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The boundary layer problem for power-law fluid can be recast to a third-order 𝑝-Laplacian boundary value problem (BVP). In
this paper, we transform the third-order 𝑝-Laplacian into a new system which exhibits a Lie-symmetry SL(3,R). Then, the closure
property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval.
Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary
conditions through a finer tuning of 𝑟 ∈ [0, 1].Thepresent SL(3,R)Lie-group shootingmethod is easily implemented and is efficient
to tackle themultiple solutions of the third-order𝑝-Laplacian.When themissing left boundary values can be determined accurately,
we can apply the fourth-order Runge-Kutta (RK4) method to obtain a quite accurate numerical solution of the 𝑝-Laplacian.

1. Introduction

The power-law fluids have been called the Ostwald-de Waele
fluids which have been well examined in the past several
decades, because the constitutive equation of such a fluid
not only gives a good expression for a large portion of the
non-Newtonian fluids but also encompasses a Newtonian
fluid as well. The theoretical boundary layer theory for
power-law fluids was first investigated by Schowalter [1],
and then Acrivos et al. [2] obtained a similarity solution.
The experimental results that a significant drag reduction
can be achieved by injecting fluid into the boundary layer
motivated the investigations of the non-Newtonian boundary
layer flows with injection or suction at the surface. Flows with
suction or injection through a porous wall are of practical
interest for cooling, delaying transition to turbulence, and the
prevention of separation in an adverse pressure gradient.

The drag force inside the shear layer is a consequence of
pressure distribution on the surface. Realizing the nature of
this force by a mathematical modelling to predict the drag
force and the associated behavior of fluid flow has been the
focus of considerable research. The reason for the interest in
the analysis of the boundary layer flows along solid surfaces is
the possibility of applying the theory to the efficient design of
supersonic and hypersonic flights. Besides, the mathematical

model considered in the present research has importance in
studying many problems of engineering, meteorology, and
oceanography, for example, Howell et al. [3], Nachman and
Callegari [4], Ozisik [5], Schlichting [6], Shu and Wilks [7],
and Zheng and Zhang [8].

We assume that the moving flat plate is semi-infinite with
a porous surface and that the plate is moving at a constant
speed 𝑈

𝑤
in the direction parallel to an oncoming flow with

a constant speed𝑈
∞
. By the assumption of incompressibility

and the conservation ofmomentum, the laminar flow satisfies
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
= 0,

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
=
1

𝜌

𝜕𝜏
𝑋𝑌

𝜕𝑌
.

(1)

In the above,𝑋 and𝑌 are the coordinates attached to the plate
in the horizontal and perpendicular directions, and 𝑈 and 𝑉
are, respectively, the velocity components of the flow in the
𝑋 and 𝑌 directions. The fluid density 𝜌 is assumed to be a
constant.

The shear stress is governed by a power law

𝜏
𝑋𝑌

= 𝐾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑈

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁−1

𝜕𝑈

𝜕𝑌
, (2)
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where 𝐾 > 0 is a constant and the power 𝑁 > 0 reflects
the discrepancy to the Newtonian fluids (with 𝑁 = 1). The
case with 𝑁 < 1 is the power law of pseudoplastic fluids,
and𝑁 > 1 is the dilatant fluids.The corresponding boundary
conditions are given by

𝑈 (𝑋, 0) = 𝑈
𝑤
, 𝑈 (𝑋, +∞) = 𝑈

∞
,

𝑉 (𝑋, 0) = 𝑉
𝑤
(𝑋) = 𝑉

0
𝑋
−𝑁/(𝑁+1)

.

(3)

After introducing a similarity variable and a stream
function

𝜂 = 𝐵𝑋
𝛽

𝑌, 𝜙 (𝑋, 𝑌) = 𝐴𝑋
𝜎

𝑓 (𝜂) (4)

with

𝜎 =
1

𝑁 + 1
, 𝛽 = −𝜎,

𝐵 = (
𝜌𝑈
2−𝑁

∞

(𝑁 + 1)𝐾
)

1/(𝑁+1)

, 𝐴 =
𝑈
∞

𝐵
,

(5)

we can obtain

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠󸀠

(𝜂)
󵄨󵄨󵄨󵄨󵄨

𝑁−1

𝑓
󸀠󸀠

(𝜂))
󸀠

+ 𝑓 (𝜂) 𝑓
󸀠󸀠

(𝜂) = 0, (6)

which is subjected to the following boundary conditions:

𝑓 (0) = −𝐶
0
, 𝑓

󸀠

(0) = 𝜉, 𝑓
󸀠

(+∞) = 1. (7)

In the above, 𝜉 = 𝑈
𝑤
/𝑈
∞

is the velocity ratio. When 𝜉 < 0,
we have a reverse flow attached near the boundary.When 0 <
𝜉 < 1, the speed of the oncoming fluid is larger than that
of the plate. When 𝜉 > 1, the speed of the moving plate is
faster than the speed of the oncoming fluid. The term 𝐶

0
=

(𝑁+1)𝐵𝑉
0
/𝑈
∞
is a constant related to the situation of suction

if it is negative or injection if it is positive.
Previously, the author and his coworkers have developed

the Lie-group shooting method based on the Lorentz-group
[9, 10] to solve the boundary layer equations [11–14]. Liu et
al. [15] have found the multiple solutions of boundary layer
problem by an enhanced fictitious time integration method
for the nonlinear algebraic equations discretized from the
governing equation. In this paper, we propose a more simple
and powerful Lie-group shooting method directly based
on the three-dimensional special linear group SL(3,R) to
solve the 𝑝(= 𝑁 + 1)-Laplacian boundary layer equations
with multiple solutions. Liu [16] used the SL(2,R) Lie-group
shooting method to solve the eigenvalue problem of the
second-order Sturm-Liouville equation. Recently, Liu [17] has
successfully applied the SL(3,R) Lie-group shooting method
to effectively solve the Falkner-Skan boundary layer problem.
The present study is an extension of these researches.

The operator (|𝑓󸀠󸀠(𝜂)|𝑁−1𝑓󸀠󸀠(𝜂))
󸀠

in (6) is one sort of
the third-order 𝑝(= 𝑁 + 1)-Laplacian [18]. Besides the
non-Newtonian fluid [19–21], the 𝑝-Laplacian operator arises
in some different physical and mathematical modelling of
the combustion theory [22], population dynamics [23, 24],
and also theMonge-Kantorovich partial differential equation

[25]. There had been many papers for studying the second-
order 𝑝-Laplacian about its existence of positive solutions.
Only a few papers are devoted to the numerical solution of
the third-order 𝑝-Laplacian.

This paper is organized as follows. In Section 2, we
consider (6) as a special case of the third-order 𝑝-Laplacian,
and then by a translation of the variable to a new variable
with a positive value, we can transform the 𝑝-Laplacian into
a new system, which exhibits a Lie-symmetry of SL(3,R).
We introduce some mathematical requirements of the Lie-
group formulation of the resulting ODEs and construct a
Lie-group shooting method based on the Lie-group SL(3,R).
The boundary conditions that the present SL(3,R) Lie-
group shooting method can be applied to are discussed. In
Section 3, we test the performance of the newly developed
SL(3,R) Lie-group shooting method for several examples,
and in Section 4, the multiple solutions of the boundary layer
problemof power-law fluids are investigated. Finally, we draw
conclusions in Section 5.

2. An SL(3,R) Lie-Group Shooting Method

Equation (6) is a special case of the following 𝑝-Laplacian:

(𝜙
𝑝
(𝑦
󸀠󸀠

(𝑥)))
󸀠

= 𝐹 (𝑥, 𝑦 (𝑥) , 𝑦
󸀠

(𝑥) , 𝑦
󸀠󸀠

(𝑥)) , 𝑥 ∈ (𝑥
0
, 𝑥
𝑓
) ,

(8)

of which the boundary conditions have many types to be
discussed below. In the above, 𝜙

𝑝
(𝑠) = |𝑠|

𝑝−2

𝑠, 𝑝 > 1, 𝜙
−1

𝑝
=

𝜙
𝑞
, where 1/𝑝 + 1/𝑞 = 1.
In order to develop an SL(3,R) Lie-group shooting

method, we suppose that 𝑦 > −∞, such that there exists a
constant 𝑘

0
rendering

𝑢 (𝑥) = 𝑦 (𝑥) + 𝑘
0
> 0, ∀𝑥 ∈ [𝑥

0
, 𝑥
𝑓
] . (9)

Then, (8) becomes

(𝜙
𝑝
(𝑢
󸀠󸀠

(𝑥)))
󸀠

= 𝐹 (𝑥, 𝑢 (𝑥) − 𝑘
0
, 𝑢
󸀠

(𝑥) , 𝑢
󸀠󸀠

(𝑥))

=: 𝐻 (𝑥, 𝑢 (𝑥) , 𝑢
󸀠

(𝑥) , 𝑢
󸀠󸀠

(𝑥)) .

(10)

2.1. A Group-Preserving Scheme. Let

V (𝑥) = 𝜙
𝑝
(𝑢
󸀠󸀠

(𝑥)) , (11)

and thus by 𝜙−1
𝑝
= 𝜙
𝑞
, we have

𝑢
󸀠󸀠

(𝑥) = 𝜙
𝑞
(V (𝑥)) . (12)

At the same time, from (10) and (11), it follows that

V
󸀠

(𝑥) = 𝐻(𝑥, 𝑢 (𝑥) , 𝑢
󸀠

(𝑥) , 𝜙
𝑞
(V (𝑥)))

=: 𝑓 (𝑥, 𝑢 (𝑥) , 𝑢
󸀠

(𝑥) , V (𝑥)) .
(13)

Let 𝑤(𝑥) = 𝑢
󸀠

(𝑥), and we have 𝑤󸀠(𝑥) = 𝜙
𝑞
(V(𝑥)) by (12).

Now, let

𝑢
1
= 𝑢, 𝑢

2
= 𝑤 = 𝑢

󸀠

, 𝑢
3
= V. (14)
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The above equations 𝑢󸀠(𝑥) = 𝑤(𝑥), 𝑤
󸀠

(𝑥) = 𝜙
𝑞
(V(𝑥)), and

(13) can be written as a system of three first-order ordinary
differential equations (ODEs) by

𝑑

𝑑𝑥
[

[

𝑢
1
(𝑥)

𝑢
2
(𝑥)

𝑢
3
(𝑥)

]

]

=

[
[
[
[
[

[

0 1 0

𝜙
𝑞
(𝑢
3
(𝑥))

𝑢
1

0 0

𝑓 (𝑥, 𝑢
1
(𝑥) , 𝑢

2
(𝑥) , 𝑢

3
(𝑥))

𝑢
1

0 0

]
]
]
]
]

]

× [

[

𝑢
1
(𝑥)

𝑢
2
(𝑥)

𝑢
3
(𝑥)

]

]

,

(15)

which is well defined because of 𝑢
1
= 𝑢 > 0 by (9).

The differential equations system (15) is highly nonlinear
due to the appearance of 𝑓(𝑥, 𝑢

1
, 𝑢
2
, 𝑢
3
)/𝑢
1
and 𝜙

𝑞
(𝑢
3
(𝑥))/𝑢

1

in the coefficient matrix; however, it allows a Lie-symmetry
SL(3,R):

𝑑

𝑑𝑥
G (𝑥) = A (𝑥)G (𝑥) , G (𝑥

0
) = I
3
, (16)

A (𝑥) =

[
[
[
[
[
[

[

0 1 0

𝜙
𝑞

𝑢
1

0 0

𝑓

𝑢
1

0 0

]
]
]
]
]
]

]

, (17)

detG (𝑥) = 1, (18)

because of trA = 0. Here, for saving notations, we use
𝑓 = 𝑓(𝑥, 𝑢

1
, 𝑢
2
, 𝑢
3
) and 𝜙

𝑞
= 𝜙
𝑞
(𝑢
3
). The above G is a

fundamental matrix of (15).
Accordingly, we can develop a group-preserving scheme

(GPS) to solve (15)

U
𝑘+1

= G (𝑘)U
𝑘
, (19)

where U
𝑘
denotes the numerical value of U = (𝑢

1
, 𝑢
2
, 𝑢
3
)
𝑇 at

the discrete space 𝑥
𝑘
andG(𝑘) ∈ SL(3,R).This Lie-symmetry

is known as the three-dimensional real-valued special linear
group, denoted by SL(3,R).

2.2. A Generalized Midpoint Rule. Applying the GPS in (19)
to (15) with an initial conditionU(𝑥

0
) = U
0
, we can findU(𝑥).

Assuming that the stepsize used in the GPS is Δ𝑥 = ℓ/𝐾,
where ℓ = 𝑥

𝑓
− 𝑥
0
, we can calculate the value of U at 𝑥 = 𝑥

𝑓

by

U
𝑓
= G
𝐾
(Δ𝑥) ⋅ ⋅ ⋅G

1
(Δ𝑥)U

0
. (20)

Now, we prove the following closure property of the Lie-
group SL(3,R):

G
1
(𝑥) , G

2
(𝑥) ∈ SL (3,R) 󳨐⇒ G

2
(𝑥)G
1
(𝑥) ∈ SL (3,R) .

(21)

By the assumptions of G
1
(𝑥) ∈ SL(3,R) and G

2
(𝑥) ∈

SL(3,R), we have detG
1
(𝑥) = 1 and detG

2
(𝑥) = 1. Then,

by using the following result:

det [G
2
(𝑥)G
1
(𝑥)] = detG

2
(𝑥) detG

1
(𝑥) , (22)

it is straightforward to verify that det [G
2
(𝑥)G
1
(𝑥)] = 1,

which means that G
2
(𝑥)G
1
(𝑥) ∈ SL(3,R). Thus, we have

proven (21).
Because each G

𝑖
, 𝑖 = 1, . . . , 𝐾 in (20) is an element of

the Lie-group SL(3,R), and by the above closure property
of the Lie-group SL(3,R), G

𝐾
(Δ𝑥) ⋅ ⋅ ⋅G

1
(Δ𝑥) is also a Lie-

group element of SL(3,R), denoted by G. Hence, we have

U
𝑓
= GU

0
. (23)

This is a one-step Lie-group transformation from U
0
to U
𝑓
,

acting by G ∈ SL(3,R).
However, it is very hard to obtain an exact solution of G

because the differential equations system is highly nonlinear.
Before the derivation of a suitable form forG, let us recall the
mean value theorem for a continuous function𝑓(𝑥), which is
defined in an interval of 𝑥 ∈ [𝑎, 𝑏]. The mean value theorem
asserts that there exists at least one 𝑐 ∈ [𝑎, 𝑏], such that the
following equality holds

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑓 (𝑐) [𝑏 − 𝑎] , (24)

where the value of 𝑐 depends on the function𝑓(𝑥). In terms of
the weighting factor 𝑟 ∈ [0, 1], we can write 𝑐 = 𝑟𝑎 + (1 − 𝑟)𝑏.
Therefore, it means that there exists at least one 𝑟 ∈ [0, 1],
such that (24) is satisfied. The above theorem enables us to
evaluate the value of the integral in (24) by an area of a
rectangle with a width 𝑏 − 𝑎 times a height 𝑓(𝑐), where 𝑓(𝑐)
is calculated by a mid-point rule with a suitable 𝑐 ∈ [𝑎, 𝑏].

BecauseG is a solution of (16), we can formally write it by
an exponential mapping

G (𝑥) = exp [∫
𝑥

𝑥0

A (𝜉) 𝑑𝜉] . (25)

When A is not a constant matrix, in general we do not
have a closed-form solution of G(𝑥). However, motivated
by the above mean value theorem and to be a reasonable
approximation, we can calculate G in (23) by a generalized
mid-point rule, which is obtained from an exponential
mapping of A by taking the values of the variables in A at a
suitable mid-point: 𝑥̂ = 𝑟𝑥

0
+ (1 − 𝑟)𝑥

𝑓
, where 𝑟 ∈ [0, 1] is an

unknown constant to be determined by the shootingmethod.
So we can compute this G by

G (𝑟) = exp [(𝑥
𝑓
− 𝑥
0
) Â] , (26)

which is corresponding to a constant matrix

Â =: [

[

0 1 0

𝑏 0 0

𝑎 0 0

]

]

=

[
[
[
[
[
[
[

[

0 1 0

𝜙̂
𝑞

𝑢̂
1

0 0

𝑓̂

𝑢̂
1

0 0

]
]
]
]
]
]
]

]

, (27)

where 𝑎 = 𝑓̂/𝑢̂
1
and 𝑏 = 𝜙̂

𝑞
/𝑢̂
1
are supposed to be constant.
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This SL(3,R) Lie-group element generated from such a
constant matrix Â ∈ sl(3,R) has a closed-form solution. If
𝑏 > 0 and 𝑐 = 𝑎/√𝑏, then we have

G (𝑟) = [

[

𝐺
11

𝐺
12

𝐺
13

𝐺
21

𝐺
22

𝐺
23

𝐺
31

𝐺
32

𝐺
33

]

]

=

[
[
[
[

[

cosh (ℓ√𝑏) 1

√𝑏
sinh (ℓ√𝑏) 0

√𝑏 sinh (ℓ√𝑏) cosh (ℓ√𝑏) 0

𝑐 sinh (ℓ√𝑏) 𝑐

√𝑏
[cosh (ℓ√𝑏) − 1] 1

]
]
]
]

]

,

(28)

where ℓ = 𝑥
𝑓
− 𝑥
0
denotes the length of the interval [𝑥

0
, 𝑥
𝑓
].

If 𝑏 < 0 and 𝑐 = 𝑎/√−𝑏, then we have

G (𝑟) = [

[

𝐺
11

𝐺
12

𝐺
13

𝐺
21

𝐺
22

𝐺
23

𝐺
31

𝐺
32

𝐺
33

]

]

=

[
[
[
[

[

cos (ℓ√−𝑏) 1

√−𝑏
sin (ℓ√−𝑏) 0

−√−𝑏 sin (ℓ√−𝑏) cos (ℓ√−𝑏) 0

𝑐 sin (ℓ√−𝑏) 𝑐

√−𝑏
[1 − cos (ℓ√−𝑏)] 1

]
]
]
]

]

.

(29)

In the above, we have taken

𝑥̂ = 𝑟𝑥
0
+ (1 − 𝑟) 𝑥

𝑓
,

𝑢̂
1
= 𝑟𝑢
0

1
+ (1 − 𝑟) 𝑢

𝑓

1
,

𝑢̂
2
= 𝑟𝑢
0

2
+ (1 − 𝑟) 𝑢

𝑓

2
,

𝑢̂
3
= 𝑟𝑢
0

3
+ (1 − 𝑟) 𝑢

𝑓

3
,

𝑓̂ := 𝑓 (𝑥̂, 𝑢̂
1
, 𝑢̂
2
, 𝑢̂
3
) ,

𝜙̂
𝑞
:= 𝜙
𝑞
(𝑢̂
3
) ,

𝑎 =
𝑓̂

𝑢̂
1

, 𝑏 =
𝜙̂
𝑞

𝑢̂
1

, 𝑐 =
𝑎

√|𝑏|
.

(30)

For the special case of 𝑏 = 0, we can derive

G (𝑟) = [

[

𝐺
11

𝐺
12

𝐺
13

𝐺
21

𝐺
22

𝐺
23

𝐺
31

𝐺
32

𝐺
33

]

]

=
[
[
[

[

1 ℓ 0

0 1 0

𝑎ℓ
𝑎ℓ
2

2
1

]
]
]

]

. (31)

2.3. Specification of Boundary Conditions. For the third-order
ODEs, there are several different type boundary conditions.
In this section, we study this problem that under what type
boundary conditions the present SL(3,R) Lie-group shooting
method is applicable.

Let

U
0
=
[
[
[

[

𝑢
0

1

𝑢
0

2

𝑢
0

3

]
]
]

]

, U
𝑓
=

[
[
[
[

[

𝑢
𝑓

1

𝑢
𝑓

2

𝑢
𝑓

3

]
]
]
]

]

(32)

denote, respectively, the left-end and right-end boundary
values of U = (𝑢

1
, 𝑢
2
, 𝑢
3
)
𝑇. For linear type boundary

conditions (separable or nonseparable), we can describe the
boundary conditions by the following equation:

B
0
U
0
+ B
𝑓
U
𝑓
= b, (33)

where both B
0
and B

𝑓
are 3 × 3 matrices and b ∈ R3 is a

constant vector, which might be zero.
Inserting (23) into (33), we have

[B
0
+ B
𝑓
G]U
0
= b, (34)

such that for a nonempty solution of U
0
, we require

det [B
0
+ B
𝑓
G] ̸= 0. (35)

It means that the matrix B
0
+ B
𝑓
Gmust be invertible.

In order to demonstrate the above idea about the spec-
ification of the boundary conditions, of which the present
SL(3,R) Lie-group shooting method is applicable, let us take
𝑝 = 𝑁 + 1 and 𝐹 = −𝑢𝑢

󸀠󸀠 and (6) under the following
boundary conditions:

𝑢 (0) = −𝐶
0
, 𝑢

󸀠

(0) = 𝜉, 𝑢
󸀠

(𝜂
∞
) = 1,

that is, 𝑢
1
(0) = −𝐶

0
, 𝑢

2
(0) = 𝜉, 𝑢

2
(𝜂
∞
) = 1,

(36)

where we have replaced ∞ by a finite number 𝜂
∞
. In terms

of (33), we have

B
0
= [

[

1 0 0

0 1 0

0 0 0

]

]

, B
𝑓
= [

[

0 0 0

0 0 0

0 1 0

]

]

, b = [
[

−𝐶
0

𝜉

1

]

]

.

(37)

Then, by (28) or (29), we can obtain

B
0
+ B
𝑓
G = [

[

1 0 0

0 1 0

0 0 0

]

]

+ [

[

0 0 0

0 0 0

0 1 0

]

]

[

[

𝐺
11

𝐺
12

0

𝐺
21

𝐺
22

0

𝐺
31

𝐺
32

1

]

]

= [

[

1 0 0

0 1 0

𝐺
21

𝐺
22

0

]

]

.

(38)

Thus, the above matrix B
0
+B
𝑓
G is not invertible, because of

det [B
0
+ B
𝑓
G] = 0. So we can conclude that for the power-

law fluid under the boundary conditions (36), the present
method is not applicable. In Section 4, we will give another
type approach.
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Physically, we can specify that at a large distance from the
boundary layer the shear stress is quite small. Then, instead
of (36), we can specify

𝑢 (0) = −𝐶
0
, 𝑢
󸀠

(0) = 𝜉, 𝑢
󸀠󸀠

(𝜂
∞
) = 𝑠
0
,

that is, 𝑢
1
(0) = −𝐶

0
, 𝑢
2
(0) = 𝜉, 𝑢

3
(𝜂
∞
) = 𝜙
𝑁+1

(𝑠
0
) ,

(39)

where 𝑠
0
is a small number. In terms of (33), we have

B
0
= [

[

1 0 0

0 1 0

0 0 0

]

]

, B
𝑓
= [

[

0 0 0

0 0 0

0 0 1

]

]

,

b = [
[

−𝐶
0

𝜉

𝜙
𝑁+1

(𝑠
0
)

]

]

.

(40)

Then, by (28) or (29), we can obtain

B
0
+ B
𝑓
G = [

[

1 0 0

0 1 0

0 0 0

]

]

+ [

[

0 0 0

0 0 0

0 0 1

]

]

[

[

𝐺
11

𝐺
12

0

𝐺
21

𝐺
22

0

𝐺
31

𝐺
32

1

]

]

= [

[

1 0 0

0 1 0

𝐺
31

𝐺
32

1

]

]

,

(41)

which is invertible, due to det [B
0
+ B
𝑓
G] = 1. Then, the

presentmethod is applicable. Below, we discuss the Lie-group
shooting solution for the boundary layer problem of the
power-law fluid under the boundary conditions (39).

2.4. An SL(3,R) Lie-Group Shooting Method. In order to
demonstrate the application of the SL(3,R) Lie-group shoot-
ing method to find the missing left boundary conditions, as a
representative case, let us take 𝑝 = 𝑁 + 1 and 𝐹 = −𝑦𝑦

󸀠󸀠, and
then we can recover to (6)

(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑁−1

𝑦
󸀠󸀠

(𝑥))
󸀠

= −𝑦 (𝑥) 𝑦
󸀠󸀠

(𝑥) , 𝑥 ∈ (0, 𝜂
∞
) , (42)

which is subjected to the following boundary conditions:

𝑦 (0) = −𝐶
0
, 𝑦

󸀠

(0) = 𝜉, 𝑦
󸀠󸀠

(𝜂
∞
) = 𝑠
0
= 0.001,

(43)

where 𝐶
0
and 𝜉 are given constants, and we use a large value

𝜂
∞
, say 𝜂

∞
= 6, to replace the last boundary condition in

(6), and also 𝑦󸀠(𝜂
∞
) = 1 is changed to 𝑦󸀠󸀠(𝜂

∞
) = 𝑠
0
as just

mentioned above.
The stepping technique developed for solving the initial

value problem (IVP) requires both the initial conditions of
𝑢
1
= 𝑢, 𝑢

2
= 𝑢
󸀠, and 𝑢

3
= V for the third-order ODEs.

Starting from the initial values of 𝑢
1
, 𝑢
2
, and 𝑢

3
, we can

numerically integrate the following IVP step by step from
𝑥 = 𝑥

0
to 𝑥 = 𝑥

𝑓
:

𝑑

𝑑𝑥
[

[

𝑢
1
(𝑥)

𝑢
2
(𝑥)

𝑢
3
(𝑥)

]

]

=

[
[
[
[
[
[

[

0 1 0

𝜙
𝑞
(𝑢
3
(𝑥))

𝑢
1

0 0

𝑓 (𝑥, 𝑢
1
(𝑥) , 𝑢

2
(𝑥) , 𝑢

3
(𝑥))

𝑢
1

0 0

]
]
]
]
]
]

]

× [

[

𝑢
1
(𝑥)

𝑢
2
(𝑥)

𝑢
3
(𝑥)

]

]

,

(44)

𝑢
1
(0) = 𝑢

0

1
, (45)

𝑢
2
(0) = 𝑢

0

2
, (46)

𝑢
3
(0) = 𝑢

0

3
, (47)

where some unknown initial values are to be found by the
SL(3,R) Lie-group shooting method.

In (43), 𝑢0
1
= −𝐶

0
and 𝑢

0

2
= 𝜉 are given, but 𝑢0

3
is an

unknown constant to be determined such that we can satisfy
the target equation of 𝑢𝑓

3
= 𝜙
𝑁+1

(𝑠
0
). Starting from an initial

guess of 𝑢𝑓
1
, 𝑢
𝑓

3
, and 𝑢

0

3
, we can solve the unknown initial

value 𝑢0
3
by the following iterative processes:

𝑢
0

3
=
𝑢
𝑓

3
− 𝐺
31
𝑢
0

1
− 𝐺
32
𝑢
0

2

𝐺
33

,

𝑢
𝑓

1
= 𝐺
11
𝑢
0

1
+ 𝐺
12
𝑢
0

2
+ 𝐺
13
𝑢
0

3
,

𝑢
𝑓

2
= 𝐺
21
𝑢
0

1
+ 𝐺
22
𝑢
0

2
+ 𝐺
23
𝑢
0

3
,

(48)

which are obtained from (23). Inserting the initially guessed
values of 𝑢𝑓

1
, 𝑢
𝑓

3
, and 𝑢

0

3
and the given values of 𝑢0

1
=

−𝐶
0
, 𝑢
0

2
= 𝜉, and 𝑢

𝑓

3
= 𝜙
𝑁+1

(𝑠
0
) into (28) or (29) with a

specified 𝑟 ∈ [0, 1], we can evaluate 𝐺
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, 3, and

then by (48), we can generate the new values of 𝑢0
3
, 𝑢
𝑓

1
, and

𝑢
𝑓

2
, until they are convergent. If the new values of 𝑢0

3
, 𝑢
𝑓

1
, and

𝑢
𝑓

2
converge to satisfy the following convergence criterion:

([𝑢
0

3
(𝑘 + 1) − 𝑢

0

3
(𝑘)]
2

+ [𝑢
𝑓

1
(𝑘 + 1) − 𝑢

𝑓

1
(𝑘)]
2

+[𝑢
𝑓

2
(𝑘 + 1) − 𝑢

𝑓

2
(𝑘)]
2

)

1/2

≤ 𝜀,

(49)

then the iterations stop. Here, 𝑢0
3
(𝑘 + 1) and 𝑢

0

3
(𝑘) denote,

respectively, the (𝑘 + 1)th and the 𝑘th iteration values of 𝑢0
3
.

They are defined similarly for 𝑢𝑓
1
and 𝑢𝑓

2
.

For a trial 𝑟, we can calculate 𝑢0
3
from the above equations

by a few iterations and then numerically integrate (44) by the
fourth-order Runge-Kutta method (RK4) from 0 to 𝜂

∞
and

compare the end value of 𝑢𝑓
3
with the exact one 𝑢

2
(𝜂
∞
) =

𝜙
𝑁+1

(𝑠
0
), which is a target equation to be matched. Indeed,
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we need to find the root of the equation 𝑢𝑓
3
− 𝜙
𝑁+1

(𝑠
0
) = 0,

where 𝑢𝑓
3
is a numerically integrated result, depending on 𝑟.

It can be done in practice by adjusting the value of 𝑟 to a point
such that the curve of mismatching error is intersected with
the zero line at that point.

3. Numerical Examples

Example 1. First, we consider the following 𝑝-Laplacian:

(𝜙
𝑝
(𝑦
󸀠󸀠

(𝑥)))
󸀠

= ℎ (𝑥) + 𝑦 (𝑥) , 𝑥 ∈ (0, 1) ,

𝑦 (0) = 0, 𝑦
󸀠

(1) = 𝜋, 𝑦
󸀠󸀠

(0) = 0.

(50)

We assume that the closed-form solution is 𝑦(𝑥) = − sin(𝜋𝑥).
Hence,

ℎ (𝑥) = 𝜋
3

(𝑝 − 1) [𝜋
2 sin (𝜋𝑥)]

𝑝−2

cos (𝜋𝑥) + sin (𝜋𝑥) .
(51)

We can use the following equations to iteratively solve the
unknown initial value of 𝑢0

2
:

𝑢
0

2
=
𝑢
𝑓

2
− 𝐺
21
𝑢
0

1
− 𝐺
23
𝑢
0

3

𝐺
22

,

𝑢
𝑓

1
= 𝐺
11
𝑢
0

1
+ 𝐺
12
𝑢
0

2
+ 𝐺
13
𝑢
0

3
,

𝑢
𝑓

3
= 𝐺
31
𝑢
0

1
+ 𝐺
32
𝑢
0

2
+ 𝐺
33
𝑢
0

3
.

(52)

We take 𝑘
0
= 3.5 for 𝑝 = 3 and 𝑘

0
= 4 for 𝑝 = 3.5 and

use the SL(3,R) Lie-group shooting method developed in
Section 2.4 by adjusting the value of 𝑢0

2
. If the target equation

𝑢
󸀠

(1) = 𝜋 is satisfied, then we obtain the numerical solution.
The convergence criterion is 𝜀 = 10

−8. Although under
this stringent convergence criterion the iteration process to
find 𝑢0

2
is convergent very fast as shown in Figure 1(a), where

for 𝑟 ∈ [0.58, 0.59] the iteration numbers are between 16
and 23 for the case 𝑝 = 3. In Figure 1(a), we also plot the
mismatching errors with respect to 𝑟 in a range [0.58, 0.59]
for 𝑝 = 3, while in a range [0.54, 0.55] for 𝑝 = 3.5. Both have
an intersection point with the zero line.Then, through a finer
tuning of the value to 𝑟 = 0.58135439224 for the case 𝑝 = 3

and to 𝑟 = 0.547436304748 for the case𝑝 = 3.5, we canmatch
the right-end boundary condition very preciselywith an error
in the order 10−11. The numerical solutions of 𝑦 and 𝑦󸀠 are,
respectively, plotted in Figures 1(b) and 1(c), which are almost
coincident with the closed-form solutions. Therefore, we
plot the numerical errors, which are the absolute differences
between exact solutions and numerical solutions, in Figure 2
for𝑝 = 3 and𝑝 = 3.5. It can be seen that the numerical results
are quite accurate.

Example 2. Then, we consider a different case of (50) by

(𝜙
𝑝
(𝑦
󸀠󸀠

(𝑥)))
󸀠

= ℎ (𝑥) − 𝑦
2

(𝑥) , 𝑥 ∈ (0, 1) ,

𝑦 (0) = 0, 𝑦 (1) = 0, 𝑦
󸀠󸀠

(0) = 0.

(53)
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Figure 1: Example 1 solved by the SL(3,R) method, (a) showing
the error of mismatching and iterations number and comparing
numerical solutions and exact solutions (b) of 𝑦 and (c) 𝑦󸀠.

Similarly, the closed-form solution is 𝑦(𝑥) = − sin(𝜋𝑥).
Hence,

ℎ (𝑥) = 𝜋
3

(𝑝 − 1) [𝜋
2 sin (𝜋𝑥)]

𝑝−2

cos (𝜋𝑥) + sin2 (𝜋𝑥) .
(54)

We can use the following equations to iteratively solve the
unknown initial value of 𝑢0

2
:

𝑢
0

2
=
𝑢
𝑓

1
− 𝐺
11
𝑢
0

1
− 𝐺
13
𝑢
0

3

𝐺
12

,

𝑢
𝑓

2
= 𝐺
21
𝑢
0

1
+ 𝐺
22
𝑢
0

2
+ 𝐺
23
𝑢
0

3
,

𝑢
𝑓

3
= 𝐺
31
𝑢
0

1
+ 𝐺
32
𝑢
0

2
+ 𝐺
33
𝑢
0

3
.

(55)

We take 𝑘
0
= 3.5 and 𝑝 = 3. If the target equation

𝑢(1) = 𝑘
0
is satisfied, then we obtain the numerical solution.

In Figure 3(a), we plot themismatching error and the number
of iterations with respect to 𝑟 in a range [0.575, 0.585]. Then
through a finer tuning of the value to 𝑟 = 0.5813782916, we
can match the right-end boundary condition very precisely



Journal of Applied Mathematics 7

1𝐸 − 5

1𝐸 − 6

1𝐸 − 7

1𝐸 − 8

1𝐸 − 9

Er
ro

r o
f𝑦

(a)

1𝐸 − 5

1𝐸 − 6

1𝐸 − 7

1𝐸 − 8
1𝐸 − 9

1𝐸 − 10

1𝐸 − 11

Er
ro

r o
f𝑦

󳰀

(b)

1𝐸 − 3

1𝐸 − 5

1𝐸 − 7

1𝐸 − 9

1𝐸 − 11

Er
ro

r o
f

𝑝 = 3.5
𝑝 = 3

0.0 0.2 0.4 0.6 0.8 1.0
𝑥

𝑦
󳰀󳰀

(c)

Figure 2: Example 1 with 𝑝 = 3 and 𝑝 = 3.5, showing the numerical
errors of (a) 𝑦, (b) 𝑦󸀠, and (c) 𝑦󸀠󸀠.
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Figure 3: Example 2 solved by the SL(3,R) method, (a) showing
the error of mismatching and iterations number and showing the
numerical errors (b) of 𝑦 and (c) 𝑦󸀠.

with an error in the order 10−10. Upon comparing the numer-
ical solutions with the closed-form solutions, the numerical
errors of 𝑦 and 𝑦󸀠 are, respectively, plotted in Figures 3(b) and
3(c). It can be seen that for 𝑦 the accuracy is in the order of
10
−9, while that for 𝑦󸀠 the accuracy is in the order of 10−6.

Example 3. Weconsider the same equation (53) but under the
following boundary conditions:

𝑦 (0) = 0, 𝑦
󸀠󸀠

(0) = 1, 𝑦
󸀠󸀠

(1) = 1. (56)

When the closed-form solution is given by

𝑦 (𝑥) =
𝑥
2

2
− sin (𝜋𝑥) , (57)

the term ℎ(𝑥) is given by

ℎ (𝑥) = 𝜋
3

(𝑝 − 1) [1 + 𝜋
2 sin (𝜋𝑥)]

𝑝−2

cos (𝜋𝑥)

+ [
𝑥
2

2
− sin (𝜋𝑥)]

2

.

(58)

For the above boundary conditions, we can use the
following equations to iteratively solve the unknown initial
value of 𝑢0

2
:

𝑢
0

2
=
𝑢
𝑓

3
− 𝐺
31
𝑢
0

1
− 𝐺
33
𝑢
0

3

𝐺
32

,

𝑢
𝑓

1
= 𝐺
11
𝑢
0

1
+ 𝐺
12
𝑢
0

2
+ 𝐺
13
𝑢
0

3
,

𝑢
𝑓

2
= 𝐺
21
𝑢
0

1
+ 𝐺
22
𝑢
0

2
+ 𝐺
23
𝑢
0

3
.

(59)

We take 𝑘
0
= 3 and 𝑝 = 1.5. If the target equation 𝑢󸀠󸀠(1) =

𝑘
0
+ 1 is satisfied, then we obtain the numerical solution.

When we plot the mismatching error with respect to 𝑟 in a
range [0.4675, 0.4755] in Figure 4, we find that there exist two
intersection points at 𝑟 = 0.467958888 and 𝑟 = 0.47500045,
which means that there exist two solutions. In (57), we only
give one exact solution, but we do not have another solution
as given in a closed-form.

Then, through a finer tuning of the value of 𝑟, we
can match the right-end boundary condition very precisely
with the error in the order 10−8, and the first numerical
solution is obtained with 𝑟 = 0.467958888, while the second
numerical solution is obtained with 𝑟 = 0.47500045. Upon
comparing the first numerical solution with the closed-form
solution in (57), the numerical errors of 𝑦, 𝑦󸀠, and 𝑦󸀠󸀠 are,
respectively, plotted in Figures 5(a), 5(b), and 5(c). It can
be seen that all the accuracies are in the order of 10−8. In
Figure 6, we compare the first numerical solution and the
second numerical solution with the exact one. It can be seen
that when the first numerical solution is almost coincident
with the exact solution, the second numerical solution is
obviously different from the first numerical solution. We can
also observe that the second numerical solution satisfies the
boundary conditions in (56) very precisely.
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Figure 5: Example 3 showing the errors of the first numerical
solution by comparing with the exact solution.

Example 4. Then, we consider a more general boundary
conditions for the following 𝑝-Laplacian:

(𝜙
𝑝
(𝑦
󸀠󸀠

(𝑥)))
󸀠

= 𝐹 (𝑥, 𝑦 (𝑥)) , 𝑥 ∈ (0, 𝜋) ,

𝑎
11
𝑦 (0) + 𝑎

12
𝑦
󸀠

(0) = 𝐵
1
, 𝑎

21
𝑦 (𝜋) + 𝑎

22
𝑦
󸀠

(𝜋) = 𝐵
2
,

𝑦
󸀠󸀠

(0) = 0.

(60)

Similarly, we consider a translationwith 𝑢(𝑥) = 𝑦(𝑥)+𝑘
0
> 0,

such that we have

(𝜙
𝑝
(𝑢
󸀠󸀠

(𝑥)))
󸀠

= 𝑓 (𝑥, 𝑢 (𝑥))

:= 𝐹 (𝑥, 𝑢 (𝑥) − 𝑘
0
) , 𝑥 ∈ (0, 𝜋) ,

𝑎
11
𝑢 (0) + 𝑎

12
𝑢
󸀠

(0) = 𝑏
1
:= 𝑎
11
𝑘
0
+ 𝐵
1
,

𝑎
21
𝑢 (𝜋) + 𝑎

22
𝑢
󸀠

(𝜋) = 𝑎
21
𝑘
0
+ 𝐵
2
, 𝑢

󸀠󸀠

(0) = 0.

(61)

In terms of (33), we can write

(B
0
+ B
𝑓
G)U
0

= ([

[

𝑎
11

𝑎
12

0

0 0 0

0 0 1

]

]

+ [

[

0 0 0

𝑎
21

𝑎
22

0

0 0 0

]

]

[

[

𝐺
11

𝐺
12

0

𝐺
21

𝐺
22

0

𝐺
31

𝐺
32

1

]

]

)

×
[
[
[

[

𝑢
0

1

𝑢
0

2

𝑢
0

3

]
]
]

]

= [

[

𝑎
11

𝑎
12

0

𝑎
21
𝐺
11
+ 𝑎
22
𝐺
21

𝑎
21
𝐺
12
+ 𝑎
22
𝐺
22

0

0 0 1

]

]

[
[
[

[

𝑢
0

1

𝑢
0

2

𝑢
0

3

]
]
]

]

= [

[

𝑏
1

𝑏
2

0

]

]

.

(62)

Thus, from (62) and (23), we can solve

𝑢
0

1
=

𝑏
1
(𝑎
21
𝐺
12
+ 𝑎
22
𝐺
22
) − 𝑏
2
𝑎
12

𝑎
11
(𝑎
21
𝐺
12
+ 𝑎
22
𝐺
22
) − 𝑎
12
(𝑎
21
𝐺
11
+ 𝑎
22
𝐺
21
)
,

𝑢
0

2
=

𝑏
2
𝑎
11
− 𝑏
1
(𝑎
21
𝐺
11
+ 𝑎
22
𝐺
21
)

𝑎
11
(𝑎
21
𝐺
12
+ 𝑎
22
𝐺
22
) − 𝑎
12
(𝑎
21
𝐺
11
+ 𝑎
22
𝐺
21
)
,

𝑢
𝑓

1
= 𝐺
11
𝑢
0

1
+ 𝐺
12
𝑢
0

2
+ 𝐺
13
𝑢
0

3
,

𝑢
𝑓

2
= 𝐺
21
𝑢
0

1
+ 𝐺
22
𝑢
0

2
+ 𝐺
23
𝑢
0

3
,

𝑢
𝑓

3
= 𝐺
31
𝑢
0

1
+ 𝐺
32
𝑢
0

2
+ 𝐺
33
𝑢
0

3
.

(63)

The above five equations can be used to iteratively solve the
five unknowns of𝑢0

1
, 𝑢
0

2
, 𝑢
𝑓

1
, 𝑢
𝑓

2
, and𝑢𝑓

3
.Wenote that𝑢0

3
= 0

by the last boundary condition in (61).
As a demonstrative case, we take 𝐹(𝑥, 𝑦(𝑥)) = ℎ(𝑥) −

𝑦(𝑥), that is, 𝑓(𝑥, 𝑢(𝑥)) = ℎ(𝑥) − [𝑢(𝑥) − 𝑘
0
], 𝑝 = 3,

and 𝑦(𝑥) = 𝑒
𝑥 cos𝑥 to be the exact solution, where ℎ(𝑥)
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Figure 6: Example 3 comparing the first numerical solution and the
second numerical solution with the exact solution.

can be computed from (60) by inserting the above 𝑦(𝑥). The
boundary conditions are given by

𝑦 (0) + 𝑦
󸀠

(0) = 2, 𝑦 (𝜋) + 𝑦
󸀠

(𝜋) = −2𝑒
𝜋

,

𝑦
󸀠󸀠

(0) = 0,

that is, 𝑢 (0) + 𝑢󸀠(0) = 𝑘
0
+ 2, 𝑢 (𝜋) + 𝑢

󸀠

(𝜋) = 𝑘
0
− 2𝑒
𝜋

,

𝑢
󸀠󸀠

(0) = 0.

(64)

We take 𝑘
0
= 25. If the target equation 𝑢𝑓

1
+ 𝑢
𝑓

2
− 𝑘
0
+

2𝑒
𝜋

= 0 is satisfied, then we obtain the numerical solution.
When we plot the mismatching error with respect to 𝑟 in
a finer range [0.7102, 0.7103] in Figure 7, we find that there
exists one intersection point at 𝑟 = 0.710283575975. We
can match the right-end boundary condition very precisely
with an error being −3.694 × 10−10. Because there are many
equations to be solved iteratively, the number of iterations as
shown in Figure 7(a) is between 45 and 48, which is higher
than the previous three examples. In Figure 7(b), we compare
the numerical solution of 𝑦(𝑥)with the exact solution 𝑦(𝑥) =
𝑒
𝑥 cos𝑥, whose numerical error as shown in Figure 7(c) is
quite accurate in the order of 10−6.
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Figure 7: Example 4 solved by the SL(3,R) method, (a) showing
the error of mismatching and iterations number, (b) comparing the
numerical and exact solutions, and (c) showing the numerical error
of 𝑦.

Alternatively, we consider a nonlinear perturbation of the
above example under the same boundary conditions but with

𝐹 (𝑥, 𝑦 (𝑥)) = ℎ (𝑥) − 𝑦 (𝑥) +
1

2
𝑦
2

(𝑥) ,

ℎ (𝑥) = −2 (𝑝 − 1) 𝑒
𝑥

(cos𝑥 + sin𝑥) 󵄨󵄨󵄨󵄨2𝑒
𝑥 sin𝑥󵄨󵄨󵄨󵄨

𝑝−2

,

(65)

where we also fix 𝑝 = 3. For this problem, we do not have
a closed-form solution. However, we take 𝑘

0
= 26, and

by taking 𝑟 = 0.6863523 and 𝑟 = 0.799, we can obtain
two numerical solutions as shown in Figure 8.The numerical
solution as shown by the dashed line is quite unstable. For the
purpose of comparison, we also plot the numerical solutions
obtained in the last example in (64) by the dashed-dotted
lines in Figure 8. It can be seen that the solid lines are
somewhat perturbed from the ones of the dashed-dotted
lines, but the unstable ones are quite different from the above
two solutions.

4. Power-Law Fluids

In this section, we consider the boundary layer problems
of power-law fluid in (6). We use the SL(3,R) Lie-group
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Figure 8: A nonlinear perturbation of Example 4, displaying two
solutions of (a) 𝑦, (b) 𝑦󸀠, and (c) 𝑦󸀠󸀠.

shooting method developed in Section 2.3 by adjusting the
value of𝑢0

3
. However, before thatwe need to treat the difficulty

mentioned in Section 2.3 if we use the boundary conditions
in (36).

First, we need to point out that for this boundary layer
problem we only consider that the function 𝑓(𝑥) is convex,
that is, 𝑓󸀠󸀠(𝑥) ≥ 0. So the term 𝑏 defined in (30) is positive.
Then, from (28), (23), and (32), we have

𝑢
𝑓

1
= cosh (ℓ√𝑏) 𝑢0

1
+

1

√𝑏
sinh (ℓ√𝑏) 𝑢0

2
, (66)

𝑢
𝑓

2
= √𝑏 sinh (ℓ√𝑏) 𝑢0

1
+ cosh (ℓ√𝑏) 𝑢0

2
, (67)

𝑢
𝑓

3
= 𝑐 sinh (ℓ√𝑏) 𝑢0

1
+

𝑐

√𝑏
[cosh (ℓ√𝑏) − 1] 𝑢0

2
+ 𝑢
0

3
, (68)

where ℓ = 𝜂
∞
.

Let 𝑧 := ℓ√𝑏. From (67), we can derive a scalar equation
to solve 𝑧:

𝑢
0

2
ℓ cosh 𝑧 + 𝑢0

1
𝑧 sinh 𝑧 − ℓ𝑢𝑓

2
= 0. (69)

Because 𝑢0
1
= 𝑘
0
− 𝐶
0
, 𝑢
0

2
= 𝜉, and 𝑢𝑓

2
= 1 are given from the

boundary conditions, and ℓ = 𝜂
∞
is selected, we can apply the

Newton method to solve the above equation, whose solution
is denoted by 𝑧

0
. Hence, we have

𝑏 = (
𝑧
0

ℓ
)

2

, (70)
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Figure 9: The boundary layer problem of a power-law fluid with
𝑁 = 0.8 solved by the SL(3,R) method, (a) showing the error
of mismatching and iterations number and showing the numerical
solutions of (b) 𝑓, (c) 𝑓󸀠, and (d) 𝑓󸀠󸀠.

by the definition of 𝑧 = ℓ√𝑏. Furthermore, by (30), we have

𝑟𝑢
0

3
+ (1 − 𝑟) 𝑢

𝑓

3
= 𝜙
𝑝
(𝑏𝑢̂
1
) . (71)

From (68) and (71), we can solve

𝑢
0

3
= 𝜙
𝑝
(𝑏𝑢̂
1
) − (1 − 𝑟)

× [𝑐 sinh (ℓ√𝑏) 𝑢0
1
+

𝑐

√𝑏
[cosh (ℓ√𝑏) − 1] 𝑢0

2
] ,

𝑢
𝑓

3
= 𝜙
𝑝
(𝑏𝑢̂
1
)

+ 𝑟 [𝑐 sinh (ℓ√𝑏) 𝑢0
1
+

𝑐

√𝑏
[cosh (ℓ√𝑏) − 1] 𝑢0

2
] ,

(72)

where 𝑐 = −(𝑢̂
1
− 𝑘
0
)𝜙
𝑞
(𝑢̂
3
)/(√𝑏𝑢̂

1
). When 𝑏 is solved, 𝑢𝑓

1

is determined by (66); hence, (72) can be used iteratively to
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Figure 10: The boundary layer problem of power-law fluid with
𝑁 = 1.2 solved by the SL(3,R) method, (a) showing the error
of mismatching and iterations number and showing two different
numerical solutions of (b) 𝑓, (c) 𝑓󸀠, and (d) 𝑓󸀠󸀠.

solve the twounknowns of𝑢0
3
and𝑢𝑓
3
.We can satisfy the target

equation 𝑢𝑓
2
= 1 by selecting the best value of 𝑟.

Example 5. We fix𝑁 = 0.8, 𝐶
0
= 0, 𝜉 = 0.2, 𝜂

∞
= 10, and

𝑘
0
= 1, and the convergence criterion is 𝜀 = 10

−5. Although
under this stringent convergence criterion the iteration pro-
cess to find 𝑢0

3
is convergent very fast as shown in Figure 9(a),

where for 𝑟 ∈ [0.65, 0.7] the iteration numbers are all to
be four. In Figure 9(a), we plot the mismatching error with
respect to 𝑟 in the same range. It can be seen that the
mismatching error curve is intersected with the zero line at a
point near to 0.68.Then, through a finer tuning of the value to
𝑟 = 0.689064, we can match the right-end boundary
condition very precisely with an error in the order of 10−7.
The unknown initial value of 𝑢

3
(0) = V(0) = 0.4998652 (or

𝑓
󸀠󸀠

(0) = 0.4203065) is obtained. The numerical results of
𝑓, 𝑓
󸀠, and 𝑓󸀠󸀠 are, respectively, plotted in Figures 9(b)–9(d).
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Figure 11: The boundary layer problem of a power-law fluid with
𝑁 = 0.3 solved by the SL(3,R) method, (a) showing the error
of mismatching and iterations number and showing three different
numerical solutions of (b) 𝑓, (c) 𝑓󸀠, and (d) 𝑓󸀠󸀠.

Example 6. We fix 𝑁 = 1.2, 𝐶
0
= 0.2, 𝜉 = −0.2, 𝜂

∞
= 15,

and 𝑘
0
= 1, and the convergence criterion is 𝜀 = 10

−5. As
shown in Figure 10(a), where for 𝑟 ∈ [0.2, 0.8] the iteration
numbers are all to be four, the mismatching error curve is
intersected with the zero line at two points a and b. Then,
through a finer tuning of the values to 𝑟 = 0.2408982

and 𝑟 = 0.7191693, we can match the right-end boundary
condition very precisely with the errors in the order of 10−8,
and thus we obtain two numerical solutions as compared
in Figures 10(b)–10(d). For the first solution, the unknown
initial value of 𝑢

3
(0) = V(0) = 0.18159807 (or 𝑓󸀠󸀠(0) =

0.24131965) is obtained, while for the second solution the
unknown initial value of 𝑢

3
(0) = V(0) = 0.024415987 (or

𝑓
󸀠󸀠

(0) = 0.04533098) is obtained. The numerical results of
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V(0) = 0.18159807 and V(0) = 0.024415987 are very close to
that obtained by Liu [14].

Example 7. We fix 𝑁 = 0.3, 𝐶
0
= 0.2, 𝜉 = −0.2, 𝜂

∞
= 10,

and 𝑘
0
= 0.5. As shown in Figure 11(a), the mismatching

error curve is intersected with the zero line at three points
a, b, and c. Then, through a finer tuning of the values to
𝑟 = 0.081054, 𝑟 = 0.6812354, and 𝑟 = 0.96791285, we can
obtain three corresponding numerical solutions as compared
in Figures 11(b)–11(d). For the first solution, the unknown
initial value of 𝑓󸀠󸀠(0) = 0.150134848 is obtained, and for
the second solution the unknown initial value is 𝑓󸀠󸀠(0) =

0.0337905, while that for the third solution the unknown
initial value is 𝑓󸀠󸀠(0) = 0.01283368. For the last solution, 𝑓󸀠󸀠
grows rapidly after 𝑥 = 8.

5. Conclusions

In the present paper, we have offered a rather accurate and
simplemethodwith only a few iterations to find the unknown
left boundary conditions by applying the SL(3,R) Lie-group
shooting method to the third-order 𝑝-Laplacian boundary
value problems. Also, as an application, we have solved the
boundary layer problems of power-law fluids by the present
method. The SL(3,R) Lie-group shooting method allows us
to express the missing left-end boundary conditions by the
closed-form functions of 𝑟 ∈ [0, 1], where the best 𝑟 is
determined iteratively by matching the right-end boundary
conditions. Because the iterations to find themissing left-end
boundary conditions are convergent very fast, the Lie-group
shooting method based on SL(3,R) is quite computationally
efficient. The new method was effective to find the multiple
solutions, although for the highly nonlinear case with multi-
ple unknown left boundary conditions.
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