𝜖 = 0 in (49), we obtain (31) as expected.
Here, as well, the bound for 𝑋

∗
(𝜖) is the same as that of the

periodic solution as ℎ → 0.
We would like to obtain a relationship between the

dynamical approach study and stability analysis. We intro-
duce a natural stability criterion for the differential equation
as well as any numerical method used to discretize it.

2.4. Conditional AN Stability and AN Stability. We consider
the problem of determining a criterion for some sort of
“controlled behaviour” of the solutions of the methods. We
adopt a linear stability criterion that is based on the scalar
test equation

𝑥

= 𝑎 (𝑡) 𝑥, (50)

where 𝑎(𝑡) ∈ C. If Re(𝑎(𝑡)) < 0 for all 𝑡 ∈ [𝛽
1
, 𝛽
2
], then

𝑥 (𝑡 + ℎ) = 𝐾𝑥 (𝑡) , |𝐾| ≤ 1 (51)

for all 𝑥 ∈ [𝛽
1
, 𝛽
2
] and ℎ > 0.

Definition 12. A numerical method is said to be conditionally
AN stable for some ℎ > 0 if, when applied to the test equation
(50) with Re(𝑎(𝑡)) < 0, for all 𝑡,

𝑥
𝑛+1

= �̃� (ℎ) 𝑥
𝑛
,






�̃� (ℎ)






≤ 1 (52)

holds for all 𝑛 ∈ N.
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If this condition is satisfied for all ℎ > 0, then the method
is AN stable.

For a discussion of AN stability, see Lambert [6] and
Stuart and Humphries [7]

The following simple result gives a condition under which
the linearized one-point collocation methods are condition-
ally AN stable.

Theorem 13. Assuming real 𝑎(𝑡), the linearized one-point
collocation methods are conditionally AN stable if and only if

(1 − 2𝑐
1
) 𝑎 (𝑡) + 𝑐

1
ℎ𝑎


(𝑡) ≥ −

2

ℎ

(53)

and 𝑎(𝑡) + 𝑐
1
ℎ𝑎

(𝑡) ≤ 0.

Proof. Use the above test equation in (2). On the other hand,
if (2) is not satisfied, the method fails the stability criterion
and is not AN stable.

Examples:

(1) if 𝑎(𝑡) = −1, then the linearized one-point collocation
methods are conditionally AN stable if and only if

ℎ

2

(1 − 2𝑐
1
) ≤ 1. (54)

It is easy to observe that the methods are AN stable if
𝑐
1
≥ 1/2,

(2) if 𝑎(𝑡) = −1 + 𝜖𝜌(𝑡), where 𝜖, 𝜌(𝑡) ∈ C, and
𝜖(𝜌(𝑡) + 𝑐

1
ℎ𝜌

(𝑡)) ≤ 1, then the linearized one-point

collocation methods are conditionally AN stable if
and only if

−1 + 𝜖𝜌 (𝑡) + 𝑐
1
(ℎ𝜖𝜌


(𝑡) + 2 − 2𝜖𝜌 (𝑡)) ≥ −

2

ℎ

. (55)

We have proved the existence of a relationship between
the linear stability theory of the collocation methods and
the existence and asymptotic stability of periodic solutions,
identified via stroboscopic sampling. This relationship is
stated in the following theorem.

Theorem 14. Suppose that a linearized one-point collocation
method is used to solve a linear nonautonomous equation of the
form discussed in Sections 2.2 or 2.3 which has periodic coef-
ficients and possesses a unique, asymptotically stable periodic
solution. Then, the following conditions are equivalent:

(a) the method is AN stable,
(b) the method yields the same dynamics as the differential

equation.

The last theorem is very significant, since it gives us a
bridge connecting standard stability theory with dynamical
systems. Naturally, we would like to find out if there is a
corresponding result for the nonlinear case, which we now
consider.

3. Nonlinear Case

We consider the nonlinear equation,

𝑥

= 𝑎 (𝑡) 𝑔 (𝑥) + 𝑏 (𝑡) , for 𝑡 ≥ 0, 𝑥 (0) = 𝑥

0
, (56)

where 𝑏(𝑡) is a 𝑇-periodic function of 𝑡 and 𝑔(𝑥) is a 𝐶
2

nonlinear function of 𝑥.
Massera [8] proved that if a nonlinear equation of the

form (56) has the uniqueness property with respect to the
initial conditions, the existence of a bounded solution implies
the existence of a 𝑇-periodic solution.

3.1. Linearized One-Point Collocation Methods. The lin-
earized collocation methods, applied to (56), are given by

𝑥
𝑛+1

= 𝑥
𝑛
+

ℎ𝑎
𝑛
𝑔 (𝑥
𝑛
)

1 − ℎ𝑎
𝑛
𝑐
1
𝑔

(𝑥
𝑛
)

ℎ +

ℎ
̃
𝑏
𝑛

1 − ℎ𝑎
𝑛
𝑐
1
𝑔

(𝑥
𝑛
)

, (57)

where ̃
𝑏
𝑛
= 𝑏
𝑛
+ 𝑐
1
ℎ𝑏


𝑛
and 𝑎
𝑛
= 𝑎
𝑛
+ 𝑐
1
ℎ𝑎


𝑛
.

We perform a simplification on the third term of (57) that
takes the form of evaluating the derivative of 𝑔 at the starting
value, instead, at each step. The resulting method, that will
be referred to as a simplified linearized one-point collocation
method, is

𝑥
𝑛+1

= 𝑥
𝑛
+ ℎ𝑎
𝑛
𝐺 (𝑥
𝑛
; 𝑛) + 𝐻

𝑛

̃
𝑏
𝑛
, (58)

where

𝐻
𝑛
=

ℎ

1 − ℎ𝑎
𝑛
𝑐
1
𝑔

(𝑥
0
)

,

𝐺 (𝑥; 𝑛) =

𝑔 (𝑥)

1 − ℎ𝑎
𝑛
𝑐
1
𝑔

(𝑥)

.

(59)

3.2. The Dynamical Systems Approach. We would like to take
the dynamical systems approach and determine the condi-
tions under which (58), applied to the differential equation
(56), yields the same dynamics as the continuous system.

We rewrite (58) as

ℎ𝑎
𝑛
𝐺 (𝑥
𝑛
; 𝑛) = 𝑥

𝑛+1
− 𝑥
𝑛
− 𝐻
𝑛

̃
𝑏
𝑛
. (60)

Inductively, we can show that

𝑥
𝑛+1

= 𝑥
0
+

𝑛

∑

𝑟=0

𝐻
𝑟

̃
𝑏
𝑟
+ ℎ

𝑛

∑

𝑟=0

𝑎
𝑟
𝐺 (𝑥
𝑟
; 𝑟) . (61)

We choose an integer 𝑘 such that 𝑇 = ℎ𝑘. Sampling
stroboscopically in the iteration above, we get

𝑥
𝑘
= 𝑥
0
+

𝑘−1

∑

𝑟=0

𝐻
𝑟

̃
𝑏
𝑟
+ ℎ

𝑘−1

∑

𝑟=0

𝑎
𝑟
𝐺 (𝑥
𝑟
; 𝑟) (62)

and associate this with the discrete system

𝑋
𝑛+1

= 𝑋
𝑛
+

𝑘−1

∑

𝑟=0

𝐻
𝑟

̃
𝑏
𝑟
+ ℎ

𝑘−1

∑

𝑟=0

𝑎
𝑟
𝐺(𝑋
𝑟
; 𝑟) , (63)
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where

𝑋
0
= 𝑋
𝑛
,

𝑋
𝑟
= 𝑋
𝑛
+

𝑟−1

∑

𝑖=0

𝐻
𝑟

̃
𝑏
𝑟
+ ℎ

𝑟−1

∑

𝑖=0

𝑎
𝑖
𝐺(𝑋
𝑖
; 𝑖) for 𝑟 = 1, 2, . . . , 𝑘 − 1.

(64)

The fixed points of (63) correspond to periodic solutions
of (56). Fixed points are points, 𝑋∗, such that

𝑘−1

∑

𝑟=0

𝐻
𝑟

̃
𝑏
𝑟
+ ℎ

𝑘−1

∑

𝑟=0

𝑎
𝑟
𝐺(𝑋
𝑟
; 𝑟) = 0, (65)

where

𝑋
𝑟
= 𝑋
∗
+

𝑟−1

∑

𝑖=0

𝐻
𝑖

̃
𝑏
𝑖
+ ℎ

𝑟−1

∑

𝑖=1

𝑎
𝑖
𝐺(𝑋
𝑖
; 𝑖) for 𝑟 = 1, 2, . . . , 𝑘 − 1,

(66)

and 𝑋
0

= 𝑋
∗. Define the sequence of functions 𝐹

1
(𝑥),

𝐹
2
(𝑥), . . . by

𝐹
𝑘
(𝑥) =

𝑘−1

∑

𝑟=0

[𝑎
𝑟
ℎ𝐺 (𝑥

𝑟
; 𝑟) + 𝐻

𝑟

̃
𝑏
𝑟
] , (67)

where 𝑥
0
= 𝑥 and

𝑥
𝑟
= 𝑥 +

𝑟−1

∑

𝑖=0

[𝑎
𝑖
ℎ𝐺 (𝑥

𝑖
; 𝑖) + 𝐻

𝑖

̃
𝑏
𝑖
] , (68)

for 𝑟 = 1, 2, . . . , 𝑘 − 1.
The theorem below gives conditions under which the

simplified linearized one-point collocation methods, applied
to (56), exhibit dynamical behaviour that is the same as the
differential equation.

Theorem 15. Assume that the differential equation (56) has a
unique solution. If

(i) 𝑔

(𝑥)𝑔(𝑥) ≤ 0,

(ii) 𝑐
1
𝑎

(𝑡) < −𝑎(𝑡)/ℎ for all 𝑡,

(iii) Max𝐺

(𝑥; 𝑡) ≤ 1/ℎ|𝑎(𝑡)|,

(iv) |𝐹


𝑘
(𝑥)| < 1 for all 𝑘 ∈ N, where 𝐹

𝑘
(𝑥) is given by (67),

then a simplified one-point collocation method has a periodic
solution for any 𝑘 = 𝑇/ℎ; this solution is unique and asymptot-
ically stable.

Proof. Finding possible fixed points of (63), hence periodic
solutions of the methods, is the same as finding zeros of (67).
This is equivalent to solving the nonlinear system:

− ℎ𝑎
0
𝐺 (𝑥
∗
; 0) − ℎ𝑎

1
𝐺 (𝑥
1
; 1) − ℎ𝑎

2
𝐺 (𝑥
2
; 2) − ⋅ ⋅ ⋅

− ℎ𝑎
𝑘−1

𝐺 (𝑥
𝑘−1

; 𝑘 − 1) − 𝐻
0

̃
𝑏
0
− 𝐻
1

̃
𝑏
1
− ⋅ ⋅ ⋅

− 𝐻
𝑘−1

̃
𝑏
𝑘−1

= 0,

𝑥
1
− 𝑥
∗
− ℎ𝑎
0
𝐺 (𝑥
∗
; 0) − 𝐻

0

̃
𝑏
0
= 0,

𝑥
2
− 𝑥
∗
− ℎ𝑎
0
𝐺 (𝑥
∗
; 0) − ℎ𝑎

1
𝐺 (𝑥
1
; 1) − 𝐻

0

̃
𝑏
0
− 𝐻
1

̃
𝑏
1
= 0,

...

𝑥
𝑘−1

− 𝑥
∗
− ℎ𝑎
0
𝐺 (𝑥
∗
; 0) − ℎ𝑎

1
𝐺 (𝑥
1
; 1) − ℎ𝑎

2
𝐺 (𝑥
2
; 2) − ⋅ ⋅ ⋅

− ℎ𝑎
𝑘−2

𝐺 (𝑥
𝑘−2

; 𝑘 − 2) − 𝐻
0

̃
𝑏
0
− 𝐻
1

̃
𝑏
1
− ⋅ ⋅ ⋅

− 𝐻
𝑘−2

̃
𝑏
𝑘−2

= 0.

(69)

The above system is of the form F(x) = 0, where F is a
nonlinear function of

x = (

𝑥
∗

= 𝑥
0

𝑥
1

𝑥
2

...
𝑥
𝑘−1

). (70)

To prove existence, it is sufficient to show that the
Jacobian matrix, J(F), of F is nonsingular. Now,

J (F) =
(

(

(

𝑑
0

𝑑
1

𝑑
2

𝑑
3

⋅ ⋅ ⋅ 𝑑
𝑘−2

𝑑
𝑘−1

−1 + 𝑑
0

1 0 0 ⋅ ⋅ ⋅ 0 0

−1 + 𝑑
0

𝑑
1

1 0 0 ⋅ ⋅ ⋅ 0

−1 + 𝑑
0

𝑑
1

𝑑
2

1 0 ⋅ ⋅ ⋅ 0

...
−1 + 𝑑

0
𝑑
1

𝑑
2

⋅ ⋅ ⋅ 𝑑
𝑘−2

𝑑
𝑘−1

1

)

)

)

, (71)

where 𝑑
𝑖

= −ℎ𝑎
𝑖
𝐺

(𝑥
𝑖
; 𝑖) for each 𝑖. We perform one ele-

mentary row operation: row 1 → row 1–row 𝑘. The matrix
becomes

(

(

(

1 0 0 0 ⋅ ⋅ ⋅ 0 −1 + 𝑑
𝑘−1

−1 + 𝑑
0

1 0 0 ⋅ ⋅ ⋅ 0 0

−1 + 𝑑
0

𝑑
1

1 0 0 ⋅ ⋅ ⋅ 0

−1 + 𝑑
0

𝑑
1

𝑑
2

1 0 ⋅ ⋅ ⋅ 0

...
−1 + 𝑑

0
𝑑
1

𝑑
2

⋅ ⋅ ⋅ 𝑑
𝑘−2

𝑑
𝑘−1

1

)

)

)

. (72)

It is easy to see that the above matrix is nonsingular.
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To prove uniqueness, let 𝑥
1
and 𝑥

2
be two fixed points of

(63). Then, from (67),

𝐹
𝑘
(𝑥
1
) = 𝐹
𝑘−1

(𝑥
1
) + ℎ𝑎

𝑘−1
𝐺 (𝑥
1
+ 𝐹
𝑘−1

(𝑥
1
) ; 𝑘 − 1)

+ 𝐻
𝑘−1

̃
𝑏
𝑘−1

= 0,

(73)

𝐹
𝑘
(𝑥
2
) = 𝐹
𝑘−1

(𝑥
2
) + ℎ𝑎

𝑘−1
𝐺 (𝑥
2
+ 𝐹
𝑘−1

(𝑥
2
) ; 𝑘 − 1)

+ 𝐻
𝑘−1

̃
𝑏
𝑘−1

= 0.

(74)

Subtracting (74) from (73) and using themean value theorem
gives

(𝑥
1
− 𝑥
2
) {𝐹


𝑘−1
(𝛼
1
) + ℎ𝑎

𝑘−1
𝐺

(𝛼
2
; 𝑘 − 1) (1 + 𝐹



𝑘−1
(𝛼
1
))}

= 0,

(75)

which may alternatively be written as

(𝑥
1
− 𝑥
2
) {𝐹


𝑘−1
(𝛼
1
) (1 + ℎ𝑎

𝑘−1
𝐺

(𝛼
2
; 𝑘 − 1))

+ ℎ𝑎
𝑘−1

𝐺

(𝛼
2
; 𝑘 − 1) } = 0.

(76)

In the above equations, 𝛼
1
is between 𝑥

1
and 𝑥

2
, and 𝛼

2
is

between 𝑥
1
+ 𝐹
𝑘−1

(𝑥
1
) and 𝑥

2
+ 𝐹
𝑘−1

(𝑥
2
).

From the hypotheses of the theorem, we have that 𝐹 < 0,
𝐺

> 0, 𝑎

𝑘−1
< 0, and 1 ≥ 1 + ℎ𝑎

𝑘−1
𝐺

(𝛼
2
; 𝑘 − 1) ≥ 0. Thus,

𝑥
1
= 𝑥
2
.

The periodic solution is asymptotically stable since |1 +

𝐹

| < 1. This completes the proof.

3.3. Numerical Experiments. Consider the nonlinear nonau-
tonomous ODE

𝑥


(𝑡) = −𝑥
3
+ sin 𝑡, 𝑥 (0) = 1. (77)

The numerical results (stroboscopic sampling) of each of
the three cases are given in Figures 5, 6, and 7.

The methods give comparable results, but the implicit
midpoint converges faster to the periodic solutions than the
other two.

3.4. Nonlinear Stability Theory. We wish to establish condi-
tions under which numericalmethods for the solution of (56)
behave in a “controlled”manner.Wewill view such controlled
behaviour in the system meaning that neighbouring solution
curves get closer and closer together as 𝑡 increases. This
concept, called contractivity, is discussed, for instance, in
Lambert [6]. As in the linear case, we will contrast the
conditions for stability with the existence and uniqueness of
a periodic solution in the numerical methods.

We briefly state the concepts of contractivity and condi-
tional BN stability.

Definition 16. Let 𝑥(𝑡) and 𝑥(𝑡) be any two solutions of the
differential equation 𝑥


= 𝑓(𝑥, 𝑡), satisfying initial conditions

𝑥(0) = 𝜂, 𝑥(0) = 𝜂, 𝜂 ̸= 𝜂. Then, if




𝑥 (𝑡
2
) − 𝑥 (𝑡

2
)




≤





𝑥 (𝑡
1
) − 𝑥 (𝑡

1
)





(78)
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Figure 5: Numerical results for (77) with 𝑐
1
= 0. 𝑘 = 20.
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Figure 6: Numerical results for (77) with 𝑐
1
= 1/2. 𝑘 = 20.
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Figure 7: Numerical results for (77) with 𝑐
1
= 1. 𝑘 = 20.
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holds under theR𝑚 norm ‖ ⋅ ‖ for all 𝑡
1
, 𝑡
2
such that𝛽

1
≤ 𝑡
1
≤

𝑡
2
≤ 𝛽
2
, the solutions of the system are said to be contractive

in [𝛽
1
, 𝛽
2
].

The discrete analog of the above definition is given below.

Definition 17. Let {𝑥
𝑛
} and {𝑥

𝑛
} be two numerical solutions

generated by a numerical method with different starting
values. Then, if





𝑥
𝑛+1

− 𝑥
𝑛+1





≤





𝑥
𝑛
− 𝑥
𝑛





, 0 ≤ 𝑛 ≤ 𝑁, (79)

the numerical solutions are said to be contractive for 𝑛 ∈

[0,𝑁].

Definition 18. The system 𝑥

= 𝑓(𝑥, 𝑡) is dissipative in [𝛽

1
, 𝛽
2
]

if

⟨𝑓 (𝑥, 𝑡) − 𝑓 (𝑥, 𝑡) , 𝑥 − 𝑥⟩ ≤ 0 (80)

holds for all 𝑥, 𝑥 ∈ R and for all 𝑡 ∈ [𝛽
1
, 𝛽
2
].

It is easy to show that the solutions of a dissipative
system are contractive under the norm induced by the inner
product in (80). It is desirable that a numerical method,
used with fixed stepsize ℎ > 0 to solve a dissipative system,
gives contractive solutions. This brings us to the concepts of
conditional BN stability, BN stability and nonlinear nonau-
tonomous stability criteria.

Definition 19. If a numerical method, applied with fixed
steplength ℎ > 0 to (56) satisfying (80), generates contractive
solutions, the method is said to be conditionally BN stable.
If the method generates contractive solutions when applied
with any ℎ > 0, then it it is BN stable (Lambert [6]).

The concepts of AN and BN stability are equivalent for
the nonconfluent Runge-Kutta methods.

To determine the conditional BN stability of themethods,
we use the scalar test system

𝑥

= 𝑎 (𝑡) 𝑔 (𝑥) , (81)

where, as before, 𝑎(𝑡) ∈ C and 𝑔(𝑥) ∈ 𝐶
1. This system is

dissipative if

𝑎 (𝑡) ⟨𝑔 (𝑥) − 𝑔 (𝑥) , 𝑥 − 𝑥⟩ = 𝑎 (𝑡) 𝑔


(𝜉) |𝑥 − 𝑥|
2
≤ 0, (82)

where 𝜉 lies between 𝑥 and 𝑥 and ⟨⋅, ⋅⟩ is an inner product in
R. The condition is satisfied if 𝑎(𝑡) ≤ 0 for all 𝑡 and 𝑔


(𝑥) ≥ 0

for all𝑥.Therefore, the existence and uniqueness of a periodic
solution in (56) is a sufficient condition for the dissipativity of
the system.

Now, we determine the conditions under which the
linearized one-point collocation methods are conditionally
BN stable. Applying the methods to the test system (81) for
two different initial conditions gives

𝑥
𝑛+1

= 𝑥
𝑛
+ ℎ𝑎
𝑛
𝐺 (𝑥
𝑛
; 𝑛) , (83)

𝑥
𝑛+1

= 𝑥
𝑛
+ ℎ𝑎
𝑛
𝐺 (𝑥
𝑛
; 𝑛) . (84)

Subtracting (84) from (83) and using the mean value
theorem gives





𝑥
𝑛+1

− 𝑥
𝑛+1





=





(𝑥
𝑛
− 𝑥
𝑛
)




⋅






1 + ℎ𝑎

𝑛
𝐺

(𝜉
𝑛
; 𝑛)






, (85)

where 𝜉
𝑛
lies between 𝑥

𝑛
and 𝑥

𝑛
.

The solutions generated by the methods are contractive if
and only if |1 + ℎ𝑎

𝑛
𝐺

(𝜉
𝑛
; 𝑛)| ≤ 1. Assuming 𝑎(𝑡) < 0 for all 𝑡

and𝐺

(𝑥; 𝑡) ≥ 0 for all 𝑥 and 𝑡, the methods are conditionally

BN stable if and only if

𝐺


(𝑥; 𝑡) ≤

2

ℎ𝑎 (𝑡)

. (86)

Remark 20. If we let 𝑔(𝑥) = 𝑥 (the linear case), then
condition (86) collapses to (53), which is the condition for
conditional AN stability.

3.5. Discussion. We have, in Theorem 15, established suffi-
cient conditions for the simplified linearized one-point collo-
cationmethods to exhibit the same dynamics as the nonlinear
nonautonomous ODE. Conditions (i) and (ii) are required
for conditional BN stability as well, but condition (iii) is not
necessary for the existence of a unique, asymptotically stable
solution. In fact, we can come to the same conclusion as in
Theorem 15 if, in (75),

𝐹


(𝑥) [1 + ℎ𝑎 (𝑡) 𝐺


(𝑥; 𝑡)] + ℎ𝑎 (𝑡) 𝐺


(𝑥; 𝑡) ̸= 0 (87)

for all 𝑥 and 𝑡. The following theorem shows that condition
(87) is satisfied if the method is conditionally BN stable.

Theorem 21. Suppose that a simplified linearized one-point
collocationmethod is used to solve a nonlinear nonautonomous
equation of the form (56) with periodic coefficients which has
a unique, asymptotically stable periodic solution. Then, the
method yields a unique periodic solution that is asymptotically
stable if it is conditionally BN stable.

Proof. Assume the conditional BN stability. To prove the
theorem, it is sufficient to establish condition (87). From
conditional BN stability, we have −1 ≤ 1 + ℎ𝑎𝐺


≤ 1. Recall

that −1 ≤ 𝐹

< 0 from condition (iv). Therefore,

𝐹

+ ℎ𝑎𝐺


≤ 𝐹

(1 + ℎ𝑎𝐺


) + ℎ𝑎𝐺


≤ −𝐹

+ ℎ𝑎𝐺


. (88)

Since 0 < −𝐹

≤ 1, if −1 ≤ 1 + ℎ𝑎𝐺


< 0,

𝐹

(1 + ℎ𝑎𝐺


) + ℎ𝑎𝐺


≤ 1 + ℎ𝑎𝐺


< 0. (89)

If 0 ≤ 1 + ℎ𝑎𝐺

≤ 1,

𝐹

+ ℎ𝑎𝐺


≤ 𝐹

(1 + ℎ𝑎𝐺


) + ℎ𝑎𝐺


≤ ℎ𝑎𝐺


< 0. (90)

This proves the theorem.

Remark 22. The above theorem is somewhat similar to
Theorem 14 (in the linear case) if we replace the concept of
conditional BN stability by conditional AN stability.
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4. Conclusion

We already knew that numerical methods can introduce spu-
rious behaviours into the solution for autonomous equations.
By concentrating on linear and nonlinear nonautonomous
equations with unique periodic solutions and discretizing
them using one-point collocation methods, we were inter-
ested in the existence of periodic solutions in the numerical
methods.

We found that the results obtained from the dynamical
systems approach are closely linked to those that are imposed
by standard stability analysis. It has been shown that for
linear and nonlinear nonautonomous differential equations
of the form considered in this chapter, there is a relationship
between conditional AN or BN stability of a one-point collo-
cation method and the method yielding the same dynamical
behaviour as the differential equation under consideration.
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