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We investigate multiple criteria group decision-making problems in which there are priority relationships between the decision
elements (criteria and experts), and decision information provided by decision makers takes the form of multigranular uncertain
linguistic information. Firstly, some operational laws and possibility degree of multi-granular uncertain linguistic variables
are introduced. Then, some new linguistic aggregation operators based on the prioritized aggregation operator, such as the
multigranular uncertain linguistic prioritized weighted average (MULPWA) operator and the multigranular uncertain linguistic
prioritized ordered weighted average (MULPOWA) operator, are developed and their desirable properties are studied. The
prominent characteristics of these proposed operators are that they can aggregate directly the uncertain linguistic variables whose
values form the linguistic term sets with different granularities and convey the prioritization phenomenon among the aggregated
arguments. Furthermore, based on the MULPWA and MULPOWA operators, an approach to deal with multiple criteria group
decision-making problems under multi-granular uncertain linguistic environments is developed. Finally, a practical example is
provided to illustrate the multiple criteria group decision-making process.

1. Introduction

Due to the fact that experiences and judgments of humans
are usually represented by words in their natural language,
decision making with linguistic information is becoming a
hot research topic and has received many excellent results
in recent years [1–35]. When using linguistic approaches
to solve decision problems, we need the techniques for
computing with words (CWW). In the specialized literature,
the main linguistic computational models can be divided
into four kinds: the approximate model based on extension
principle [1]; the ordered language model [2]; the 2-tuple
model [8], and the virtual linguistic variables model [9].
Compared with the former twomodels, the latter twomodels
can avoid losing any linguistic information moreover, Dong
et al. [11, 12] proved that the latter twomodels can bemutually
retranslated, and they are equivalent.

However, in many situations, the decision information is
expressed in the form of uncertain linguistic variables which
can be considered as intervals of linguistic terms because of
time pressure, lack of knowledge or data, and limited exper-
tise related to the problem domain.Therefore, Xu [13–16] pre-
sented the concept of uncertain linguistic variables, and then
various uncertain linguistic aggregation operators have been
proposed, such as the uncertain linguistic averaging (ULA)
operator, uncertain linguistic weighted averaging (ULWA)
operator, uncertain linguistic ordered weighted averaging
(ULOWA) operator, uncertain linguistic hybrid aggrega-
tion (ULHA) operator, uncertain linguistic geometric mean
(ULGM) operator, uncertain linguistic weighted geomet-
ric mean (ULWGM) operator, uncertain linguistic ordered
weighted geometric (ULOWG) operator, uncertain linguistic
hybrid geometric mean (ULHG) operator [17], induced
uncertain linguistic OWA (IULOWA), induced uncertain
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linguistic ordered weighted geometric(IULOWG) operator,
uncertain linguistic correlated averaging (ULCA) operator,
uncertain linguistic correlated geometric (ULCG) operator,
and uncertain linguistic harmonic mean (ULHM) operators
[18]. More recently, Zhang [19] proposed the interval-valued
2-tuple linguistic variable and introduced some aggregation
operators of interval-valued 2-tuples. Chen and Lee [20]
proposed interval linguistic labels ordered weighted average
(ILLOWA) operator for autocratic decision making. Chen
et al. [21] presented an adaptive consensus support model
for group decision making systems based on intervals of
linguistic 2-tuples.

On the other hand, due to the difference in culture, cog-
nition, experience, habits, backgrounds, and so on, decision
makersmay express their evaluation using different linguistic
domains with different granularities, that is, multigranular
linguistic term sets, in practical decision making problems.
Up to now, many approaches have been proposed to deal
with GDM problems with multigranular linguistic infor-
mation [22–32]. In these approaches, the multigranularity
linguistic terms are first unified into a basic linguistic term
set (BLTS) by transform functions; usually the BLTS is
linguistic term set with the greatest granularity, before the
linguistic information aggregation. Zhang [19] pointed out
that the transform processes are tedious and may produce
the loss of information and proposed interval-valued 2-tuple
linguistic variable to directly aggregate interval-valued 2-
tuple linguistic information.

Decision making with uncertain linguistic information
and with multigranular linguistic information has signifi-
cantly advanced decision analysis with linguistic informa-
tion. However, in these studies, the multigranular uncertain
linguistic information is seldom addressed [30]. Xu (2009)
[28] developed some transformation functions to unify the
unbalanced linguistic labels with different granularities and
then utilized the uncertain linguistic weighted averaging
(ULWA) operator to aggregate the unified unbalanced lin-
guistic information. Fan and Liu (2010) [30] proposed a
method with multigranular uncertain linguistic information,
in which multigranular uncertain linguistic values are first
transformed into trapezoidal fuzzy numbers and then an
extended TOPSIS methodology is used to solve the decision-
making problem. Gao and Peng (2011) [31] defined the
transformation function of uncertain linguistic preferences
with different granularities. Zhang and Guo (2012) [32]
proposed a method for multigranular uncertain linguistic
group decision making with incomplete weight information.
Meanwhile, current linguistic decision making methods are
under the assumption that the criteria are at the same priority
level, and they are characterized by the ability to trade
off between criteria. However, in lots of real and practical
multiple criteria decision-making problems, the criteria have
different priority levels commonly. Such as in the case of
buying a car based upon the criteria of safety and cost,
usually we may not allow compensation between cost and
safety, and in this case of organizational decision making,
superiors generally have a higher priority than those of their
subordinates. Yager [36] paid attention to this issue and
presented the prioritized aggregation operators by modeling

the prioritization of attributes with respect to the weights
associatedwith the attributes dependent upon the satisfaction
of the higher priority attributes. Afterwards, some authors
devoted their attentions to this issue [37–41]. However, to
our knowledge, no study has reported an appropriatemethod
for solving the prioritization phenomenon among the criteria
using linguistic information, letting alone the problems with
multigranular uncertain linguistic information. Therefore, it
is necessary to pay attention to this issue.

To do this, the remainder of this paper is organized as fol-
lows. Section 2 introduces the operational laws of multigran-
ular uncertain linguistic variables and briefly reviews the pri-
oritized aggregation operators. Section 3 proposes the multi-
granular uncertain linguistic prioritized weighted average
(MULPWA) operator and multigranular uncertain linguistic
prioritized ordered weighted average (MULPOWA) operator
to aggregate the multigranular uncertain linguistic variables,
whose desirable properties are also studied in this section.
In Section 4, we develop an approach for multicriteria group
decision making based on the proposed operators under
multigranular uncertain linguistic environment. In Section 5,
a practical example is provided to verify the practicality and
effectiveness of the developed approach. Section 6 concludes
the paper.

2. Preliminaries

2.1. Uncertain Linguistic Variables. Let 𝑆
(𝑔)

= {𝑠𝑖 | 𝑖 =

0, 1, . . . , 𝑔 − 1} be a linguistic term set with odd cardinality,
where 𝑠𝑖 represents a possible value for a linguistic variable
and 𝑔 denote the granularity of the term set, and it usually
has the following characteristics [1–5]: (1) the set is ordered:
𝑠𝑖 ≥ 𝑠𝑗 if 𝑖 ≥ 𝑗; (2) there is the negation operator: neg(𝑠𝑖) = 𝑠𝑗

such that 𝑗 = 𝑔 − 1 − 𝑖; (3) max operator: max(𝑠𝑖, 𝑠𝑗) = 𝑠𝑖

if 𝑠𝑖 ≥ 𝑠𝑗; (4) min operator: min(𝑠𝑖, 𝑠𝑗) = 𝑠𝑖 if 𝑠𝑖 ≤ 𝑠𝑗. For
example, a linguistic term set with 9 terms 𝑆 can be defined
as 𝑆
(9)

= {𝑠0 = extremely poor, 𝑠1 = very poor, 𝑠2 =

poor, 𝑠3 = slightly poor, 𝑠4 = fair, 𝑠5 = slightly good, 𝑠6 =

good, 𝑠7 = very good, 𝑠8 = extremely good}.
Usually, the granularity 𝑔 of 𝑆

(𝑔) must be small enough
so as not to impose useless precision on the experts and it
must be rich enough in order to allow a discrimination of the
performances of each object in a limited number of grades;
the limit of cardinality is 11 or not more than 13 [3, 4].

To preserve all the given information, Xu [9, 10] extended
the discrete term set 𝑆(𝑔) to a continuous term set 𝑆(𝑔) = {𝑠𝛼 |

𝑠0 ≤ 𝑠𝛼 ≤ 𝑠𝑔−1, 𝛼 ∈ [0, 𝑔 − 1]}, whose elements also meet
all the characteristics above, and if 𝑠𝛼 ∈ 𝑆, then we call 𝑠𝛼 the
original term; otherwise, we call 𝑠𝛼 the virtual term.

Definition 1 (see [13, 14]). Let 𝑠 = [𝑠𝛼, 𝑠𝛽], where 𝑠𝛼, 𝑠𝛽 ∈ 𝑆,
and 𝑠𝛼 and 𝑠𝛽 are the lower and the upper limits, respectively;
we then call 𝑠 the uncertain linguistic variable.

In the existing literature, the operational laws of uncertain
linguistic variables are all assumed that the values of uncer-
tain linguistic variables are from the same linguistic term set.
So they may be not fit to the uncertain linguistic information
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frommultigranular linguistic term sets, that is, themultigran-
ular uncertain linguistic information. In order to process the
multigranular uncertain linguistic information, we give the
following definitions.

Definition 2. For any three uncertain linguistic variables
𝑠
(𝑔)

= [𝑠
(𝑔)
𝛼 , 𝑠
(𝑔)

𝛽
], 𝑠(𝑔1)1 = [𝑠

(𝑔
1
)
𝛼
1

, 𝑠
(𝑔
1
)

𝛽
1

], and 𝑠
(𝑔
2
)

2 = [𝑠
(𝑔
2
)
𝛼
2

, 𝑠
(𝑔
2
)

𝛽
2

]

and their linguistic values from linguistic term sets with
granularities𝑔,𝑔1, and𝑔2, respectively, then their operational
laws can be defined as follows:

(1) 𝜇𝑠
(𝑔)

= [𝜇𝑠
(𝑔)

𝛼 , 𝜇𝑠
(𝑔)

𝛽
] = [𝑠

(𝑔)

𝜇𝛼 , 𝑠
(𝑔)

𝜇𝛽
] ,

(2) (𝑠
(𝑔)

)
𝜇
= [(𝑠

(𝑔)

𝛼 )
𝜇
, (𝑠
(𝑔)

𝛽
)
𝜇

] = [𝑠
(𝑔)

𝛼𝜇
, 𝑠
(𝑔)

𝛽𝜇
] ,

(3) 𝑠
(𝑔
1
)

1 ⊕ 𝑠
(𝑔
2
)

2 = [𝑠
(𝑔
1
)

𝛼
1

, 𝑠
(𝑔
1
)

𝛽
1

] ⊕ [𝑠
(𝑔
2
)

𝛼
2

, 𝑠
(𝑔
2
)

𝛽
2

]

= [
𝑔
∗
− 1

𝑔1 − 1
𝑠
(𝑔
1
)

𝛼
1

⊕
𝑔
∗
− 1

𝑔1 − 1
𝑠
(𝑔
2
)

𝛼
2

,

𝑔
∗
− 1

𝑔1 − 1
𝑠
(𝑔
1
)

𝛽
1

⊕
𝑔
∗
− 1

𝑔1 − 1
𝑠
(𝑔
2
)

𝛽
2

] ,

= [𝑠
(𝑔
∗
)

((𝑔∗−1)/(𝑔1−1))𝛼1+((𝑔
∗−1)/(𝑔2−1))𝛼2

,

𝑠
(𝑔
∗
)

((𝑔∗−1)/(𝑔1−1))𝛽1+((𝑔
∗−1)/(𝑔2−1))𝛽2

] ,

(4) 𝑠
(𝑔
1
)

1 ⊗ 𝑠
(𝑔
2
)

2 = [𝑠
(𝑔
1
)

𝛼
1

, 𝑠
(𝑔
1
)

𝛽
1

] ⊗ [𝑠
(𝑔
2
)

𝛼
2

, 𝑠
(𝑔
2
)

𝛽
2

]

= [
𝑔
∗
− 1

𝑔1 − 1
𝑠
(𝑔
1
)

𝛼
1

⊗
𝑔
∗
− 1

𝑔2 − 1
𝑠
(𝑔
2
)

𝛼
2

,

𝑔
∗
− 1

𝑔1 − 1
𝑠
(𝑔
1
)

𝛽
1

⊗
𝑔
∗
− 1

𝑔2 − 1
𝑠
(𝑔
2
)

𝛽
2

]

= [𝑠
(𝑔
∗
)

((𝑔∗−1)/(𝑔1−1))𝛼1×((𝑔
∗−1)/(𝑔2−1))𝛼2

,

𝑠
(𝑔
∗
)

((𝑔∗−1)/(𝑔1−1))𝛽1×((𝑔
∗−1)/(𝑔2−1))𝛽2

] ,

(1)

where 𝑔
∗
∈ {𝑔1, 𝑔2} is the granularity of basic term set.

From the operational laws (3) and (4), we can get the
following equations:

(5)

𝑛

⨁

𝑗=1

𝑠
(𝑔
𝑗
)

𝑗
=

𝑛

⨁

𝑗=1

[𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

]

= [

[

𝑛

⨁

𝑗=1

𝑔
∗
− 1

𝑔𝑗 − 1
𝑠
(𝑔
𝑗
)

𝛼
1

,

𝑛

⨁

𝑗=1

𝑔
∗
− 1

𝑔𝑗 − 1
𝑠
(𝑔
𝑗
)

𝛽
𝑗

]

]

= [𝑠
(𝑔
∗
)

(𝑔∗−1)∑
𝑛

𝑗=1(𝛼𝑗/(𝑔𝑗−1))
,

𝑠
(𝑔
∗
)

(𝑔∗−1)∑
𝑛

𝑗=1(𝛼𝑗/(𝑔𝑗−1))
] ,

(6)

𝑛

⨁

𝑗=1

𝑠
(𝑔
𝑗
)

𝑗
=

𝑛

⨁

𝑗=1

[𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

]

= [

[

𝑛

⨁

𝑗=1

𝑔
∗
− 1

𝑔𝑗 − 1
𝑠
(𝑔
𝑗
)

𝛼
1

,

𝑛

⨁

𝑗=1

𝑔
∗
− 1

𝑔𝑗 − 1
𝑠
(𝑔
𝑗
)

𝛽
1

]

]

= [𝑠
(𝑔
∗
)

∏
𝑛

𝑗=1
((𝑔∗−1)/(𝑔

𝑗
−1))𝛼

𝑗

, 𝑠
(𝑔
∗
)

∏
𝑛

𝑗=1
((𝑔∗−1)/(𝑔

𝑗
−1))𝛽

𝑗

] ,

(2)

where 𝑔
∗

∈ {𝑔1, 𝑔2, . . . , 𝑔𝑛} is the granularity of basic term
set.

To compare uncertain linguistic variables, Xu (2004)
[13] proposed a possibility degree formula to calculate an
uncertain linguistic term that is greater than the other one.
In the following, we further extend the possibility degree
formula to compare the multigranular uncertain linguistic
variables.

Definition 3. Let 𝑠(𝑔1)1 = [𝑠
(𝑔
1
)
𝛼
1

, 𝑠
(𝑔
1
)

𝛽
1

] and 𝑠
(𝑔
2
)

2 = [𝑠
(𝑔
2
)
𝛼
2

, 𝑠
(𝑔
2
)

𝛽
2

] be
uncertain linguistic variables and their linguistic values from
linguistic terms sets with granularities𝑔1 and 𝑔2, respectively,
and then the possibility degree 𝑠

𝑔
1

1 dominate 𝑠
𝑔
2

2 is defined as

𝑃 (𝑠
(𝑔
1
)

1 ≥ 𝑠
(𝑔
2
)

2 )

= (max {0, (𝑔2 − 1) 𝛽1 − (𝑔1 − 1) 𝛼2}

−max {0, (𝑔2 − 1) 𝛼1 − (𝑔1 − 1) 𝛽2})

× ((𝑔2 − 1) (𝛽1 − 𝛼1) + (𝑔1 − 1) (𝛽2 − 𝛼2))
−1

.

(3)

If 𝑠(𝑔1)𝛼
1

= 𝑠
(𝑔
1
)

𝛽
1

and 𝑠
(𝑔
2
)
𝛼
2

= 𝑠
(𝑔
2
)

𝛽
2

, then the possibility degree
𝑠
𝑔
1

1 dominate 𝑠
𝑔
2

2 is defined as

𝑃 (𝑠
(𝑔
1
)

1 ≥ 𝑠
(𝑔
2
)

2 ) =

{{

{{

{

1, if (𝑔2 − 1) 𝑠
(𝑔
1
)
𝛼
1

> (𝑔1 − 1) 𝑠
(𝑔
2
)
𝛼
2

0.5, if (𝑔2 − 1) 𝑠
(𝑔
1
)
𝛼
1

= (𝑔1 − 1) 𝑠
(𝑔
2
)
𝛼
2

0, if (𝑔2 − 1) 𝑠
(𝑔
1
)
𝛼
1

< (𝑔1 − 1) 𝑠
(𝑔
2
)
𝛼
2

.

(4)

FromDefinition 3, we can easily get the following results:

(1) 0 ≤ 𝑃(𝑠
(𝑔
1
)

1 ≥ 𝑠
(𝑔
2
)

2 ) ≤ 1, Especially, 𝑃(𝑠
(𝑔
1
)

1 ≥ 𝑠
(𝑔
1
)

1 ) =

0.5,
(2) 𝑃(𝑠

(𝑔
1
)

1 ≥ 𝑠
(𝑔
2
)

2 ) + 𝑃(𝑠
(𝑔
2
)

2 ≥ 𝑠
(𝑔
1
)

1 ) = 1,

especially, 𝑃(𝑠
(𝑔
1
)

1 ≥ 𝑠
(𝑔
2
)

2 ) = 𝑃(𝑠
(𝑔
2
)

2 ≥ 𝑠
(𝑔
1
)

1 ) = 0.5,

(3) 𝑃(𝑠
(𝑔
1
)

1 ≥ 𝑠
(𝑔
2
)

2 ) = 𝑃(𝜆𝑠
(𝑔
1
)

1 ≥ 𝜆𝑠
(𝑔
2
)

2 ), where 𝜆 ∈

(−∞, 0) ∪ (0, +∞).
Note that if 𝑔1 = 𝑔2 = ⋅ ⋅ ⋅ = 𝑔𝑛, then the above

results reduced to the ones of uncertain linguistic variables
[13]. Based on the possibility degree and the idea of [42], the
relative possibility degree 𝑃(𝑠

(𝑔
𝑖
)

𝑖
) of 𝑠
(𝑔
𝑖
)

𝑖
over all 𝑠(𝑔𝑗)

𝑗
(𝑗 =

1, 2, . . . , 𝑛) can be defined as follows:

𝑃 (𝑠
(𝑔
𝑖
)

𝑖
) =

1

𝑛 (𝑛 − 1)
(

𝑛

∑

𝑗=1

𝑃(𝑠
(𝑔
𝑖
)

𝑖
≥ 𝑠
(𝑔
𝑗
)

𝑗
) +

𝑛

2
− 1) . (5)



4 Journal of Applied Mathematics

2.2. Prioritized Aggregation Operators. The prioritized aver-
age (PA) operator is an aggregation operator in which there
exists a prioritization relationship between the arguments
[36]. The prioritizations of arguments are modeled by using
importance weights in which the weights associated with the
lower priority criteria are related to the satisfaction of the
higher priority criteria, which were defined as follows.

Definition 4 (see [37]). Let 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑛} be a
collection of the criteria and that there is a prioritization
between the criteria expressed by the linear ordering 𝐶1 ≻

𝐶2 ≻ ⋅ ⋅ ⋅ ≻ 𝐶𝑛, indicating that criteria 𝐶𝑗 have a higher
priority than 𝐶𝑘, if 1 ≤ 𝑗 < 𝑘 ≤ 𝑛. The value 𝐶𝑗(𝑥) is
the performance of any alternative 𝑥 under attribute 𝐶𝑗 and
satisfies 𝐶𝑗(𝑥) ∈ [0, 1]. If

PWA (𝐶𝑗 (𝑥)) =

𝑛

∑

𝑗=1

𝜔𝑗𝐶𝑗 (𝑥) , (6)

where𝜔𝑗 = 𝑇𝑗/∑
𝑛

𝑗=1 𝑇𝑗, 𝑇𝑗 = ∏
𝑗−1

𝑘=1
𝐶𝑘(𝑥) (𝑗 = 2, . . . , 𝑛), 𝑇1 =

1, then PWA is called the prioritized weighted average (PWA)
operator.

The PWA operator emphasizes the situation where lack
of satisfaction of higher priority criteria cannot be compen-
sated for by satisfaction of lower priority criteria. The PWA
operator is monotonic, bounded, and idempotent [37].

Afterwards, Yager embedded priority weights into the
importance weighted OWA operator and presented a prior-
itized ordered weighted average (POWA) operator.

Definition 5 (see [43]). An OWA operator of dimension 𝑛 is
a mapping OWA : 𝑅

𝑛
→ 𝑅 so that

OWA (𝑎1, 𝑎2, . . . , 𝑎𝑛) =

𝑛

∑

𝑗=1

𝑤𝑗𝑎𝜎(𝑗), (7)

where 𝜎(⋅) : 1, 2, . . . , 𝑛 → 1, 2, . . . , 𝑛 is a permutation
function such that 𝜎(𝑗 − 1) ≥ 𝜎(𝑗), 𝑤𝑗 (𝑗 = 2, . . . , 𝑛) are
ordered weights such that

𝑤𝑗 = 𝑄(
𝑗

𝑛
) − 𝑄(

𝑗 − 1

𝑛
) , 𝑗 = 1, 2, . . . , 𝑛 (8)

in which 𝑄 : [0, 1] → [0, 1] is a basic unit-interval
monotonic (BUM) function having the following properties:
(1) 𝑄(0) = 0, (2) 𝑄(1) = 1, (3) 𝑄(𝑥) ≥ 𝑄(𝑦), if 𝑥 ≥ 𝑦.

In [44], Yager considered the situation that the argument
variable 𝑎𝑗 is associated with an importance V𝑗 and gave a
policy to derive ordered weights of OWA operator based on
the importance of argument variable:

𝑤𝑗 = 𝑄(
∑
𝑗

𝑘=1
V𝜎(𝑘)

∑
𝑛

𝑘=1 V𝜎(𝑘)
) − 𝑄(

∑
𝑗−1

𝑘=1
V𝜎(𝑘)

∑
𝑛

𝑘=1 V𝜎(𝑘)
) , 𝑗 = 1, 2, . . . , 𝑛.

(9)

Substituting (9) into (7), we get

OWA ((𝑎1, V1) , (𝑎2, V2) , . . . , (𝑎𝑛, V𝑛))

=

𝑛

∑

𝑗=1

(𝑄(
∑
𝑗

𝑘=1
V𝜎(𝑘)

∑
𝑛

𝑘=1 V𝜎(𝑘)
) − 𝑄(

∑
𝑗−1

𝑘=1
V𝜎(𝑘)

∑
𝑛

𝑘=1 V𝜎(𝑘)
))𝑎𝜎(𝑗).

(10)

According to the importance weighted OWA operator,
Yager takes the prioritized weights as a special importance
weights and normally presented the prioritized OWA oper-
ator [38], which was defined as follows.

Definition 6. Let 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑛} be a collection of
criteria and that there is a prioritization between the criteria
expressed by the linear ordering 𝐶1 ≻ 𝐶2 ≻ ⋅ ⋅ ⋅ ≻ 𝐶𝑛,
indicating attribute𝐶𝑗 has a higher priority than𝐶𝑘, if 1 ≤ 𝑗 <

𝑘 ≤ 𝑛. The value 𝐶𝑗(𝑥) is the performance of any alternative
𝑥 under attribute 𝐶𝑗 and satisfies 𝐶𝑗(𝑥) ∈ [0, 1]. If

POWA (𝐶𝑗 (𝑥)) =

𝑛

∑

𝑗=1

𝑤𝑗𝐶𝜎(𝑗) (𝑥) ,

𝑤𝑗 = 𝑄(
∑
𝑗

𝑘=1
𝑇𝜎(𝑘)

∑
𝑛

𝑗=1 𝑇𝑗

) − 𝑄(
∑
𝑗−1

𝑘=1
𝑇𝜎(𝑘)

∑
𝑛

𝑗=1 𝑇𝑗

) , 𝑗 = 1, 2, . . . , 𝑛,

(11)

where 𝜎(⋅) : 1, 2, . . . , 𝑛 → 1, 2, . . . , 𝑛 is a permutation
function such that 𝜎(𝑗 − 1) ≥ 𝜎(𝑗), 𝑇𝑗 = ∏

𝑗−1

𝑘=1
𝐶𝑘(𝑥) (𝑗 =

2, . . . , 𝑛), 𝑇1 = 1, 𝑇𝜎(0) = 0. Then POWA is called the
prioritized ordered weighting average (POWA) operator.

The POWA operator is also monotonic, bounded, and
idempotent.

3. Multigranular Uncertain Linguistic
Prioritized Operators

In this section, we will investigate the prioritized aggregation
operators under multigranular uncertain linguistic environ-
ments.

3.1. Multigranular Uncertain Linguistic PrioritizedWAOpera-
tor. Based on Definition 4 and the operational laws of multi-
granular uncertain linguistic variables, we give the definition
of themultigranular uncertain linguistic prioritized weighted
average (MULPWA) operator as follows.

Definition 7. Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠(𝑔𝑗)𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)
(𝑗 =

1, 2, . . . , 𝑛) be a collection of multi- granular uncertain
linguistic variables (MULV), which are prioritized such that
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𝑠
(𝑔
𝑖
)

𝑖
≻ 𝑠
(𝑔
𝑗
)

𝑗
if 𝑖 < 𝑗, and then the MULPWA operator is

defined as follows:

MULPWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

=
𝑇1

∑
𝑛

𝑗=1 𝑇𝑗

𝑠
(𝑔
1
)

1 ⊕
𝑇2

∑
𝑛

𝑗=1 𝑇𝑗

𝑠
(𝑔
2
)

2 ⊕ ⋅ ⋅ ⋅ ⊕
𝑇𝑛

∑
𝑛

𝑗=1 𝑇𝑗

𝑠
(𝑔
𝑛
)

𝑛

=

𝑛

⨁

𝑗=1

(

𝑇𝑗𝑠
(𝑔
𝑗
)

𝑗

∑
𝑛

𝑗=1 𝑇𝑗

) ,

(12)

where 𝑇𝑗 = ∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇1 = 1, and

𝑃(𝑠
(𝑔
𝑘
)

𝑘
) is the possibility degree of 𝑠

(𝑔
𝑘
)

𝑘
among the 𝑠

(𝑔
𝑗
)

𝑗
(𝑗 =

1, 2, . . . , 𝑛). In particular, if 𝑔1 = 𝑔2 = ⋅ ⋅ ⋅ = 𝑔𝑛, then
the MULPWA operator returns to an uncertain linguistic
prioritized weighted average (ULPWA) operator; if 𝑠

(𝑔
𝑗
)

𝛼
𝑗

=

𝑠
(𝑔
𝑗
)

𝛽
𝑗

for all 𝑗 = 1, 2, . . . , 𝑛, then the MULPWA operator
returns to a multigranular linguistic prioritized weighted
average (MLPWA) operator.

From (12), we know that:

(1) since 𝑇𝑗 ≥ 𝑇𝑘 for 𝑗 < 𝑘, then a criterion can never
have a bigger priority weight than a criterion that has
a higher priority than it;

(2) theMULPWAoperator consists of the following three
steps:

(a) calculate the relative possibility degrees
𝑃(𝑠
(𝑔
𝑗
)

𝑗
) (𝑗 = 1, 2, . . . , 𝑛) of the multigranular

uncertain linguistic arguments variables
𝑠
(𝑔
𝑗
)

𝑗
(𝑗 = 1, 2, . . . , 𝑛) by (3) and (5);

(b) determine the prioritized levels 𝑇𝑗 =

∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛) and ∑

𝑛

𝑗=1 𝑇𝑗;

(c) derive the aggregated results 𝑠
(𝑔
𝑗
)

𝑗
(𝑗 =

1, 2, . . . , 𝑛) according to ⊕
𝑛
𝑗=1(𝑇𝑗/∑

𝑛

𝑗=1 𝑇𝑗)𝑠
(𝑔
𝑗
)

𝑗
.

Example 8. Given the collection of multigranular uncertain
linguistic variables 𝑠

(7)
1 = [𝑠

(7)
3 , 𝑠
(7)
5 ], 𝑠(11)2 = [𝑠

(11)
4 , 𝑠
(11)
6 ], 𝑠(5)3 =

[𝑠
(5)
2 , 𝑠
(5)
3 ], and 𝑠

(9)
4 = [𝑠

(9)
5 , 𝑠
(9)
6 ], the prioritized relations are

𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥4.

By (3), we have

𝑃 (𝑠
(7)

1 ≥ 𝑠
(11)

2 )

= (max {0, (11 − 1) 5 − (7 − 1) 4}

−max {0, (11 − 1) 3 − (7 − 1) 6})

× ((11 − 1) (5 − 3) + (7 − 1) (6 − 4))
−1

= 0.8125.

(13)

Table 1: Possibility degree matrix.

𝑠
(7)

1 𝑠
(11)

2 𝑠
(5)

3 𝑠
(9)

4

𝑠
(7)

1 0.5000 0.8125 0.5714 0.4545
𝑠
(11)

2 0.1875 0.5000 0.2222 0.0000
𝑠
(5)

3 0.4268 0.7778 0.5000 0.3333
𝑠
(9)
4 0.5455 1.0000 0.6667 0.5000

Similarly, we can derive all pair comparisons among
the multigranular uncertain linguistic values and form a
possibility degree matrix as shown in Table 1.

Utilize (5) to derive the relative possibility degrees
𝑃(𝑠
(𝑔
𝑖
)

𝑖
) (𝑖 = 1, 2, 3, 4) over all the other alternatives:

𝑃 (𝑠
(7)

1 ) =
1

4 (4 − 1)

× (0.5000 + 0.8125 + 0.5714 + 0.4545 + 2 − 1)

= 0.2782,

𝑃 (𝑠
(11)

2 ) =
1

4 (4 − 1)

× (0.1875 + 0.5000 + 0.2222 + 0.0000 + 1)

= 0.1592,

𝑃 (𝑠
(5)

3 ) =
1

4 (4 − 1)

× (0.4268 + 0.7778 + 0.5000 + 0.3333 + 1)

= 0.2532,

𝑃 (𝑠
(9)

4 ) =
1

4 (4 − 1)

× (0.5455 + 1.0000 + 0.6667 + 0.5000 + 1)

= 0.3094.

(14)

Then determine the prioritized levels 𝑇𝑗 (𝑗 =

1, 2, 3, 4) 𝑇1 = 1, 𝑇2 = 0.2782, 𝑇3 = 0.2782 × 0.1592 =

0.0443, 𝑇4 = 0.2782 × 0.1592 × 0.2523 = 0.0112, and
∑
4

𝑗=1 𝑇𝑗 = 1.3337.
Thus,

MULPWA (𝑠
(7)

1 , 𝑠
(11)

2 , 𝑠
(5)

3 , 𝑠
(9)

4 )

=
1

1.3337
[𝑠
(7)

3 , 𝑠
(7)

5 ] ⊕
0.2782

1.3337
[𝑠
(11)

4 , 𝑠
(11)

6 ]

⊕
0.0443

1.3337
[𝑠
(5)

2 , 𝑠
(5)

3 ] ⊕
0.0112

1.3337
[𝑠
(9)

5 , 𝑠
(9)

6 ]

=
1

1.3337
[𝑠
(11)

(11−1)/(7−1)×3
, 𝑠
(11)

(11−1)/(7−1)×5
]

⊕
0.2782

1.3337
[𝑠
(11)

(11−1)/(11−1)×4
, 𝑠
(11)

(11−1)/(11−1)×6
]
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⊕
0.0443

1.3337
[𝑠
(11)

(11−1)/(5−1)×2
, 𝑠
(11)

(11−1)/(5−1)×3
]

⊕
0.0112

1.3337
[𝑠
(11)

(11−1)/(9−1)×5
, 𝑠
(11)

(11−1)/(9−1)×6
]

= [𝑠
(11)

4.802, 𝑠
(11)

7.8121] .

(15)

Similar to the PWA operator, it can be easily proved that
the MULPWA operator has the following properties.

Theorem 9 (idempotency). Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠

(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

],

𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)
(𝑗 = 1, 2, . . . , 𝑛) be a collection of MULV,

where 𝑇𝑗 = ∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇1 = 1, and 𝑃(𝑠

(𝑔
𝑘
)

𝑘
) is

the possibility degree of 𝑠
(𝑔
𝑘
)

𝑘
. If 𝑠
(𝑔
𝑗
)

𝑗
= 𝑠
 for all 𝑗 = 1, 2, . . . , 𝑛,

then

MULPWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 ) = 𝑠

. (16)

Proof. Since 𝑠
(𝑔
𝑗
)

𝑗
= 𝑠
 for all 𝑗 = 1, 2, . . . , 𝑛, we can get

𝑃(𝑠
(𝑔
𝑗
)

𝑗
) = 0.5 for all 𝑗 = 1, 2, . . . , 𝑛, then 𝑇


1 = 1, 𝑇𝑗 =

(0.5)
𝑗−1

(𝑗 = 2, . . . , 𝑛).

MULPWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

=

𝑛

⨁

𝑗=1

(

𝑇𝑗𝑠
(𝑔
𝑗
)

𝑗

∑
𝑛

𝑗=1 𝑇𝑗

) =

𝑛

⨁

𝑗=1

(

𝑇

𝑗𝑠


∑
𝑛

𝑗=1 𝑇

𝑗

) = 𝑠

.

(17)

Theorem 10 (boundedness). Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠

(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

],

𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)
(𝑗 = 1, 2, . . . , 𝑛) be a collection of MULV,

𝑇𝑗 = ∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇1 = 1, and 𝑃(𝑠

(𝑔
𝑘
)

𝑘
) is the

possibility degree of 𝑠
(𝑔
𝑘
)

𝑘
, and then

min
𝑗

{𝑠
(𝑔
𝑗
)

𝑗
} ≤ MULPWA (𝑠

(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

≤ max
𝑗

{𝑠
(𝑔
𝑗
)

𝑗
} .

(18)

Proof. Since

MULPWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

=

𝑛

⨁

𝑗=1

(

𝑇𝑗𝑠
(𝑔
𝑗
)

𝑗

∑
𝑛

𝑗=1 𝑇𝑗

) ≤

𝑛

⨁

𝑗=1

(

𝑇𝑗𝑠
∗(𝑔
𝑗
)

𝑗

∑
𝑛

𝑗=1 𝑇𝑗

)

=

𝑛

⨁

𝑗=1

(

𝑇

𝑗𝑠
∗(𝑔
𝑗
)

𝑗

∑
𝑛

𝑗=1 𝑇𝑗

)

= 𝑠
∗(𝑔
𝑗
)

𝑗
= max
𝑗

{𝑠
(𝑔
𝑗
)

𝑗
}MULPWA (𝑠

(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

=

𝑛

⨁

𝑗=1

(

𝑇𝑗𝑠
(𝑔
𝑗
)

𝑗

∑
𝑛

𝑗=1 𝑇𝑗

) ≥

𝑛

⨁

𝑗=1

(

𝑇𝑗𝑠
−(𝑔
𝑗
)

𝑗

∑
𝑛

𝑗=1 𝑇𝑗

)

=

𝑛

⨁

𝑗=1

(

𝑇

𝑗𝑠
−(𝑔
𝑗
)

𝑗

∑
𝑛

𝑗=1 𝑇

𝑗

)

= 𝑠
−(𝑔
𝑗
)

𝑗
= min
𝑗

{𝑠
(𝑔
𝑗
)

𝑗
} ,

(19)

thus min𝑗{𝑠
(𝑔
𝑗
)

𝑗
} ≤ MULPWA(𝑠

(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)
𝑛 ) ≤

max𝑗{𝑠
(𝑔
𝑗
)

𝑗
}.

Theorem 11 (monotonicity). Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠

(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

],

𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
), 𝑠(𝑔𝑗)
𝑗

= [𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)

(𝑗 = 1, 2, . . . , 𝑛) be two collections of MULV, where
𝑇𝑗 = ∏

𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
), 𝑇

𝑗 = ∏

𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛),

𝑇1 = 1, 𝑇1 = 1, and 𝑃(𝑠
(𝑔
𝑘
)

𝑘
) and 𝑃(𝑠

(𝑔
𝑘
)

𝑘
) are the possibility

degrees of 𝑠
(𝑔
𝑘
)

𝑘
and 𝑠
(𝑔
𝑘
)

𝑘
, respectively. If 𝑠

(𝑔
𝑗
)

𝑗
≤ 𝑠
(𝑔
𝑗
)

𝑗
for all

𝑗 = 1, 2, . . . , 𝑛, then

MULPWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

≤ MULPWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 ) .

(20)

Proof. Since MULPWA(𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)
𝑛 ) = ⊕

𝑛
𝑗=1

(𝑇𝑗𝑠
(𝑔
𝑗
)

𝑗
/∑
𝑛

𝑗=1 𝑇𝑗), and MULPWA(𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

= ⊕
𝑛
𝑗=1(𝑇

𝑗𝑠
(𝑔
𝑗
)

𝑗
/∑
𝑛

𝑗=1 𝑇

𝑗) and meanwhile, since 𝑠

(𝑔
𝑗
)

𝑗
≤ 𝑠
(𝑔
𝑗
)

𝑗

for all 𝑗 = 1, 2, . . . , 𝑛, 𝑇𝑗 ≥ 𝑇

𝑗 , 𝑇1 ≥ 𝑇2 ≥ ⋅ ⋅ ⋅ ≥ 𝑇𝑛, and

𝑇

1 ≥ 𝑇

2 ≥ ⋅ ⋅ ⋅ ≥ 𝑇


𝑛.

Thus, MULPWA(𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)
𝑛 ) ≤ MULPWA(𝑠

(𝑔
1
)

1 ,

𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 ).

Theorem 12. Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠(𝑔𝑗)𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)
(𝑗 = 1,

2, . . . , 𝑛) be a collection of MULV, where 𝑇𝑗 = ∏
𝑗−1

𝑘=1

𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇1 = 1, and 𝑃(𝑠

(𝑔
𝑘
)

𝑘
) is the possibility

degree of 𝑠(𝑔𝑘)
𝑘

. If 𝜇 > 0, then

MULPWA (𝜇𝑠
(𝑔
1
)

1 , 𝜇𝑠
(𝑔
2
)

2 , . . . , 𝜇𝑠
(𝑔
𝑛
)

𝑛 )

= 𝜇 MULPWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 ) .

(21)

Proof. Since

𝑃 (𝜇𝑠
(𝑔
1
)

1 ≥ 𝜇𝑠
(𝑔
2
)

2 )

= (max {0, (𝑔2 − 1) 𝜇𝛽1 − (𝑔1 − 1) 𝜇𝛼2}

−max {0, (𝑔2 − 1) 𝜇𝛼1 − (𝑔1 − 1) 𝜇𝛽2})

× ((𝑔2 − 1)(𝜇𝛽1 − 𝜇𝛼1) + (𝑔1 − 1)(𝜇𝛽2 − 𝜇𝛼2))
−1
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= (max {0, (𝑔2 − 1) 𝛽1 − (𝑔1 − 1) 𝛼2}

−max {0, (𝑔2 − 1) 𝛼1 − (𝑔1 − 1) 𝛽2})

× ((𝑔2 − 1)(𝛽1 − 𝛼1) + (𝑔1 − 1)(𝛽2 − 𝛼2))
−1

= 𝑃 (𝑠
(𝑔
1
)

1 ≥ 𝑠
(𝑔
2
)

2 ) ,

(22)

then 𝑃(𝜇𝑠
(𝑔
1
)

1 ) = 𝑃(𝑠
(𝑔
1
)

1 ), 𝑔1 = 𝑔2 = ⋅ ⋅ ⋅ = 𝑔𝑛, and then

MUPWG (𝜇𝑠
(𝑔
1
)

1 , 𝜇𝑠
(𝑔
2
)

2 , . . . , 𝜇𝑠
(𝑔
𝑛
)

𝑛 )

= 𝜇MUPWG (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 ) .

(23)

3.2. Multigranular Uncertain Linguistic Prioritized OWA
Operator. Based on Definition 6 and the operational laws of
multigranular uncertain linguistic variables, we give the def-
inition of the multigranular uncertain linguistic prioritized
ordered weighted average (MULPOWA) operator as follows.

Definition 13. Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠(𝑔𝑗)𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)
(𝑗 =

1, 2, . . . , 𝑛) be a collection of multigranular uncertain linguis-
tic variables (MULV), which are prioritized such that 𝑠(𝑔𝑖)

𝑖
≻

𝑠
(𝑔
𝑗
)

𝑗
. If 𝑖 < 𝑗, then the MULPOWA operator is defined as

follows:

MULPOWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

=

𝑛

⨁

𝑗=1

(𝑄(
∑
𝑗

𝑘=1
𝑇𝜎(𝑘)

∑
𝑛

𝑗=1 𝑇𝑗

) − 𝑄(
∑
𝑗−1

𝑘=1
𝑇𝜎(𝑘)

∑
𝑛

𝑗=1 𝑇𝑗

)) 𝑠
(𝑔
𝑗
)

𝜎(𝑗)
,

(24)

where 𝜎(⋅) : 1, 2, . . . , 𝑛 → 1, 2, . . . , 𝑛 is a permutation
function such that 𝜎(𝑗 − 1) ≥ 𝜎(𝑗), 𝑇𝑗 = ∏

𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 =

2, . . . , 𝑛), 𝑇1 = 1, 𝑇𝜎(0) = 0, and 𝑃(𝑠
(𝑔
𝑘
)

𝑘
) is the possibility

degree of 𝑠
(𝑔
𝑘
)

𝑘
. In particular, if 𝑔1 = 𝑔2 = ⋅ ⋅ ⋅ = 𝑔𝑛, then

the MULPOWA operator returns to an uncertain linguistic
prioritized ordered weighted average (ULPOWA) operator;
if 𝑠
(𝑔
𝑗
)

𝛼
𝑗

= 𝑠
(𝑔
𝑗
)

𝛽
𝑗

for all 𝑗 = 1, 2, . . . , 𝑛, then the MULPOWA
operator returns to a multigranular linguistic prioritized
weighted average (MLPWA) operator.

The aggregation process of the MULPOWA operator
consists of the following four steps:

(1) calculate the possibility degrees 𝑃(𝑠
(𝑔
𝑗
)

𝑗
) (𝑗 =

1, 2, . . . , 𝑛) of the multigranular; uncertain linguistic
arguments variables 𝑠

(𝑔
𝑗
)

𝑗
(𝑗 = 1, 2, . . . , 𝑛) by (3) and

(5);
(2) determine the prioritized levels 𝑇𝑗 =

∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛) and ∑

𝑛

𝑗=1 𝑇𝑗;

(3) reorder the input arguments 𝑎𝑗 in descending order
and associate with 𝑇𝑗;

(4) derive the aggregated results of 𝑠(𝑔𝑗)
𝑗

(𝑗 = 1, 2, . . . , 𝑛)

according to

𝑛

⨁

𝑗=1

(𝑄(
∑
𝑗

𝑘=1
𝑇𝜎(𝑘)

∑
𝑛

𝑗=1 𝑇𝑗

) − 𝑄(
∑
𝑗−1

𝑘=1
𝑇𝜎(𝑘)

∑
𝑛

𝑗=1 𝑇𝑗

)) 𝑠
(𝑔
𝑗
)

𝜎(𝑗)
. (25)

Example 14. Given the collection of multigranular uncertain
linguistic variables 𝑠

(7)
1 = [𝑠

(7)
3 , 𝑠
(7)
5 ], 𝑠(11)2 = [𝑠

(11)
4 , 𝑠
(11)
6 ], 𝑠(5)3 =

[𝑠
(5)
2 , 𝑠
(5)
3 ], and 𝑠

(9)
4 = [𝑠

(9)
5 , 𝑠
(9)
6 ], the prioritized relations are

𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥4.

Since 𝑃(𝑠
(9)
4 ) = 0.3094 > 𝑃(𝑠

(7)
1 ) = 0.2782 > 𝑃(𝑠

(5)
3 ) =

0.2532 > 𝑃(𝑠
(11)
2 ) = 0.1592, 𝑠(9)4 ≻ 𝑠

(7)
1 ≻ 𝑠

(5)
3 ≻ 𝑠

(11)
2 . 𝑇1 = 1,

𝑇2 = 0.2782, 𝑇3 = 0.0443, 𝑇4 = 0.0112, and∑
4

𝑗=1 𝑇𝑗 = 1.3337,
𝑄(𝑟) = 𝑟

2. Consider

MULPOWA (𝑠
(7)

1 , 𝑠
(11)

2 , 𝑠
(5)

3 , 𝑠
(9)

4 )

= (𝑄(
𝑇4

∑
4

𝑗=1 𝑇𝑗

) − 𝑄(
𝑇0

∑
4

𝑗=1 𝑇𝑗

)) 𝑠
(9)

4

⊕ (𝑄(
𝑇4 + 𝑇1

∑
4

𝑗=1 𝑇𝑗

) − 𝑄(
𝑇4

∑
4

𝑗=1 𝑇𝑗

)) 𝑠
(7)

1

⊕ (𝑄(
𝑇4 + 𝑇1 + 𝑇3

∑
4

𝑗=1 𝑇𝑗

) − 𝑄(
𝑇4 + 𝑇1

∑
4

𝑗=1 𝑇𝑗

)) 𝑠
(5)

3

⊕ (𝑄(
𝑇4 + 𝑇1 + 𝑇3 + 𝑇2

∑
4

𝑗=1 𝑇𝑗

)

−𝑄(
𝑇4 + 𝑇1 + 𝑇3

∑
4

𝑗=1 𝑇𝑗

)) 𝑠
(11)

2

= (𝑄 (0.0084) − 𝑄 (0)) [𝑠
(9)

5 , 𝑠
(9)

6 ]

⊕ (𝑄 (0.7582) − 𝑄 (0.0084)) [𝑠
(7)

3 , 𝑠
(7)

5 ]

⊕ (𝑄 (0.7914) − 𝑄 (0.7582)) [𝑠
(5)

2 , 𝑠
(5)

3 ]

⊕ (𝑄 (1) − 𝑄 (0.7914)) [𝑠
(11)

4 , 𝑠
(11)

6 ]

= 0.0001 [𝑠
(11)

(11−1)/(9−1)×5
, 𝑠
(11)

(11−1)/(9−1)×6
]

+ 0.5748 [𝑠
(11)

(11−1)/(7−1)×3
, 𝑠
(11)

(11−1)/(7−1)×5
]

+ 0.0514 [𝑠
(11)

(11−1)/(5−1)×2
, 𝑠
(11)

(11−1)/(5−1)×3
]

+ 0.3737 [𝑠
(11)

(11−1)/(11−1)×4
, 𝑠
(11)

(11−1)/(11−1)×6
]

= [𝑠
(11)

4.4 , 𝑠
(11)

7.07] .

(26)
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Similarly to Theorems 9–12 and (24), it can be easily
proved that the MULPOWA operator has the following
properties.

Theorem 15 (idempotency). Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠
(𝑔
𝑗
)

𝛼
𝑗

,

𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)
(𝑗 = 1, 2, . . . , 𝑛) be a collection of MULV, where

𝑇𝑗 = ∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇1 = 1, 𝑇𝜎(0) = 0, and

𝑃(𝑠
(𝑔
𝑘
)

𝑘
) is the possibility degree of 𝑠

(𝑔
𝑘
)

𝑘
. If 𝑠
(𝑔
𝑗
)

𝑗
= 𝑠
 for all

𝑗 = 1, 2, . . . , 𝑛, then

MULPOWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 ) = 𝑠

. (27)

Theorem 16 (boundedness). Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠
(𝑔
𝑗
)

𝛼
𝑗

,

𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)
(𝑗 = 1, 2, . . . , 𝑛) be a collection of MULV, 𝑇𝑗 =

∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇1 = 1, 𝑇𝜎(0) = 0, and 𝑃(𝑠

(𝑔
𝑘
)

𝑘
) is

the possibility degree of 𝑠
(𝑔
𝑘
)

𝑘
, and then

min
𝑗

{𝑠
(𝑔
𝑗
)

𝑗
}≤ MULPOWA (𝑠

(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

≤ max
𝑗

{𝑠
(𝑔
𝑗
)

𝑗
} .

(28)

Theorem 17 (monotonicity). Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠
(𝑔
𝑗
)

𝛼
𝑗

,

𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
), 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈ 𝑆
(𝑔
𝑗
)

(𝑗 = 1, 2, . . . , 𝑛) be two collections of MULV, where 𝑇𝑗 =

∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
), 𝑇𝑗 = ∏

𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇1 = 1, 𝑇1 =

1, 𝑇𝜎(0) = 0, 𝑇𝜎(0) = 0,𝑃(𝑠
(𝑔
𝑘
)

𝑘
) and 𝑃(𝑠

(𝑔
𝑘
)

𝑘
) are the possibility

degrees of 𝑠
(𝑔
𝑘
)

𝑘
and 𝑠
(𝑔
𝑘
)

𝑘
, respectively. If 𝑠

(𝑔
𝑗
)

𝑗
≤ 𝑠
(𝑔
𝑗
)

𝑗
for all

𝑗 = 1, 2, . . . , 𝑛, then

MULPOWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 )

≤ MULPOWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 ) .

(29)

Theorem 18. Let 𝑠
(𝑔
𝑗
)

𝑗
= [𝑠

(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

], 𝑠
(𝑔
𝑗
)

𝛼
𝑗

, 𝑠
(𝑔
𝑗
)

𝛽
𝑗

∈

𝑆
(𝑔
𝑗
)
(𝑗 = 1, 2, . . . , 𝑛) be a collection of MULV, where

𝑇𝑗 = ∏
𝑗−1

𝑘=1
𝑃(𝑠
(𝑔
𝑘
)

𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇1 = 1, 𝑇𝜎(0) = 0, and

𝑃(𝑠
(𝑔
𝑘
)

𝑘
) is the possibility degree of 𝑠

(𝑔
𝑘
)

𝑘
. If 𝜇 > 0, then

MULPOWA (𝜇𝑠
(𝑔
1
)

1 , 𝜇𝑠
(𝑔
2
)

2 , . . . , 𝜇𝑠
(𝑔
𝑛
)

𝑛 )

= 𝜇 MULPOWA (𝑠
(𝑔
1
)

1 , 𝑠
(𝑔
2
)

2 , . . . , 𝑠
(𝑔
𝑛
)

𝑛 ) .

(30)

4. An Approach to Multiple Criteria Group
Decision Making with Prioritized Levels

Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} be a set of alternatives, 𝐶 =

{𝐶1, 𝐶2, . . . , 𝐶𝑛} a collection of criteria, and 𝑒 = (𝑒1, 𝑒2, . . . , 𝑒𝑝)

the set of DMs. There is a prioritization between the criteria
expressed by the linear ordering 𝐶1 ≻ 𝐶2 ≻ ⋅ ⋅ ⋅ ≻ 𝐶𝑛,

indicating that attribute 𝐶𝑗 has a higher priority than 𝐶𝑘, if
1 ≤ 𝑗 < 𝑘 ≤ 𝑛 and a prioritization between the experts
expressed by the linear ordering 𝑒1 ≻ 𝑒2 ≻ ⋅ ⋅ ⋅ ≻ 𝑒𝑝, indicating
that attribute 𝑒𝑗 has a higher priority than 𝑒𝑘, if 1 ≤ 𝑗 < 𝑘 ≤ 𝑝.
Suppose that 𝐴

𝑘
= (𝑎
𝑘
𝑖𝑗)𝑚×𝑛

is the multigranular uncertain

linguistic decision matrix provided by 𝑒𝑘, where 𝑎
𝑘
𝑖𝑗 ∈ 𝑆
(𝑔
𝑘
) is

the criteria value of 𝐶𝑗 with respect to alternative 𝑥𝑖.
In the following, we apply the MULPWA and

MULPOWA operators to multiple criteria group decision
making based on multigranular uncertain linguistic
information. The method involves the following steps.

Step 1. Select the basic linguistic term set 𝑔∗ (in general, the
BLT can be chosen by the decision makers directly).

Step 2. Calculate the relative possibility degree of 𝑎
𝑘
𝑖𝑗 by

utilizing (3) and (5):

𝑃 (𝑎
𝑘

𝑖𝑗) =
1

𝑛 (𝑛 − 1)
(

𝑛

∑

𝑡=1

𝑃 (𝑎
𝑘

𝑖𝑗 ≥ 𝑎
𝑘

𝑖𝑡) +
𝑛

2
− 1) . (31)

Step 3. Based on the relative possibility degree, determine the
values of 𝑇𝑘𝑖𝑗 with the following expression:

𝑇
𝑘

𝑖𝑗 =

{{

{{

{

1, 𝑗 = 1

𝑗−1

∏
𝑞=1

𝑃 (𝑎
𝑘
𝑖𝑞) , 𝑗 = 2, . . . , 𝑛.

(32)

Step 4. Utilize the MULPWA operator (12) to aggregate the
values 𝑎

𝑘
𝑖𝑗 in the 𝑖th row of𝐴𝑘 and get the individual decision

results 𝑎𝑘𝑖 corresponding to the alternative 𝑥𝑖:

𝑎
𝑘

𝑖 = MUPWA (𝑎
𝑘

𝑖1, 𝑎
𝑘

𝑖2, . . . , 𝑎
𝑘

𝑖𝑛)

=

𝑛

⨁

𝑗=1

(

𝑇
𝑘
𝑖𝑗𝑎
𝑘
𝑖𝑗

∑
𝑛

𝑗=1 𝑇
𝑘
𝑖𝑗

) , 𝑖 = 1, 2 . . . , 𝑚, 𝑘 = 1, 2, . . . , 𝑝.

(33)

Step 5. Calculate the relative possibility degree of 𝑎
𝑘
𝑖 , by

utilizing (3) and (5) again:

𝑃 (𝑎
𝑘

𝑖 ) =
1

𝑝 (𝑝 − 1)
(

𝑝

∑

𝑡=1

𝑃 (𝑎
𝑘

𝑖 ≥ 𝑎
𝑡

𝑖 ) +
𝑝

2
− 1) . (34)

Step 6. Calculate the values of the values of 𝑇𝑘𝑖 :

𝑇
𝑘

𝑖 =

{{

{{

{

1, 𝑘 = 1

𝑘−1

∏
𝑞=1

𝑃 (𝑎
𝑞

𝑖
) , 𝑘 = 2, . . . , 𝑝.

(35)

Step 7. Employ the MULPOWA operator (24) to derive the
collective decision results 𝑠𝑖 of alternative 𝑥𝑖:

𝑎𝑖 = MUPOWA (𝑎
1

𝑖 , 𝑎
1

𝑖 , . . . , 𝑎
𝑝

𝑖
)

=

𝑝

⨁

𝑘=1

(𝑄(

∑
𝑘

𝑗=1 𝑇
𝜎(𝑘)

𝑖

∑
𝑝

𝑘=1
𝑇
𝑘
𝑖

) − 𝑄(

∑
𝑘−1

𝑗=1 𝑇
𝜎(𝑘)

𝑖

∑
𝑝

𝑘=1
𝑇
𝑘
𝑖

))𝑎
(𝑔
𝑘
)

𝑖
.

(36)
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Step 8. Rank all the alternatives by the possibility degree
again.

5. Numerical Example

In this section, an example from [40] is used to illustrate
the use of the proposed method. To strengthen scientific
research and promote the building of teaching body, the
school of business in a Chinese university wants to introduce
an outstanding professor. The work has been raised great
attention from the school, university president 𝑒1, dean
of management school 𝑒2, and human resource officer 𝑒3

setting up the panel of decision makers which will take the
whole responsibility for this introduction. They made strict
evaluation for 5 candidates 𝑥𝑖 (𝑖 = 1, 2, . . . , 5) from four
aspects, namely, morality 𝐶1, Tangibles 𝐶2, Convenience
𝐶3, and Reliability 𝐶4. This introduction will be in strict
accordancewith the principle of combine abilitywith political
integrity. The prioritization relationship for the criteria is
as follows, 𝐶1 ≻ 𝐶2 ≻ 𝐶3 ≻ 𝐶4. Besides, the university
president has the absolute priority for decision making;
the dean of the management school comes next. Three
decision makers evaluate the candidates 𝑥𝑖 (𝑖 = 1, 2, 3, 4, 5)

with respect to the criteria 𝐶𝑗 (𝑗 = 1, 2, 3, 4) with
linguistic terms sets with different granularities, where
𝑒1 provides of his judgments uses of linguistic term set
with 9 granularities, 𝑆(9) = {𝑠

(9)
0 = definitely poor, 𝑠

(9)
1 =

very poor, 𝑠
(9)
2 = poor, 𝑠

(9)
3 = slightly poor, 𝑠

(9)
4 =

medium, 𝑠
(9)
5 = slightly poor, 𝑠

(9)
6 = good,

𝑠
(9)
7 = very good, 𝑠

(9)
8 = definitely good}; 𝑒2 provides of

his judgments uses of linguistic term set with 7 granularity
𝑆
(7)

= {𝑠
(7)
0 = definitelypoor, 𝑠(7)1 = verypoor, 𝑠(7)2 = poor, 𝑠(7)3

= medium, 𝑠
(7)
4 = good, 𝑠

(7)
5 = very good, 𝑠

(7)
6

= definitely good}; 𝑒3 provides of his judgments uses
of linguistic term set with 11 granularities 𝑆

(11)
= {𝑠
(11)
0 =

definitely poor, 𝑠(11)1 = extra poor, 𝑠(11)2 = very poor, 𝑠(11)3 =

poor, 𝑠
(11)
4 = slightly poor, 𝑠

(11)
5 = medium, 𝑠

(11)
6 =

slightly good, 𝑠
(11)
7 = good, 𝑠

(11)
8 = very good,

𝑠
(11)
9 = extra good, 𝑠

(11)
10 = definitely good}. And construct

the following multigranular uncertain linguistic decision
matrix (𝑎

𝑘
𝑖𝑗) (𝑖 = 1, . . . , 5, 𝑗 = 1, . . . , 4, 𝑘 = 1, . . . , 3), as listed

in Table 2.

Step 1. Select the basic linguistic term set. Considering the
prioritized levels of decision makers, 𝑆(9) used by 𝑒1 is taken
as the BLTS.

Step 2. Calculate the relative possibility degrees of 𝑎
𝑘
𝑖𝑗 (𝑖 =

1, . . . , 5, 𝑗 = 1, . . . , 4, 𝑘 = 1, . . . , 3) by utilizing (31), and the
formed possibility degrees matrix is listed in Table 3.

Step 3. Determine the prioritized levels of 𝑎
𝑘
𝑖𝑗 (𝑖 =

1, . . . , 5, 𝑗 = 1, . . . , 4, 𝑘 = 1, . . . , 3) by utilizing (32),
and the prioritized levels of 𝑎𝑘𝑖𝑗 are listed in Table 4.

Table 2: Decision matrix.

𝐶1 𝐶2 𝐶3 𝐶4

𝑥
1
1 [𝑠

(9)

4 , 𝑠
(9)
5 ] [𝑠

(9)
5 , 𝑠
(9)

6 ] [𝑠
(9)

4 , 𝑠
(9)
5 ] [𝑠

(9)

4 , 𝑠
(9)

6 ]

𝑥
1
2 [𝑠

(9)
7 , 𝑠
(9)

8 ] [𝑠
(9)

6 , 𝑠
(9)
7 ] [𝑠

(9)
5 , 𝑠
(9)

6 ] [𝑠
(9)
5 , 𝑠
(9)

6 ]

𝑥
1
3 [𝑠

(9)

4 , 𝑠
(9)
5 ] [𝑠

(9)

4 , 𝑠
(9)
5 ] [𝑠

(9)

6 , 𝑠
(9)
7 ] [𝑠

(9)

6 , 𝑠
(9)
7 ]

𝑥
1
4 [𝑠

(9)
5 , 𝑠
(9)

6 ] [𝑠
(9)

3 , 𝑠
(9)
5 ] [𝑠

(9)

4 , 𝑠
(9)

6 ] [𝑠
(9)

6 , 𝑠
(9)
7 ]

𝑥
1
5 [𝑠

(9)
4 , 𝑠
(9)
6 ] [𝑠

(9)
6 , 𝑠
(9)
8 ] [𝑠

(9)
5 , 𝑠
(9)
7 ] [𝑠

(9)
5 , 𝑠
(9)
6 ]

𝑥
2
1 [𝑠

(7)

3 , 𝑠
(7)

4 ] [𝑠
(7)

3 , 𝑠
(7)
5 ] [𝑠

(7)

4 , 𝑠
(7)
5 ] [𝑠

(7)

3 , 𝑠
(7)
5 ]

𝑥
2
2 [𝑠

(7)

4 , 𝑠
(7)
5 ] [𝑠

(7)

3 , 𝑠
(7)

4 ] [𝑠
(7)

3 , 𝑠
(7)
5 ] [𝑠

(7)

3 , 𝑠
(7)
5 ]

𝑥
2
3 [𝑠

(7)

2 , 𝑠
(7)

3 ] [𝑠
(7)

2 , 𝑠
(7)

4 ] [𝑠
(7)

3 , 𝑠
(7)
5 ] [𝑠

(7)

4 , 𝑠
(7)
5 ]

𝑥
2
4 [𝑠

(7)

4 , 𝑠
(7)
5 ] [𝑠

(7)

3 , 𝑠
(7)

4 ] [𝑠
(7)

2 , 𝑠
(7)

3 ] [𝑠
(7)
5 , 𝑠
(7)

6 ]

𝑥
2
5 [𝑠

(7)

3 , 𝑠
(7)

4 ] [𝑠
(7)
5 , 𝑠
(7)

6 ] [𝑠
(7)

4 , 𝑠
(7)

6 ] [𝑠
(7)

3 , 𝑠
(7)
5 ]

𝑥
3
1 [𝑠

(11)

4 , 𝑠
(11)
5 ] [𝑠

(11)

6 , 𝑠
(11)
7 ] [𝑠

(11)
5 , 𝑠
(11)

6 ] [𝑠
(11)

6 , 𝑠
(11)

8 ]

𝑥
3
2 [𝑠

(11)

8 , 𝑠
(11)

10 ] [𝑠
(11)
7 , 𝑠
(11)

9 ] [𝑠
(11)

6 , 𝑠
(11)
7 ] [𝑠

(11)

6 , 𝑠
(11)

9 ]

𝑥
3
3 [𝑠

(11)

6 , 𝑠
(11)
7 ] [𝑠

(11)
5 , 𝑠
(11)

6 ] [𝑠
(11)

8 , 𝑠
(11)

10 ] [𝑠
(11)

9 , 𝑠
(11)

10 ]

𝑥
3
4 [𝑠

(11)

9 , 𝑠
(11)

10 ] [𝑠
(11)

6 , 𝑠
(11)

9 ] [𝑠
(11)

6 , 𝑠
(11)
7 ] [𝑠

(11)
5 , 𝑠
(11)

8 ]

𝑥
3
5 [𝑠

(11)

6 , 𝑠
(11)
7 ] [𝑠

(11)
7 , 𝑠
(11)

9 ] [𝑠
(11)

9 , 𝑠
(11)

10 ] [𝑠
(11)
7 , 𝑠
(11)

9 ]

Table 3: Possibility degree of 𝑎𝑘𝑖𝑗.

𝐶1 𝐶2 𝐶3 𝐶4

𝑥
1
1 0.1944 0.3473 0.1944 0.2639

𝑥
1
2 0.375 0.2916 0.1667 0.1667

𝑥
1
3 0.1667 0.1667 0.3333 0.3333

𝑥
1
4 0.2639 0.1458 0.2153 0.375

𝑥
1
5 0.1736 0.3542 0.2639 0.2083

𝑥
2
1 0.1805 0.236 0.3195 0.264

𝑥
2
2 0.3195 0.1805 0.25 0.25

𝑥
2
3 0.1528 0.2014 0.2986 0.3472

𝑥
2
4 0.2917 0.2083 0.125 0.375

𝑥
2
5 0.1528 0.2986 0.3264 0.2222

𝑥
3
1 0.125 0.3194 0.2083 0.3473

𝑥
3
2 0.3375 0.2792 0.1458 0.2375

𝑥
3
3 0.2083 0.125 0.3194 0.3473

𝑥
3
4 0.375 0.2431 0.1875 0.1944

𝑥
3
5 0.125 0.25 0.3542 0.2708

Step 4. Derive the individual decision results 𝑎𝑘𝑖 correspond-
ing to the alternative 𝑥𝑖 by utilizing (33):

𝑎
1

1 = MULPWA (𝑎
1

11, 𝑎
1

12, 𝑎
1

13, 𝑎
1

14)

=
1

1.275
[𝑠
(9)

4 , 𝑠
(9)

5 ] ⊕
0.1944

1.275
[𝑠
(9)

5 , 𝑠
(9)

6 ]
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Table 4: Prioritized level of 𝑎𝑘𝑖𝑗.

𝑇1 𝑇2 𝑇3 𝑇4 ∑
4

𝑗=1 𝑇𝑗

𝑥
1
1 1 0.1944 0.0675 0.0131 1.275

𝑥
1
2 1 0.375 0.1094 0.0182 1.5026

𝑥
1
3 1 0.1667 0.0278 0.0093 1.2038

𝑥
1
4 1 0.2639 0.0385 0.0083 1.3107

𝑥
1
5 1 0.1736 0.0615 0.0162 1.2513

𝑥
2
1 1 0.1805 0.0426 0.0136 1.2367

𝑥
2
2 1 0.3195 0.0577 0.0144 1.3916

𝑥
2
3 1 0.1528 0.0308 0.0092 1.1928

𝑥
2
4 1 0.2917 0.0608 0.0076 1.3601

𝑥
2
5 1 0.1528 0.0456 0.0149 1.2133

𝑥
3
1 1 0.125 0.0399 0.0083 1.1732

𝑥
3
2 1 0.3375 0.0942 0.0137 1.4454

𝑥
3
3 1 0.2083 0.026 0.0083 1.2426

𝑥
3
4 1 0.375 0.0912 0.0171 1.4833

𝑥
3
5 1 0.125 0.0313 0.0111 1.1674

Table 5: Individual decision results.

𝑒1 𝑒2 𝑒3

𝑥1 [𝑠
(9)

4.1525, 𝑠
(9)

5.1628] [𝑠
(7)

3.0344, 𝑠
(7)

4.1914] [𝑠
(11)

4.2612, 𝑠
(11)

5.2683]

𝑥2 [𝑠
(9)

6.5806, 𝑠
(9)

7.5806] [𝑠
(7)

3.7186, 𝑠
(7)

4.7704] [𝑠
(11)

7.6171, 𝑠
(11)

9.5614]

𝑥3 [𝑠
(9)

4.0616, 𝑠
(9)

5.0616] [𝑠
(7)

2.0412, 𝑠
(7)

3.1951] [𝑠
(11)

5.8943, 𝑠
(11)

6.9152]

𝑥4 [𝑠
(9)

4.5743, 𝑠
(9)

5.805] [𝑠
(7)

3.7107, 𝑠
(7)

4.7017] [𝑠
(11)

8.3321, 𝑠
(11)

9.5397]

𝑥5 [𝑠
(9)

4.3395, 𝑠
(9)

6.3266] [𝑠
(7)

3.2894, 𝑠
(7)

4.3393] [𝑠
(11)

6.1963, 𝑠
(11)

7.3136]

⊕
0.0675

1.275
[𝑠
(9)

4 , 𝑠
(9)

5 ] ⊕
0.0131

1.275
[𝑠
(9)

4 , 𝑠
(9)

6 ]

=
1

1.275
[𝑠
(9)

4 , 𝑠
(9)

5 ] ⊕
0.1944

1.275
[𝑠
(9)

5 , 𝑠
(9)

6 ] ⊕
0.0675

1.275
[𝑠
(9)

4 , 𝑠
(9)

5 ]

⊕
0.0131

1.275
[𝑠
(9)

4 , 𝑠
(9)

6 ] = [𝑠
(9)

4.1525, 𝑠
(9)

5.1628] .

(37)

Note that since the aggregation is from the same
linguistic term set here, thence the MULPWA operator is
essentially ULPWA operator here. Similarly, we can get all
individual decision results listed in Table 5.

Step 5. Determine the relative possibility degree of 𝑎
𝑘
𝑖 (𝑖 =

1, . . . , 5, 𝑘 = 1, . . . , 3) by utilizing (34), and the possibility
degree of 𝑎

𝑘
𝑖 is listed in Table 6.

Step 6. Derive the prioritized levels of 𝑎
𝑘
𝑖 (𝑖 = 1, . . . , 5, 𝑘 =

1, . . . , 3) by utilizing (35), the prioritized levels of 𝑎
𝑘
𝑖 are listed

in Table 7.

Table 6: Possibility degrees of individual decision results.

𝑒1 𝑒2 𝑒3

𝑥1 0.4006 0.4151 0.1843
𝑥2 0.4303 0.1817 0.388
𝑥3 0.3521 0.1797 0.4682
𝑥4 0.2227 0.2773 0.5
𝑥5 0.3414 0.2981 0.3605

Table 7: Prioritized levels of individual decision results.

𝑇1 𝑇2 𝑇3 ∑
3

𝑗=1 𝑇𝑗

𝑥1 1 0.4006 0.1663 1.5669
𝑥2 1 0.4303 0.0782 1.5085
𝑥3 1 0.3521 0.0633 1.4154
𝑥4 1 0.2227 0.0618 1.2845
𝑥5 1 0.3414 0.1018 1.4432

Step 7. Utilize the MULPOWA operator (36) to derive the
collective decision results of alternatives 𝑥𝑖 (𝑖 = 1, 2, . . . , 5):

𝑎1 = MULPOWA (𝑎
1

1 , 𝑎
2

1 , 𝑎
3

1)

= (𝑄(
0.4006

1.5669
) − 𝑄(

0

1.5669
)) [𝑠
(7)

3.0344, 𝑠
(7)

4.1914]

⊕ (𝑄(
0.4006 + 1

1.5669
) − 𝑄(

0.4006

1.5669
)) [𝑠
(9)

4.1525, 𝑠
(9)

5.1628]

⊕ (𝑄(
1.5669

1.5669
) − 𝑄(

0.4006 + 1

1.5669
)) [𝑠
(11)

4.2612, 𝑠
(11)

5.2683]

= 0.065 [𝑠
(9)

4.046, 𝑠
(9)

5.589] ⊕ 0.734 [𝑠
(9)

4.1525, 𝑠
(9)

5.1628]

⊕ 0.201 [𝑠
(11)

3.41, 𝑠
(11)

4.21] = [𝑠
(9)

4 , 𝑠
(9)

5 ] .

(38)

Similarly, we can get the rest collective decision results.

𝑎2 = MULPOWA (𝑥
1

2, 𝑥
2

2, 𝑥
3

2) = [𝑠
(9)

5.75, 𝑠
(9)

6.99] ,

𝑎3 = MULPOWA (𝑥
1

3, 𝑥
2

3, 𝑥
3

3) = [𝑠
(9)

3.48, 𝑠
(9)

4.71] ,

𝑎4 = MULPOWA (𝑥
1

4, 𝑥
2

4, 𝑥
3

4) = [𝑠
(9)

4.59, 𝑠
(9)

5.84] ,

𝑎5 = MULPOWA (𝑥
1

5, 𝑥
2

5, 𝑥
3

5) = [𝑠
(9)

4.36, 𝑠
(9)

6.10] .

(39)
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Step 8. Rank all the alternatives by using the possibility
degrees

𝑥2 = [𝑠
(9)

5.75, 𝑠
(9)

6.99] ≻ 𝑥4 = [𝑠
(9)

4.59, 𝑠
(9)

5.84] ≻ 𝑥5

= [𝑠
(9)

4.36, 𝑠
(9)

6.10] ≻ 𝑥1 = [𝑠
(9)

4 , 𝑠
(9)

5 ] ≻ 𝑥3 = [𝑠
(9)

3.48, 𝑠
(9)

4.71] .

(40)

Thus the best alternative is 𝑥2.
If the criteria or the decision makers are at the same

priority level and the values of uncertain linguistic variables
derived from the same linguistic terms set, then the above
operators are reduced to the traditional uncertain linguistic
aggregation operators proposed by Xu [13]. However, there
are different priority levels among these four criteria and
three decision makers. For example, the candidate is very
hard to be selected when he received a poor evaluation from
the manager. From another point of view, if a candidate has a
bad work attitude, then he is impossible to select no matter
how good of performance evaluation he has received on
capacity for work, leadership, and learning skill. Therefore,
we must consider the prioritization among the criteria or
the decision makers. What is more, if we use the tradi-
tional uncertain linguistic aggregation operators to aggregate
the uncertain linguistic information derived from different
linguistic terms sets, the transform processes with tedious
computation are inevitable. To deal with such situations,
the proposed operator is an effective tool. From the above
analysis, the main advantages of the proposed operators are
not only due to the fact that our operators can aggregate
directly the multigranularity linguistic information without
tedious calculation to unify the multigranular uncertain
linguistic information, but also due to the consideration of
the prioritized relationships between the decision elements,
which makes it more feasible and practical.

6. Conclusion

In this paper, some operational laws of the multigranu-
lar uncertain linguistic variables are first defined. Based
on prioritized aggregation operator, we developed some
multigranular uncertain linguistic prioritized aggregation
operators, such as multigranular uncertain linguistic prior-
itized weighted averaging operator multigranular uncertain
linguistic prioritized ordered weighted average operator.
The distinct characteristics of these proposed operators are
that they can aggregate directly the multigranular uncertain
linguistic information and take into account prioritization
among the arguments.Then, we have utilized these operators
to develop an approach to solve the multigranular uncertain
linguistic multiple criteria group decision-making problems
in which the criteria are in different priority levels. Finally, a
practical example about talent introduction is given to verify
the developed approach and to demonstrate its practicality
and effectiveness. It is noted that the proposed multigranular
uncertain linguistic prioritized aggregation operators are

based on the uniform and symmetrical linguistic terms sets.
However, in some real-life situations, decision makers may
provide their judgments with unbalanced linguistic term
sets [28, 33–35], which are not uniformly and symmetrically
distributed, to emphasize the different discrimination levels
on both sides of mid linguistic term. In the future, we will
investigate the multigranular uncertain linguistic prioritized
operators to the unbalanced linguistic contexts.
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