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A distribution generation (DG) multiobjective optimization method based on an improved Pareto evolutionary algorithm is
investigated in this paper.The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function
constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing
iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while
minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the
multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared
with the strength Pareto evolutionary algorithm 2 (SPEA2), a particle swarm optimization (PSO) algorithm, and nondominated
sorting genetic algorithm II (NGSA-II). The comparison of the results demonstrates the validity and practicality of utilizing DG
units in terms of economic dispatch and optimal operation in a distribution power system.

1. Introduction

With the increasing demand for clean and renewable energy,
the issue of distribution generation (DG) is drawing more
attention worldwide. DG provides voltage support to large-
scale distribution power systems, which results in reliabil-
ity improvements and reduction loss in the power grid.
DG technology has become a hot research topic, given
the increasing global concerns about environmental protec-
tion, energy conservation, and the increasing sophistication
of wind power, photovoltaic power generation, and other
renewable energy technologies. After DG is connected to
a distribution network, the distribution network’s structure,
operation and control mode will tremendously change, and
the distribution system automation and the demand-side
management must consider the coordination between DG
and distribution network control. Deciding the optimal DG
output is a challenging research problem, especially consid-
ering the multiple optimal objectives associated with cases of
multiple DG unit injections.

Traditionally, multi-objective DG optimization has been
treated as a single-objective optimization problem using

suitable weighting factors to form a weighted sum of single
objectives. This approach has the disadvantage of finding
only a single solution that does not express the trade-
offs with different weighting factors. Generating multiple
solutions using this approach requires several runs with
different factors, which leads to long running times [1, 2].
Recent studies have treated the objectives simultaneously
and independently as a true multi-objective optimization
problem. However, the optimization problem becomes more
complicated due to such issues as continuity, local optima,
linearization, and so forth. New optimization techniques,
such as particle swarm optimization (PSO), different evolu-
tion (DE), and evolutionary programming (EP), have recently
been introduced and applied in the field of power systems
and with promising results [3–12]. In a recent study [3],
a differential evolution approach was proposed to solve an
optimal power flow problem with multiple objectives. The
active power dispatch and reactive power dispatch were
considered. A nonlinear constrained multi-objective opti-
mization problemwas formulated. A general overviewof evo-
lutionary multi-objective optimization was provided in [4],
and themost representative algorithmswere discussed. In [5],



2 Journal of Applied Mathematics

Pareto-based multi-objective evolutionary algorithms were
discussed and evaluated. A nondominated sorting genetic
algorithm (NSGA), a niched Pareto genetic algorithm, and a
strength Pareto evolutionary algorithm (SPEA) were devel-
oped and applied to an environmental/economic electric
power dispatch problem. A multi-objective formulation for
sitting and sizing of DG units was proposed in [6]. The
method involved searching for a compromise between the
cost of network upgrades, cost of power losses, cost of energy
not supplied, and cost of energy required by the served
customers. A genetic algorithm was implemented to obtain a
noninferior solution set. However, theirmethod cannot guar-
antee a solution to be optimal solution. In [7], an improved
swarm optimization (IPSO) method was presented to solve
the multi-objective optimal power flow problem. The multi-
objective optimal power flow considered the cost, loss, volt-
age stability and emission impacts as the objective functions.
A fuzzy decision-based mechanism is used to select the best
compromise Pareto set solution obtained by the proposed
algorithm. In [8], a new penalty parameter-less constraint-
handling scheme was employed to improve the performance
of the evolutionary algorithm.The experiments in that paper
revealed that PSOperforms better in terms of solution quality
and consistency, and DE performs better in terms of mean
computation time. An improved Cai andWang’s method has
been proposed to combinemulti-objective optimization with
differential evolution to address constrained optimization
problems in [9]. The method provided a novel infeasible
solution replacement mechanism for differential evolution
in theory. In [10], a robust DE algorithm was proposed
for the control of selective harmonic distortion and total
harmonic distortion. A fuzzy optimization technique andDE
optimization method are described.

The literature includes several DG output studies that
examined multiple objectives and applied evolutionary opti-
mization techniques. From the perspective of mathemat-
ical optimization, DG unit injection is a complex multi-
objective optimization problem that presents a challenge
to the optimization analysis of a distribution power sys-
tem. The objectives include optimal energy consumption,
the minimum power consumer’s electricity purchasing cost,
and the minimum power loss based on the constraints of
power grid security and DG power output. Multi-objective
economic/emission dispatch algorithms were investigated in
[11, 12]. In the optimization methods literature, the simulated
annealing technique has been applied to optimize the pro-
posed multi-objective model of DG planning [13].Themulti-
objective problems were solved by converting the original
model into an equivalent model through calibration of the
weighted factors method. In [14], a multi-objective Tabu
search- (TS-) based method was utilized to optimize a DG
allocation problem. In that paper, the TS-based approach was
provided to find the optimal Pareto set. Fuzzy optimization
was also used to solve the multi-objective optimization of
DG allocation in [15]. Voltage drop reduction, short circuit
capacity augmentation, decrease operation cost, and system
loss reduction were considered objectives for formulating
fuzzy optimization.

In this paper, a DG multi-objective optimization method
based on an improved evolutionary algorithm was investi-
gated for a distribution power system. Adaptive crossover
and a mutation operator were used in the evolutionary
process, and simulated annealing was combined in the
iterative process. A fuzzy clustering algorithm was applied
to manage the size of the Pareto set. The rest of the paper is
organized as follows. In Section 2, the formulation of the DG
multiple-objective optimization for distributionmanagement
is presented. The Pareto-based algorithm and some basic
concepts are introduced in Section 3. The improved Pareto
evolution algorithm is described in Section 4. Section 5 pro-
vides the numerical results and comparison analysis with the
proposed approachusing the revised IEEE 33-bus system.The
conclusion and future work are provided in Section 6.

2. Problem Formulation

2.1. Objective Functions. Three objectives are considered in
the optimization model, which includes the fuel cost and
the pollutant emission penalty, reducing consumer costs on
electricity bills when DG units are injected into the distri-
bution network and reducing transmission line losses. The
first optimization objective is minimum energy consumption
and a pollutant emission model, which is mainly based
on government requirements. There will be more penalties
if the system emits more pollutants and exhibits greater
fuel consumption. The second objective is consumer related,
where the consumer uses DG to maximize savings on their
bills. The third objective is to lower system line losses, which
is the demand objective of the power supply provider. The
three objectives involve perspectives based on government
requirements, consumer needs, and power supply enterprise
needs, and the objectives can conflict. For example, when
a consumer utilizes a micro gas turbine to maximize their
savings on their energy bill, there is a subsequent increase in
fuel cost and pollutant emission. In addition, the extra power
from the micro gas turbine will increase or decrease the line
losses, depending on the size and placement location of the
micro gas turbine.

2.1.1. Fuel Cost andPollutant EmissionMinimization. Thefirst
objective is to minimize the fuel cost and the pollutant emis-
sion penalty, which reflects the impact of energy utilization
on the environment. It can be expressed as follows:

𝐹
1
(𝑥) =

𝑇

∑

𝑡=1

[𝐶
𝑅
+ 𝐶
𝑊
] , (1)

where 𝐶
𝑅
is the energy consumption cost and 𝐶

𝑊
is the

pollutant emission penalty.
The fuel cost 𝐶

𝑅
normally can be further expressed as

follows:

𝐶
𝑅
(𝑃DG) =

𝑁DG

∑

𝑖=1

(𝑐
𝑖
+ 𝑏
𝑖
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2
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(2)

Note that 𝑐
𝑖
, 𝑏
𝑖
, and 𝑎

𝑖
are the quadratic cost coefficients of

the 𝑖th DG, and𝑁DG is the number of distributed generators.
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𝑃DG𝑖 is the real power output of the 𝑖th generator. 𝑃DG is
the vector of real power outputs of generators and defined as
follows:

𝑃DG = [𝑃DG1 , 𝑃DG2 , . . . , 𝑃DG𝑛]
𝑇

. (3)

The pollutant emission quantity can be obtained based
on DG output. Then, based on the penalty standard, the
environmental penalty for pollutant emission is calculated as
follows:

𝐶
𝑊
=

𝑃

∑

𝑗=1

𝑌
𝑗
𝐷
𝑗
, (4)

where 𝑌
𝑗
is pollutant 𝑗’s emission quantity and 𝐷

𝑗
is the

penalty standard of pollutant 𝑗.

2.1.2. Maximization of Cost Savings Using DG. The second
objective is to maximize the cost savings on electricity user
bills when the DG is injected into the distribution network.
The savings in electricity, which should have been purchased
from the power supply enterprise, are the total power output
of the DG units. Utilizing DG output and time-of-use (TOU)
rate, consumer electricity purchasing costs could be reduced
as follows:

maximize 𝐹
2
(𝑥) =

𝑇2

∑

𝑡=𝑇1

𝐶
𝑑1
𝑃DG𝑡 +

𝑇1

∑

𝑡=0

𝐶
𝑑2
𝑃DG𝑡

+

24

∑

𝑡=𝑇2

𝐶
𝑑2
𝑃DG𝑡 ,

(5)

where 𝐶
𝑑1

is peak price from 𝑇
1
to 𝑇
2
, 𝐶
𝑑2

is off-peak price,
and 𝑃DG𝑡 is the DG total power output at moment 𝑡.

2.1.3. Minimization of Line Losses. The third objective is
to minimize the system line losses after DG injection into
the distribution network. This objective can be expressed as
follows:

𝐹
3
(𝑥) = 𝑃loss =

𝑚

∑

𝑖=0

(
𝑃[𝑖]
2
+ 𝑄[𝑖]

2

𝑈[𝑖]
2

)𝑅 [𝑖] , (6)

where 𝑃[𝑖] is the active power, 𝑄[𝑖] is the reactive power at
branch 𝑖, 𝑈[𝑖] is the voltage at branch 𝑖 after DG injection,
𝑅[𝑖] is the resistance of branch 𝑖, and 𝑚 is the number of
branches in the distribution network.

In the previous three optimization models, the fuel cost
and the pollutant emission penalty function 𝐹

1
(𝑥) and the

system loss function 𝐹
3
(𝑥) should be minimized, whereas the

cost-saving function 𝐹
2
(𝑥) should be maximized.

2.2. Constraints. Three constraint conditions are considered
in the optimization model, which includes constraints of
power flow equations, nodal voltage, and DG capacity.

2.2.1. Equality Constraints. The constraint of power flow
equations is described as follows:

𝑃DG𝑖 − 𝑃𝑑𝑖 = 𝑉𝑖
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𝑖𝑗
+ 𝐵
𝑖𝑗
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𝑖𝑗
) ,

𝑄DG𝑖 − 𝑄𝑑𝑖 = 𝑉𝑖
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𝑗=1

𝑉
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cos 𝜃
𝑖𝑗
) ,

(7)

where 𝑃DG𝑖 and 𝑄DG𝑖 are active and reactive generation
outputs, whereas 𝑃

𝑑𝑖
and 𝑄

𝑑𝑖
are the active and reactive load

at bus 𝑖, respectively, 𝐺
𝑖𝑗
and 𝐵

𝑖𝑗
are the transfer conductance

and susceptance between bus 𝑖 and 𝑗, respectively, and 𝑁 is
the number of buses.

2.2.2. Inequality Constraints

Generation limits:
𝑃
min
DG𝑖 ≤ 𝑃DG𝑖 ≤ 𝑃

max
DG𝑖 ,

𝑄
min
DG𝑖 ≤ 𝑄DG𝑖 ≤ 𝑄

max
DG𝑖 .

(8)

Load bus voltage constraints:
𝑉
𝑖min ≤ 𝑉𝑖 ≤ 𝑉𝑖max. (9)

Thermal limits:

𝑆
𝑖𝑗


=

𝑉
2

𝑖
𝐺
𝑖𝑗
− 𝑉
𝑖
𝑉
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
)


≤ 𝑆
max
𝑖𝑗
.

(10)

In the inequality constraints, 𝑃min
DG𝑖 , 𝑃

max
DG𝑖 , 𝑄

min
DG𝑖 , and 𝑄

max
DG𝑖

are the lower/upper active and reactive generating unit limits
of DG, respectively. 𝑆max

𝑖𝑗
is the apparent power thermal limit

of the circuit between buses 𝑖 and 𝑗.
There is always a limit on penetration of DG for a distri-

bution power system to ensure reliability. Different countries
have different penetration factor values. The penetration
factor indicates the aggregatedDGrating on an electric power
system (EPS) feeder, divided by the peak EPS feeder load. If
we assume that the maximum DG penetration factor is 25%,
then themaximum injected DG capacity should be limited to
25% of the maximum total load in the distribution network,
which can be described as follows:

𝑛

∑

𝑖=1

𝑃DG𝑖 ≤ 0.25𝑆
max
, (𝑖 ∈ Φ

𝑆
) , (11)

where 𝑃DG𝑖 is the DG access capacity at node 𝑖 and 𝑆max is the
maximum load capacity of distribution network.

2.3. Overview Formulation. Aggregating the objectives and
constraints, the problem can be formulated as a nonlinear
programming problem as follows:

minimize [𝐹
1
(𝑥) , 𝐹

2
(𝑥) , . . . , 𝐹

𝑘
(𝑥)] ,

subject to ℎ
𝑖
(𝑥) = 0, 𝑖 = 1, . . . , 𝑝,

𝑔
𝑖
(𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑛,

(12)
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where 𝑘 is the number of objectives and 𝑥 is the vector of
dependent variables consisting of slack bus power output and
DG active power out 𝑃DG𝑖 , load bus voltage𝑉𝑖, and generator
reactive power outputs 𝑄DG𝑖 . Thus, 𝑥 can be expresses as
follows:

𝑥 = [𝑃DG1 , . . . , 𝑃DG𝑁𝐺 , 𝑉𝐿1 , . . . , 𝑉𝐿𝑁𝐿 , 𝑄𝐷𝐺1, . . . , 𝑄DG𝑁𝐺]
𝑇

,

(13)

where 𝑛 is the number of inequality constraints, 𝑝 is number
of equation constraints, 𝑘 is the number of objectives, and𝑁𝐺
is the number of DG units.

3. A Pareto-Based Algorithm
and Additional Concepts

3.1. Concepts of Dominated, Nondominated, and Pareto Set.
Multi-objective optimization can be expressed as

min𝑓
𝑖
(𝑥) , 𝑖 = 1, 2, . . . , 𝑚, 𝑥 ∈ 𝜒, (14)

where 𝑓
𝑖
(𝑥) denotes the 𝑖th objective function, 𝑚 is the

number of objectives, and 𝜒 represents the feasible search
space.

Definition 1. A solution 𝑥
1
is said to dominate 𝑥

2
(denoted by

𝑥
1
≺ 𝑥
2
) if and only if

∀𝑖 ∈ {1, 2, . . . , 𝑚} : 𝑓
𝑖
(𝑥
1
) ≤ 𝑓
𝑖
(𝑥
2
)

∧ ∃𝑗 ∈ {1, 2, . . . , 𝑚} : 𝑓
𝑗
(𝑥
1
) < 𝑓
𝑗
(𝑥
2
) .

(15)

Definition 2. For 𝑆 = {𝑥
𝑖
, 𝑖 = 1, . . . , 𝑛}, solution 𝑥 is said to be

a nondominated solution (Pareto solution) of set 𝑆 if 𝑥 ∈ 𝑆,
and there is no solution 𝑥 ∈ 𝑆 for which 𝑥 dominates 𝑥.

Definition 3. Assume that set 𝑃 contains all the nondomi-
nated solutions of 𝑆, then PF = {V | V = [𝑓

1
(𝑥), 𝑓
2
(𝑥),

. . . , 𝑓
𝑚
(𝑥)]
𝑇
, 𝑥 ∈ 𝑃} is a Pareto front of set 𝑆.

3.2. Basic Pareto-Based Evolutionary Algorithm. The tra-
ditional Pareto-based evolutionary algorithm is shown in
Figure 1. The detailed algorithm procedure is explained in
[16]. The main improvements on the Pareto-based algorithm
can be generalized as follows. The penalty function is estab-
lished to constrain the solution of the objective function.
The adaptive crossover and mutation are adopted in the
evolution process, which improves the probability of global
optimization. The simulated annealing algorithm is added
to the iterative process, so that the algorithm is able to seek
the optimal solution globally and rapidly converges to the
optimal solution.

4. Proposed Improved Pareto
Evolutionary Algorithm

4.1. Overview. To solve the difficulties in traditional opti-
mization techniques, a new evolutionary population-based

searching technique is proposed to solve the multiobjective
optimization problem based on SPEA2 [17, 18].

4.2. Initialization. In the improved SPEA2, an individual
𝑖 at generation 𝐺 is a multidimensional vector 𝑥𝐺

𝑖
=

(𝑥
𝑖,1
, . . . , 𝑥

𝑖,𝐷
). The population is initialized by randomly

generating individuals as

𝑥
𝐺

𝑖,𝑘
= 𝑥
𝑘min

+ rand [0, 1] × (𝑥𝑘max
− 𝑥
𝑘min
) ,

𝑖 ∈ [1,𝑁
𝑝
] , 𝑘 ∈ [1, 𝐷] ,

(16)

where 𝑁
𝑝
is the population size and 𝐷 is the number of

control variables. Each variable 𝑘 in a solution vector 𝑖 in the
generation 𝐺 initialized within its boundaries 𝑥

𝑘min
and 𝑥

𝑘max
.

4.3. Fitness Evaluation. The objective of each solution
𝐹
1
(𝑥), 𝐹
2
(𝑥), . . . , 𝐹

𝑘
(𝑥) will be computed. The individual

fitness values in both the population-based set 𝑃𝑜𝑝 and
nondominated archive set𝑁𝐷𝑆𝑒𝑡will be calculated based on
(17). The mismatch of each constraint value is multiplied by
a large value and added to all objectives to remove infeasible
solutions. The methodology is to evaluate the feasible solu-
tions according to the value of objective function and remove
the infeasible solutions according to the constraints.

The individual’s fitness 𝑀(𝑖) will be obtained from the
sum of the primary fitness value 𝑅(𝑖) and the density 𝐷(𝑖) as
follows:

𝑀(𝑖) = 𝑅 (𝑖) + 𝐷 (𝑖) , (17)

where 𝑅(𝑖) = ∑
𝑗∈𝑃𝑜𝑝+𝑁𝐷𝑆𝑒𝑡,𝑗≻𝑖

𝑆(𝑗), 𝑆(𝑗) is the objective evalu-
ation for the individual 𝑗. (≻ indicates a dominated relation,
𝑥
𝑖
≻ 𝑥
𝑗
indicates 𝑥

𝑖
dominates 𝑥

𝑗
, 𝑥
𝑖
is nondominated, and

𝑥
𝑗
is dominated).
𝐷(𝑖) = 1/(𝜎

𝑘

𝑖
+ 2), 𝑘 = √𝑁 +𝑁. 𝜎𝑘

𝑖
represents the

objective space distance between individual 𝑖 in 𝑃𝑜𝑝 and the
𝑘th nearest neighbor individual in the 𝑁𝐷𝑆𝑒𝑡. It is the K-
nearest neighbor (KNN) method, and the distance between
the individual 𝑖 in𝑃𝑜𝑝 and the other individuals in the𝑁𝐷𝑆𝑒𝑡
need to be computed, and then, the distance value can be
sorted.

4.4. Adaptive Crossover and Mutation Probability. The selec-
tion of crossover probability 𝑃

𝑐
and mutation probability

𝑃
𝑚

dominates the solution process. 𝑃
𝑐
and 𝑃

𝑚
determine

the generation speed and the probability of new individuals,
respectively. If 𝑃

𝑐
exceeds the threshold, the generation speed

of the new population will be quicker, whichmeans that there
is a stronger capability to explore new space. If𝑃

𝑐
is extremely

small, the search process will be quite slow. If 𝑃
𝑚
is too large,

the search process will bemore random.The adaptive value of
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Initialization
Create population and initialize gene

Objectives evaluation
𝐹1(𝑥), 𝐹2(𝑥), . . . , 𝐹𝑘(𝑥)

Find the Pareto set

Check stopping criteria

Perform mutation

Perform crossover

Selection using dominance criteria

Find the best
compromise solution

Stop

Yes

No

Figure 1: Flowchart of traditional Pareto-based approach.

𝑃
𝑐
and𝑃
𝑚
is obtained from the following evaluated equations:

𝑃
𝑐
=

{{{{{

{{{{{

{

𝑃
𝑐1
(𝑀avg −𝑀


) + 𝑃
𝑐2
(𝑀

−𝑀min)

Mavg −Mmin
, 𝑀


< 𝑀avg,

𝑃
𝑐2
(𝑀max −𝑀


) + 𝑃
𝑐3
(𝑀

−𝑀avg)

𝑀max −𝑀avg
, 𝑀

≥ 𝑀avg,

𝑃
𝑚
=

{{{{{

{{{{{

{

𝑃
𝑚1
(𝑀avg −𝑀) + 𝑃𝑚2 (𝑀 −𝑀min)

𝑀avg −𝑀min
, 𝑀 < 𝑀avg,

𝑃
𝑚2
(𝑀max −𝑀) + 𝑃𝑚3 (𝑀 −𝑀avg)

𝑀max −𝑀avg
, 𝑀 ≥ 𝑀avg,

(18)

where 𝑀avg is the average fitness value, 𝑀max is the biggest
fitness value, 𝑀 is the bigger fitness value of two genes in
the crossover process,𝑀 is the mutating individual’s fitness
value, and the constants 𝑃

𝑐1
, 𝑃
𝑐2
, 𝑃
𝑐3
, 𝑃
𝑚1
, 𝑃
𝑚2
, 𝑃
𝑚3

∈ [0, 1],
𝑃
𝑐1
> 𝑃
𝑐2
> 𝑃
𝑐3
, 𝑃
𝑚1
> 𝑃
𝑚2
> 𝑃
𝑚3
.

4.5. Pareto Optimal Selection Using Fuzzy Set Theory. In this
paper, fuzzy set theory is used to select the optimal solution
set among the obtained multiobjective solution sets. Fuzzy
sets are sets whose elements have degrees of membership.
Fuzzy set theory permits the gradual assessment of the mem-
bership of elements in a set. This membership is described
with the aid of a membership function valued in the real unit
interval [0, 1].

First, define a linearmembership function 𝜏
𝑖
as theweight

of target 𝑖 in a solution:

𝜏i =

{{{{{{

{{{{{{

{

1 𝐹
𝑖
= 𝐹

min
𝑖
,

𝐹
max
𝑖

− 𝐹
𝑖

𝐹
max
𝑖

− 𝐹
min
𝑖

𝐹
min
𝑖

< 𝐹
𝑖
< 𝐹

max
𝑖

,

0 𝐹
𝑖
≤ 𝐹

max
𝑖

,

(19)

where 𝐹max
𝑖

is the maximum of 𝑖th objective function, 𝐹min
𝑖

is
the minimum of 𝑖th objective function, and 𝐹

𝑖
is the solution

of 𝑖th objective. The previous equation provides a measure
of the degree of satisfaction for each objective function for
a particular solution.
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The dominant function 𝜏
𝑘
for each nondominated solu-

tion 𝑘 in Pareto solution set is calculated as follows:

𝜏
𝑘
=

∑
𝑁0

𝑖=1
𝜏
𝑖

𝑘

∑
𝑢

𝑗=1
∑
𝑁0

𝑖=1
𝜏
𝑖

𝑗

, (20)

where 𝑢 is the number of the Pareto solution set and𝑁
0
is the

number of the optimization objectives.
Because the value of 𝜏

𝑘
determines the capability of

the solution, the solution with maximum 𝜏
𝑘
will be Pareto

optimal. Moreover, the feasible priority sequence can be
obtained by the value of 𝜏

𝑘
, in descending order.

The best Pareto optimal solution is the one achieving the
maximummembership function 𝜏

𝑘
, as shown in (20).

4.6. Simulated Annealing in Population-Based Individual
Selection. Simulated annealing (SA) is a generic probabilistic
metaheuristic for the global optimization problem of locating
a good approximation to the global optimum of a given
function in a large search space. It is often used when the
search space is discrete. Here, SA is utilized in the individual
selection.

Based on the individuals after selection, crossover and
mutation steps, the simulated annealing operation is per-
formed on the individuals of the population. The two genes
in each individual will be selected and disturbed randomly.
Then, the new individual will be evaluated to formnewfitness
values. If the fitness value of a new individual is larger than the
old value, then the old individual will be replaced by the new
individual. If the fitness value of the new individual is smaller
than the old value, the new individual can also be accepted
using the following probability:

𝑝 (𝑇
𝑘+1
) =

{{{

{{{

{

1 (𝑀
𝑘+1

> 𝑀
𝑘
) ,

exp(−
𝑀
𝑘+1

−𝑀
𝑘

𝑇
𝑘+1

) (𝑀
𝑘+1

≤ 𝑀
𝑘
) ,

𝑇
𝑘+1

= 𝛼𝑇
𝑘
,

(21)

where 𝑀
𝑘+1

and 𝑀
𝑘
are the fitness of the new individual

and old individual, respectively, 𝑝(𝑇
𝑘+1
) is the acceptance

probability at 𝑇
𝑘+1

temperature, and 𝛼 is the temperature
descending coefficient.

4.7. Convergence Condition. The iterative procedure can be
terminated when any of the following conditions are met: (1)
the true Pareto front is obtained, and (2) the iteration number
of the algorithm reaches the predefinedmaximumnumber of
iterations. However, the true Pareto front will not be known
in advance in most practical multiobjective problems, so the
convergence condition is to iterate to a predefined maximal
iteration number.

4.8. Flowchart of Proposed Algorithm. The flow chart of the
proposed algorithm is illustrated in Figure 2. As shown in
Figure 2, the steps of the proposed evolutionary algorithm are
described as follows.

Step 1. Generate an initial set 𝑃𝑜𝑝 randomly and an empty
archive set 𝑁𝐷𝑆𝑒𝑡 over the problem space; initialize the
parameters of the population size 𝑁, nondominated archive
size𝑁, and maximum generation’s number 𝑇.

Step 2. Establish the penalty function to constrain each
objective function, and then form new objective functions.

Step 3. Compute the fitness of individual in both the
population-based set 𝑃𝑜𝑝 and the nondominated archive set
NDSet. The objective of each solution 𝐹

1
(𝑥), 𝐹
2
(𝑥), . . . , 𝐹

𝑘
(𝑥)

will be computed.

Step 4. Duplicate the nondominated individuals in both the
population and nondominated archive set to a new archive
set 𝑁𝐷𝑆𝑒𝑡 𝑛𝑒𝑤, if the size of 𝑁𝐷𝑆𝑒𝑡 𝑛𝑒𝑤 exceeds 𝑁, then
reduce 𝑁𝐷𝑆𝑒𝑡 𝑛𝑒𝑤 by means of the truncation operator;
otherwise, fill𝑁𝐷𝑆𝑒𝑡 𝑛𝑒𝑤with dominated individuals in𝑃𝑜𝑝
and𝑁𝐷𝑆𝑒𝑡.

Step 5. Evaluate if the nondominated set𝑁𝐷𝑆𝑒𝑡 𝑛𝑒𝑤 exceeds
the predefined size𝑁. If the size of𝑁𝐷𝑆𝑒𝑡 𝑛𝑒𝑤 is larger than
𝑁, then truncate the nondominated individuals; otherwise,
continue to Step 6.

Step 6. Copy the superior dominated individual to
𝑁𝐷𝑆𝑒𝑡 𝑛𝑒𝑤.

Step 7. Evaluate the convergence criteria. If the iteration
number 𝑡 ≥ 𝑇, terminate the iteration to obtain the Pareto
optimal solution and output the best solution; otherwise, set
𝑡 = 𝑡 + 1, and continue to Step 8.

Step 8. Perform adaptive crossover and mutation operation
on the individuals of 𝑃𝑜𝑝.

Step 9. Perform a simulated annealing operation, and then go
to Step 3.

5. Experiments and Results

To demonstrate the effectiveness of the proposedmethod, the
algorithm in Section 4 was implemented to obtain solutions
for optimal active power dispatch of DG. The IEEE 33
bus distribution system was examined, and three objectives
were considered in this study. These objectives were fuel
cost/pollutant emission, transmission line loss, and cost
savings on bills using DG. Photovoltaic (PV) panels, diesel
turbine, and wind turbine distribution are injected into bus 7,
bus 17, bus 21, and bus 32, respectively, as shown in Figure 3.
In this paper, 𝑃

𝑐
and 𝑃

𝑚
are defined as follows: 𝑃

𝑐1
= 0.4,

𝑃
𝑐2
= 0.3, and 𝑃

𝑐3
= 0.2 and 𝑃

𝑚1
= 0.2, 𝑃

𝑚2
= 0.1, and

𝑃
𝑚3

= 0.05. The maximum iteration number is set to 200.
The proposed algorithm was coded in C++ and run on an
Intel i5-3210M 2.5GHz notebook with 4GB RAM.

5.1. Energy Utilization Cost. Among the four DG units, only
the two diesel turbine DG units have fuel cost. Because it
would be difficult for market players to accept/implement
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Figure 2: Flowchart of improved Pareto-based evolutionary algorithm.

a central cost-based dispatch in the distribution system
includingDGunits, the cost of fossil-fuel consumed bymicro
diesel turbine is calculated as follows:

𝐶
𝑅
=

𝑛

∑

𝑖=1

𝑓 (𝑃
𝑡

𝑖
) 𝐶
𝑖
, (22)

where𝐶
𝑖
is fuel price at power unit 𝑖 and𝑓(𝑃𝑡

𝑖
) is the required

fuel quantity for power unit 𝑖 at the moment 𝑡.

5.2. Penalty on Pollutant Emission. As global environmental
pollution is growing, optimizing power generation and
pollutant emission costs are two conflicting goals. These
goals present a restrictive and coordinated relationship.
Environmental cost mainly refers to the fines related to
pollutant emission. Tables 1 and 2 show the pollutant
emission data for various DG units and the standard electric
power industry pollution fines, respectively. In reference
report [19], there are similar pollutant cost coefficients
for distributed generation. Based on the DG unit output
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Figure 3: Schematic diagram of the IEEE 33-bus system with 4 DG
units.

Table 1: The pollutant emission rate of DG units (g/kWh).

Pollutant
emission

Coal
generation Diesel engine PV panel Wind

turbine
NO
𝑥

6.46 4.3314 0 0
CO2 1070 232.0373 0 0
CO 1.55 2.3204 0 0
SO2 9.93 0.4641 0 0

Table 2: Standard pollutant emission penalties ($/kg).

SO2 NO
𝑥

CO2 CO
0.75 1.00 0.002875 0.125

following multiple-objective optimization, the quantity of
pollutant emission can be obtained.

5.3. Optimization Results. Using the optimization model
developed in Section 3, the optimized output of four DG
units over 24 h and the power system losses after DG unit
injection are shown in Figures 4 and 5, respectively. As shown
in Figure 4, the four DG units have different active power
outputs at different time periods in a day. The diesel power
output will increase when the solar and wind power outputs
are at a low level.When the PVoutput andwind power output
increase to the peak, it will stop increasing and stay at the
peak power output, and then, the diesel power output will
gradually decrease.

As shown in Figure 5, the line losses greatly decrease DG
unit penetration into the distribution system. From the hours
8 to 17, the total output of the four DG units provides enough
active power, which improves the voltage quality and reduces
the line loss.

The forecasted and optimized solar power outputs based
on the computed results are shown in Figure 6, and the
forecasting and optimized wind power output are shown
in Figure 7. The forecasted PV and wind generation values
are based on historical distribution system data. Because of
the cooperative optimization, the optimal real power values
of PV and wind generation are smaller than the forecasted
values in the peak time period.

Assuming that the coal consumption from the power
plant is 0.35 kg/kWh and the highest coal price is 0.124
$/kg, the cost savings for coal consumption by using clean
energy is illustrated in Figure 8, which shows that these
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Figure 4: The optimized output of four DG units in 24 hours.
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Figure 5:The power system loss before and after DG unit injection.

increases in solar and wind power output results in greater
coal consumption cost savings.

A pollutant emission penalty reduction curve was
obtained based on data from Tables 1 and 2, and the hourly
penalty reduction for pollutant emission is shown in Figure 9.
As there is no pollutant emission for solar and wind power
generation, when the output of new energy power supply
increases, the environment cost will decrease significantly.

Assuming that the time-of-use price is 0.095 $/kWh for
peak time from 6:00 am to 22:00 pm and 0.054 $/kWh in
other period, the cost saving for the electrical bills of users
per hour is shown in Figure 10. Because the price is at a high
level from 6:00 am to 18:00 pm, the bill saving increases with
the increase of PV and wind power output. The results from
the case study demonstrates that the system loss is greatly
reduced by 65%, so that the users, in total, can save $1,671
per day on their electricity bills, and power plants can save
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Figure 6:The comparison of forecasted PV value and the computed
optimal PV value.
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Figure 7: The comparison of forecasted wind values and the
computed optimal value.

$870 and $9,906 on their coal costs and pollutant emission
penalties per day, respectively.

5.4. Comparison of Different Algorithms. The proposed algo-
rithm was compared with the SPEA2 [17] and the particle
swarm optimization method [20] and NSGA-II [21, 22]. The
IEEE 33-bus system with four DG units was utilized as an
example for this comparison. The load data at hour 11 is
selected as the basic load data. The convergence condition
was that the iteration number exceeded the preset maximum
iteration number, which was set to 200. In PSO, the cognitive
ratio and social ratio are all equal to 2.0.Thenumber of swarm
particles is 100. In NSGA-II, the crossover ratio is set to 0.8,
and the mutation ratio is set to 0.2. The size of population is
set to 100.
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Figure 8: Hourly cost savings on coal consumption.
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Figure 9: Hourly penalty reduction for pollutant emission.

Table 3 shows that the proposed algorithm performs
better than the SPEA2 and the PSO algorithms with respect
to calculating the multiple objective objectives in the same
limited iterations, and the proposed algorithm has better
convergence speed than SPEA2 and PSO because simulated
annealing is added in addition to the adaptive crossover and
mutation operations. Compared withNSGA-II, the proposed
algorithm has approximate speed in searching the Pareto
front.

6. Conclusion

This paper presented an improved Pareto-based evolutionary
algorithm, which increases the global optimization ability
with a simulated annealing iterative process and fuzzy set
theory, to solve the multiobjective optimization problem
for a distribution power system. The proposed algorithm
was utilized to optimize a model of DG unit injection
with objectives of maximizing the utilization of DG while
minimizing the system loss and environmental pollution.The
results indicate that the proposed optimization is applicable
to practical multiobjective optimization problems that take
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Table 3: Comparison of different algorithms.

Iterations Time Min
𝐹
1
(𝑥)

Max
𝐹
2
(𝑥)

Min
𝐹
3
(𝑥)

Proposed
algorithm 200 34 s $1535.3 $86.0 114.5 kW

SPEA2 200 42 s $1568.5 $84.5 129.0 kW
PSO 200 39 s $1589.6 $82.6 131.2 kW
NSGA-II 200 36 s $1573.9 $83.2 125.2 kW

into considering the requirements from utilities, consumers,
and the environment.

With respect to the state of the art, the improvements
from this new multiobjective optimization method can be
listed as follows: (1) the ability to search an entire set of
Pareto optimal solutions is enhanced by using SA, which is
proven by the comparison experiments, and (2) the Pareto
front converges to better optimum set of solutions using the
proposed algorithm. Future work will be focused on proba-
bilistic evaluation and optimization that considers multiple
DG units and load profile in distribution systems.
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