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A coepidemic arises when the spread of one infectious disease stimulates the spread of another infectious disease. Recently, this
has happened with human immunodeficiency virus (HIV) and tuberculosis (TB). The density of individuals infected with latent
tuberculosis is structured by age since latency. The host population is divided into five subclasses of susceptibles, latent TB, active
TB (without HIV), HIV infectives (without TB), and coinfection class (infected by both TB and HIV). The model exhibits three
boundary equilibria, namely, disease free equilibrium, TB dominated equilibrium, and HIV dominated equilibrium. We discuss
the local or global stabilities of boundary equilibria. We prove the persistence of our model. Our simple model of two synergistic
infectious disease epidemics illustrates the importance of including the effects of each disease on the transmission and progression
of the other disease. We simulate the dynamic behaviors of our model and give medicine explanations.

1. Introduction

Coepidemics—the related spread of two or more infectious
diseases—have afflicted mankind for centuries. Worldwide,
there were an estimated 1.37 million coinfected HIV and TB
patients globally in 2007. Around 80 percent of patients live
in sub-Saharan Africa. 456000 people died of HIV-associated
TB in 2007. HIV/AIDS and tuberculosis (TB) are commonly
called the “deadly duo” and referred to as HIV/TB, despite
biological differences. HIV is a retrovirus that is transmitted
primarily by homosexual and heterosexual contact, needle
sharing, and from mother to child. The disease eventually
progresses to AIDS as the immune system weakens. HIV can
be treated with highly active antiheroical therapy (HAART),
but there is presently no cure [1]. Virtually all HIV-infected
individuals can transmit the virus to others, and an infected
individual’s chance of spreading the virus generally increases
as the disease progresses and damages the immune system
[2]. Tuberculosis is caused by mycobacterium tuberculosis
bacteria and is spread through the air. Some TB infections are
“latent,” meaning that a person has the TB-causing bacteria
but it is dormant. A person with latent TB is not sick and is
not infectious. However, latent TB can progress to “active”
TB. “Active” TB infection means that the TB bacteria are

multiplying and spreading in the body. A person with active
TB in their lungs or throat can transmit the bacteria to others.
Symptoms of active TB include a cough that lasts several
weeks, weight loss, loss of appetite, fever, night sweats, and
coughing up blood.

HIVweakens the immune system and so people are more
susceptible to catching TB if they are exposed. At least one-
third of people living with HIV worldwide are infected with
TB and are 20–30 times more likely to develop TB than those
without HIV. TB bacteria accelerate the progression of HIV
toAIDS. Persons coinfectedwith TB andHIVmay spread the
disease not only to the other HIV-infected persons, but also
to members of the general population who do not participate
in any of the high risk behaviors associated with HIV.
People living with HIV and displaying early diagnosis need
treatment in time. If TB is present, they should receive TB
preventive treatment (IPT).The treatments are not expensive.
Therefore, it is essential that adequate attention must be paid
to study the transmission dynamics of HIV-TB coinfection in
the population. Current treatment forHIV is known as highly
active antiretroviral therapy (HAART) [3].

Some authors have developed simulation models to
investigate HIV-TB co-epidemic dynamics [4–7]. West and
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Figure 1: The flow diagram of the model (1). Two yellow rectangu-
lars denote the individuals infected by latent tuberculosis and active
tuberculosis.The red rectangular denotes the individuals infected by
HIV. The orange rectangular denotes the individuals coinfected by
TB and HIV.

Thompson [8] developed models which reflect the trans-
mission dynamics of both TB and HIV and discussed the
magnitude and duration of the effect that the HIV epidemic
may have on TB. Naresh and Tripathi [9] presented a
model for HIV-TB coinfection with constant recruitment
of susceptibles and found that TB will be eradicated from
the population if more than 90 percent TB infectives are
recovered due to effective treatment. Naresh et al. [10] studied
the effect of tuberculosis on the spread of HIV infection in a
logistically growing human population. They found that as
the number of TB infectives decreases due to recovery, the
number of HIV infectives also decreases and endemic equi-
librium tends toTB free equilibrium. Long et al. [11] discussed
two synergistic infectious disease epidemics illustrating the
importance of including the effects of each disease on the
transmission and progression of the other disease.

However, these models may exclude coinfection, may
greatly simplify infection dynamics, and may include few
disease states (e.g., the important distinction between latent
and active TBwas absent).They assume thatHIV treatment is
unavailable. Bifurcation will appear in some models [12, 13].
We perform the additional latent age, analyze the coexistence
equilibria, and extend the model to include disease recovery
in this paper. At the same time, we obtain the persistence of
the system and global stabilities of the equilibria under some
conditions.

This paper is organized as follows. In Section 2, we
introduce the TB-HIV coinfection model. In Section 3, we

introduce the reproduction numbers of TB and HIV 𝑅
1
, 𝑅

2

and discuss the existence of the equilibria. The values of the
disease-free equilibrium, the two boundary equilibria, and
the coexistence equilibrium are given explicitly. Section 4
focuses on local and global stabilities of the equilibria. In
Section 5, we discuss the persistence of the system in suitable
period. In Section 6, we simulate and illustrate our results.We
give some biological explanations in this section. In Section 7,
we conclude our results and discuss the defect of our model.

2. The Model Formulation

Two diseases mentioned in the introduction are spreading in
a population of total size 𝑁(𝑡). We classify the total popu-
lation into four classes: the susceptible 𝑆(𝑡); the individuals
infected by the tuberculosis, 𝑒(𝑎, 𝑡) and 𝐼

1
(𝑡) denotes the

latent TB class which has no infectious ability and active TB
class who can infect the susceptible class, respectively; the
individuals infected by HIV 𝐼

2
(𝑡); the individuals coinfected

by tuberculosis and HIV 𝐽(𝑡). The individuals infected with
active TB infect the susceptible and then develop into the
latent individuals at 𝛽

1
. The individuals infected by HIV

infect the susceptible and become the individuals infected by
HIV at 𝛽

2
. An individual already infected with TB can be

coinfected with HIV at 𝛿 and thus become jointly infected
individuals 𝐽(𝑡).

Figure 1 presents a schematic flow diagram of the mathe-
matical model as follows:
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(1)

where 𝜇 is natural death rate and Λ is birth rate. 𝛾(𝑎) is
rate of endogenous reactivation of latent TB. We assume that
the individuals separately infected by TB and HIV are not
lethal but the coinfection can lead to the extra death at 𝜈.
Specifically, we assume that jointly infected individuals do
not recover. Individuals infected with latent TB, active TB, or
HIV alone may be potentially treated at rates 𝛼

0
(𝑎), 𝛼

1
, and

𝛼
2
, respectively.

Assumption 1. Suppose that

(a) Λ, 𝜇, 𝛿, 𝛼
1
, 𝛼

2
, 𝛽

1
, 𝛽

2
∈ (0, +∞);
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(b) 𝜈 ∈ [0, +∞);
(c) 𝛾(𝑎), 𝛼

0
(𝑎) ∈ 𝐶

𝐵,𝑈
([0, +∞), 𝑅) ∩ 𝐶

+
([0, +∞), 𝑅) and

for each 𝑎 ≥ 0, where 𝐶
𝐵𝑈
(𝑅) denotes the space

of bounded and uniformly continuous map from
[0, +∞) into 𝑅.

We assume (1) with the initial conditions:

𝑆 (0) = 𝑆
0
≥ 0, 𝑒 (𝑎, 0) = 𝑒

0
(𝑎) ∈ 𝐿

1

+
(0, +∞) ,
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1
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2
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0
≥ 0.

(2)
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2
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(4)

Let 𝐷(A) = 𝑅 × 𝑍 × 𝑅2, with 𝑍 = {0
𝑅
} × 𝑊

1,1
(0,∞),
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(6)

Rewrite problem (1) as an abstract Cauchy problem

𝑑𝑢
𝑥
(𝑡)

𝑑𝑡
= A𝑢

𝑥
(𝑡) +F (𝑢

𝑥
(𝑡)) , 𝑡 ≥ 0, 𝑢

𝑥
(0) = 𝑥 ∈ 𝑋

0+
.

(7)

It is well known that A is a Hille-Yosida operator. More
precisely, we have (−𝜇, +∞) ⊂ 𝜌(A) and for each 𝜆 > −𝜇,

󵄩󵄩󵄩󵄩󵄩
(𝜆 −A)

−1󵄩󵄩󵄩󵄩󵄩
≤
1

𝜆 + 𝜇
. (8)

By applying the results in Magal et al. [14–16], we obtain
the following proposition.

Lemma 1. There exists a uniquely determined semiflow
{𝑈(𝑡)}

𝑡≥0
on 𝑋

0+
, such that for each 𝑥 = (𝑆

0
, 0, 𝑒

0
, 𝐼
10
,

𝐼
20
, 𝐽
0
)
𝑇
∈ 𝑋

0+
, there exists a unique continuous map 𝑈 ∈

𝐶([0, +∞),𝑋
0+
) which is an integrated solution of the Cauchy

problem (1), that is to say that

∫

𝑡

0

𝑈 (𝑠) 𝑥 𝑑𝑠 ∈ 𝐷 (A) , ∀𝑡 ≥ 0,

𝑈 (𝑡) 𝑥 = 𝑥 +A∫
𝑡

0

𝑈 (𝑠) 𝑥 𝑑𝑠 + ∫

𝑡

0

F (𝑈 (𝑠) 𝑥) 𝑑𝑠, ∀t ≥ 0.

(9)

The total population size 𝑁(𝑡) is the sum of all individuals in
all classes

𝑁 = 𝑆 (𝑡) + ∫

+∞

0

𝑒 (𝑎, 𝑡) 𝑑𝑎 + 𝐼
1
(𝑡) + 𝐼

2
(𝑡) + 𝐽 (𝑡) . (10)

The total population size satisfies the equation 𝑁󸀠
(𝑡) = Λ −

𝜇𝑁 − 𝜈𝐽. We introduce the notation

𝜋 (𝑎) = exp(−∫
𝑎

0

(𝛼
0
(𝜏) + 𝛾 (𝜏)) 𝑑𝜏) , (11)

To understand the biological meaning of the quantity 𝜋(𝑎) we
note that 𝜋(𝑎)𝑒−𝜇𝑎 is the probability to remain infected with TB
time units after infection. In addition, we define the quantity

𝐵 = ∫

+∞

0

𝛼
0
(𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎, (12)

which gives the probability of treatment since the individuals
can leave TB infectious period via treatment.

𝐶 = ∫

+∞

0

𝛾 (𝑎) 𝜋 (𝑎) 𝑒
−𝜇𝑎
𝑑𝑎, (13)

which gives the probability of progression since the individuals
can leave TB infectious period via progression. Since individu-
als can only leave the latent TB infected class through treatment,
progression, or death, the sum of the probabilities of recovery,
progression, and death equals one, that is,

∫

∞

0

𝛼
0
(𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 + ∫

∞

0

𝛾 (a) 𝜋 (𝑎) 𝑒−𝜇𝑎 𝑑𝑎

+ 𝜇∫

∞

0

𝜋 (𝑎) 𝑒
−𝜇𝑎
𝑑𝑎 = 1.

(14)

It immediately follows that 𝐵 + 𝐶 < 1.

3. Equilibria of the Model with Coinfection

We introduce the reproduction numbers of the two diseases.
The reproduction number of TB is

𝑅
1
=
Λ𝛽

1
𝐶

𝜇 (𝜇 + 𝛼
1
)
, (15)
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and the reproduction number of HIV is

𝑅
2
=

Λ𝛽
2

𝜇 (𝜇 + 𝛼
2
)
. (16)

We note that the coinfection rate 𝛿 does not affect the
reproduction numbers since coinfection does not lead to
additional infections. Setting the derivatives with respect to
time to zerowe obtain a systemof algebraic equations and one
ODE for the equilibria of (1). For convenience we consider
𝑠, 𝑒, 𝑖

1
, 𝑖
2
, 𝑗 as the equilibria of the model.Therefore equilibria

satisfy the following equations:

Λ − 𝛽
1
𝑠𝑖
1
− 𝛽

2
𝑠𝑖
2
− 𝜇𝑠

+ ∫

+∞

0

𝛼
0
(𝑎) 𝑒 (𝑎, 𝑡) 𝑑𝑎 + 𝛼

1
𝑖
1
+ 𝛼

2
𝑖
2
= 0,

𝑑𝑒

𝑑𝑎
= −𝛼

0
(𝑎) 𝑒 − 𝜇𝑒 − 𝛾 (𝑎) 𝑒,

𝑒 (0) = 𝛽
1
𝑠𝑖
1
,

∫

+∞

0

𝛾 (𝑎) 𝑒 (𝑎) 𝑑𝑎 − 𝜇𝑖
1
− 𝛿𝑖

1
𝑖
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− 𝛼

1
𝑖
1
= 0,

𝛽
2
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2
− (𝜇 + 𝛼

2
) 𝑖

2
= 0,

𝛿𝑖
1
𝑖
2
− (𝜇 + 𝜈) 𝑗 = 0.

(17)

The ODE in the system can be solved to result in

𝑒 (𝑎) = 𝑒 (0) 𝜋 (𝑎) 𝑒
−𝜇𝑎
. (18)

Substituting for 𝑖 in the integrals, one obtains

∫

+∞

0

𝛼
0
(𝑎) 𝑒 (𝑎) 𝑑𝑎 = 𝑒 (0) ∫

+∞

0

𝛼
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𝑑𝑎 = 𝑒 (0) 𝐵,

∫
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0
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+∞

0

𝛾 (𝑎) 𝜋 (𝑎) 𝑒
−𝜇𝑎
𝑑𝑎 = 𝑒 (0) 𝐶.

(19)

With this notation the system for the equilibria becomes

Λ − 𝛽
1
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1
− 𝛽
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2
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𝑖
1
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2
𝑖
2
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𝑑𝑒

𝑑𝑎
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1
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1
,
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− 𝛿𝑖

1
𝑖
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1
𝑖
1
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𝛽
2
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2
) 𝑖

2
= 0,

𝛿𝑖
1
𝑖
2
− (𝜇 + 𝜈) 𝑗 = 0.

(20)

This system has three boundary equilibria.

(1) The disease-free equilibrium 𝐸
0
= (Λ/𝜇, 0, 0, 0, 0).

The disease-free equilibrium always exists.

(2) The TB dominated equilibrium exists if and only if
𝑅
1
> 1. The steady distribution of infectives in the

TB equilibrium is given by

𝑠
1
=
Λ

𝜇𝑅
1

, 𝑒 = 𝑒 (0) 𝜋 (𝑎) 𝑒
−𝜇𝑎
,

𝑖
1
=

Λ (1 − 1/𝑅
1
)

(1 − 𝐵) 𝜇/𝐶 + (1 − 𝐵 − 𝐶) 𝛼
1
/𝐶
,

𝑒 (0) = 𝛽
1
𝑠
1
𝑖
1
.

(21)

Thus, the equilibrium is

𝐸
1
= (𝑠

1
, 𝑒, 𝑖

1
, 0, 0) . (22)

(3) The HIV dominated equilibrium exists if and only if
𝑅
2
> 1 and is given by

𝐸
2
= (𝑠

2
, 0, 0, 𝑖

2
, 0) , (23)

where 𝑠
2
= 1/𝑅

2
, 𝑖

2
= 0, 𝑒

2
= 0, 𝑖

2
= (Λ/𝜇)(1 −

1/𝑅
2
), 𝑗

2
= 0.

(4) The coexistence equilibrium exists if and only if 𝑅
1
>

𝑅
2
, and [1 − (1/𝑅

2
+𝜇(𝜇+𝛼

1
)/Λ𝛿)][(Λ𝛽

1
/𝜇𝛼

1
𝑅
2
)(1 −

𝐵) − 1] > 0 and it is given by

𝐸
2
= (𝑠, 𝑒, 𝑖

1
, 𝑖
2
, 𝑗) , (24)

where 𝑠 = Λ/𝜇𝑅
2
, 𝑒 = 𝑒(0)𝜋(𝑎)𝑒−𝜇𝑎, 𝑒(0) = 𝛽

1
𝑠𝑖
1
, 𝑖
1
=

(Λ/𝛼
1
)(1 − (1/𝑅

2
+𝜇(𝜇+𝛼

1
)/Λ𝛿))/((Λ𝛽

1
/𝜇𝛼

1
𝑅
2
)(1 −

𝐵) − 1), 𝑖
2
= ((𝜇 + 𝛿)/𝛿)(𝑅

1
/𝑅

2
− 1), 𝑗 = 𝛿𝑖

1
𝑖
2
/(𝜇 + 𝜈).

Notice that the values of the two dominance equilibria do
not depend on the coinfection. These exact same equilibria
are present even if 𝛿 = 0.

4. Stability of Equilibria

In this section we investigate local and global stabilities
of equilibria. In particular, we derive conditions for the
stability of the disease-free equilibrium, of the TB dominance
equilibrium and of the HIV dominance equilibrium. The
stability of equilibria determines whether both diseasess will
be eliminated, one of the diseases will be dominated, and both
diseases will persist or not.

To investigate the stability of the equilibria, we linearize
the model (1). In particular, let 𝑥(𝑡), 𝑦(𝑎, 𝑡), 𝑧(𝑡), 𝑢(𝑡), and
𝑤(𝑡) be the perturbations, respectively, of 𝑠, 𝑒(𝑎), 𝑖

1
, 𝑖
2
, 𝑗. That

is, 𝑆 = 𝑥 + 𝑠, 𝑒 = 𝑦 + 𝑒, 𝐼
1
= 𝑧 + 𝑖

1
, 𝐼

2
= 𝑢 + 𝑖

2
, 𝐽 = 𝑤 + 𝑗.

Thus the perturbations satisfy a linear system. Further we
consider the eigenvalue problem for the linearized system.
We will denote the eigenvector again with 𝑥, 𝑦(𝑎), 𝑧, 𝑢, and
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𝑤.These satisfy the following linear eigenvalue problem (here
𝑠, 𝑒, 𝑖

1
, 𝑖
2
, and 𝑗 are the corresponding equilibria):

𝜆𝑥 = − 𝛽
1
𝑠𝑧 − 𝛽

1
𝑖
1
𝑥 − 𝛽

2
𝑠𝑢 − 𝛽

2
𝑖
2
𝑥 − 𝜇𝑥

+ ∫

∞

0

𝛼
0
(𝑎) 𝑦 (𝑎) 𝑑𝑎 + 𝛼

1
𝑧 + 𝛼

2
𝑢,

𝑦
󸀠
(𝑎) = − 𝜆𝑦 − 𝛼

0
(𝑎) 𝑦 − 𝜇𝑦 − 𝛾 (𝑎) 𝑦,

𝑦 (0) = 𝛽
1
𝑠𝑧 + 𝛽

1
𝑖
1
𝑥,

𝜆𝑧 = ∫

∞

0

𝛾 (𝑎) 𝑦 (𝑎) 𝑑𝑎 − 𝜇𝑧 − 𝛿𝑖
2
𝑧 − 𝛿𝑖

1
𝑢 − 𝛼

1
𝑧,

𝜆𝑢 = 𝛽
2
𝑠𝑢 + 𝛽

2
𝑖
2
𝑥 − (𝜇 + 𝛼

2
) 𝑢,

𝜆𝑤 = 𝛿𝑖
2
𝑧 + 𝛿𝑖

1
𝑢 − (𝜇 + 𝜈)𝑤.

(25)

In the following we discuss local stability of the equilib-
ria through the characteristic equation (25). Since the last
equation has no relation with the other equations in (1) and
(25), we just discuss the first four equations of them in the
following.

4.1. Stability of the Disease-Free Equilibrium. For the disease-
free equilibrium we have 𝑒(0) = 𝑖

1
= 𝑖

2
= 𝑗 = 0, and 𝑠 = Λ/𝜇.

Thus the system above simplifies to the following system:

𝜆𝑥 = − 𝛽
1
𝑠𝑧 − 𝛽

2
𝑠𝑢 − 𝜇𝑠

+ ∫

∞

0

𝛼
0
(𝑎) 𝑦 (𝑎) 𝑑𝑎 + 𝛼

1
𝑧 + 𝛼

2
𝑢,

𝑦
󸀠
(𝑎) = − 𝜆𝑦 − 𝛼

0
(𝑎) 𝑦 − 𝜇𝑦 − 𝛾 (𝑎) 𝑦,

𝑦 (0) = 𝛽
1
𝑠𝑧,

𝜆𝑧 = ∫

∞

0

𝛾 (𝑎) 𝑦 (𝑎) 𝑑𝑎 − 𝜇𝑧 − 𝛿𝑖
2
𝑧 − 𝛿𝑖

1
𝑢 − 𝛼

1
𝑧,

𝜆𝑢 = 𝛽
2
𝑠𝑢 − (𝜇 + 𝛼

2
) 𝑢.

(26)

From this system we will establish the following result
regarding the local stability of the disease-free equilibrium𝐸

0
.

Theorem 2. If 𝑅
1
< 1 and 𝑅

2
< 1, then the disease-free

equilibrium 𝐸
0
is locally asymptotically stable. If 𝑅

1
> 1 or

𝑅
2
> 1 then the disease-free equilibrium 𝐸

0
is unstable.

Proof. To see this, from the second to last equation we have
𝜆𝑢 = [𝛽

2
𝑠 − (𝜇 + 𝛼

2
)]𝑢, where either 𝜆 = 𝛽

2
𝑠 − (𝜇 + 𝛼

2
), or

𝑢 = 0. This eigenvalue 𝜆 = (𝜇 + 𝛼
2
)(𝑅

2
− 1) < 0, if and only

if 𝑅
2
< 1. Thus, if 𝑅

2
> 1, the disease-free equilibrium 𝐸

0

is unstable because this eigenvalue is positive. Further, from
the second equation we have that the remaining eigenvalues
satisfying the equation,

𝑦 (𝑎) = 𝑦 (0) 𝑒
−(𝜆+𝜇)𝑎

𝜋 (𝑎) = 𝛽
1
𝑠𝑧𝑒

−(𝜆+𝜇)𝑎
𝜋 (𝑎) . (27)

Further, from the fourth equation we have that the remaining
eigenvalues satisfying the equation, also referred to as the

characteristic equation, 𝜆𝑧 = 𝛽
1
𝑠 ∫

∞

0
𝛾(𝑎)𝜋(𝑎)𝑒

−(𝜆+𝜇)𝑎
𝑑𝑎 𝑧 −

(𝜇 + 𝛼
1
) 𝑧. This eigenvalue 𝜆 = (𝜇 + 𝛼

1
)(𝛽

1
𝑠/(𝜇 + 𝛼

1
))

∫
∞

0
𝛾(𝑎)𝜋(𝑎)𝑒

−(𝜆+𝜇)𝑎
𝑑𝑎 − 1), or 𝑧 = 0.

We denote the left hand side of the equation above by
F

1
(𝜆) = 𝜆, andF

2
(𝜆) = (𝜇 + 𝛼

1
)(𝑅

1
(𝜆) − 1), where 𝑅

1
(𝜆) =

(𝛽
1
𝑠/(𝜇 + 𝛼

1
)) ∫

∞

0
𝛾(𝑎)𝜋(𝑎)𝑒

−(𝜆+𝜇)𝑎
𝑑𝑎, and

𝑅
󸀠

1
(𝜆) < 0, lim

𝑡→+∞

𝑅
1
(𝜆) = 0, lim

𝑡→−∞

𝑅
1
(𝜆) = +∞.

(28)

IfF
1
(𝜆) = F

2
(𝜆) has a root with Re 𝜆 ≥ 0, then Re F

1
(𝜆) ≥

0. But |F
2
(𝜆)| ≤ (𝜇 + 𝛼

1
)(𝑅

1
− 1) < 0, when 𝑅

1
< 1. This is a

contradiction.
Thus, if both 𝑅

1
< 1 and 𝑅

2
< 1 all eigenvalues

have negative real part and the disease-free equilibrium 𝐸
0

is locally asymptotically stable. If only 𝑅
1
> 1 then if we

consider F
1
(𝜆) = F

2
(𝜆) for 𝜆 is real, we see that F

2
(𝜆) is

a decreasing function of 𝜆 approaching zero as 𝜆 approaches
infinity. Since F

2
(0) = (𝜇 + 𝛼

1
)(𝑅

1
− 1) > 0 and F

1
(0) = 0

that implies that there is a positive eigenvalue 𝜆∗ > 0 and
the disease-free equilibrium𝐸

0
is unstable.This concludes the

proof.

In what follows, we show that the diseases vanish if 𝑅
1
<

1, 𝑅
2
< 1.

Theorem 3. If 𝑅
𝑖
< 1, 𝑖 = 1, 2, then 𝐸

0
is a global attractor,

that is, lim
𝑡→∞

𝑒(𝑎, 𝑡) = 0, 𝐼
1
→ 0, 𝐼

2
→ 0, 𝐽 → 0 as

𝑡 → ∞.

Proof. Since 𝑁󸀠
(𝑡) = Λ − 𝜇𝑁 − 𝜈𝐽 ≤ Λ − 𝜇𝑁, then N∞

≤

Λ/𝜇. Hence 𝑆∞ ≤ Λ/𝜇. Let B(𝑡) = 𝑒(0, 𝑡). Integrating this
inequality along the characteristic lines we have

𝑒 (𝑎, 𝑡) =
{

{

{

B (𝑡 − 𝑎) 𝜋 (𝑎) 𝑒−𝜇𝑎, 𝑡 < 𝑎,

𝑒
0
(𝑎 − 𝑡)

𝜋 (𝑎)

𝜋 (𝑎 − 𝑡)
𝑒
−𝜇𝑡
, 𝑡 ≥ 𝑎.

(29)

SinceB(𝑡) = 𝛽
1
𝑆𝐼

1
≤ 𝛽

1
Λ𝐼

1
/𝜇 and

𝐼
󸀠

1
≤ 𝛽

1

Λ

𝜇
∫

𝑡

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎

+ 𝐹
1
(𝑡) − 𝜇𝐼

1
− 𝛼

1
𝐼
1
,

(30)

where 𝐹
1
(𝑡) = ∫

∞

𝑡
𝛾(𝑎)𝑒

0
(𝑎 − 𝑡)(𝜋(𝑎)/𝜋(𝑎 − 𝑡))𝑒

−𝜇𝑡
𝑑𝑎 and

lim
𝑡→∞

𝐹
1
(𝑡) = 0, from the equation for 𝐼

1
then we have the

following inequality:

𝐼
1
≤ 𝐼

1
(0) 𝑒

−(𝜇+𝛼
1
)𝑡

+ 𝛽
1

Λ

𝜇
∫

𝑡

0

𝑒
−(𝜇+𝛼

1
)𝜏
∫

𝑡−𝜏

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝜏

+ ∫

𝑡

0

𝑒
−(𝜇+𝛼

1
)𝜏
𝐹
1
(𝑡 − 𝜏) 𝑑𝜏,

(31)
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where 𝛾(𝑎) is bounded and the integral of 𝐹
1
(𝑡) goes to zero

as 𝑡 → ∞. Consequently, taking a limsup of both sides as
𝑡 → ∞ we obtain

𝐼
∞

1
≤ 𝑅

1
𝐼
∞

1
. (32)

Since 𝑅
1
< 1, this inequality can only be satisfied if 𝐼∞

1
→ 0,

as 𝑡 → ∞.
Since B(𝑡) ≤ 𝛽

1
(Λ/𝜇)𝐼

1
, it is easy to obtain B(𝑡) → 0,

as 𝑡 → ∞.
From the equation 𝐼

2
then we have the following inequal-

ity:

𝐼
󸀠

2
≤ 𝛽

2

Λ

𝜇
𝐼
2
− (𝜇 + 𝛼

2
) 𝐼

2
. (33)

Solving the inequality we get

𝐼
2
≤ 𝐼

2
(0) 𝑒

−(𝜇+𝛼
2
)𝑡
+ 𝛽

2

Λ

𝜇
∫

∞

0

𝐼
2
(𝑡 − 𝜏) 𝑒

−(𝜇+𝛼
2
)𝜏
𝑑𝜏. (34)

Consequently, taking a limsup of both sides we obtain

𝐼
∞

2
≤ 𝑅

2
𝐼
∞

2
. (35)

If 𝑅
2
< 1, then 𝐼

2
(𝑡) → 0, as 𝑡 → ∞.

From the fluctuations lemma, we can choose sequence 𝑡
𝑛

such that 𝑆(𝑡
𝑛
) → 𝑆

∞
and 𝑆󸀠(𝑡

𝑛
) → 0 when 𝑡

𝑛
→ +∞. It

follows from the first equation of (1) that we have 𝑆
∞
≥ Λ/𝜇.

Then Λ/𝜇 ≤ 𝑆
∞
≤ 𝑆

∞
≤ Λ/𝜇. Hence 𝑆 → Λ/𝜇 when 𝑡 →

∞. This completes the theorem.

4.2. Stability of the TB Dominated Equilibrium. In this sub-
section we discuss stabilities of the equilibrium 𝐸

1
and

derive conditions for domination of TB. We show that the
equilibrium 𝐸

1
can lose stability, and dominance of the TB

is possible in the form of sustained oscillation. In this case
𝑖
2
= 0, 𝑗 = 0, 𝑠 = Λ/(𝜇𝑅

1
), 𝑖

1
= Λ(1 − 1/𝑅

1
)/((1 − 𝐵)𝜇/𝐶 +

(1 − 𝐵 − 𝐶)𝛼
1
/𝐶), 𝑒(𝑎) = 𝑒(0)𝜋(𝑎)𝑒−𝜇𝑎.

The eigenvalue problem takes the form

𝜆𝑥 = − 𝛽
1
𝑠𝑧 − 𝛽

1
𝑖
1
𝑥 − 𝛽

2
𝑠𝑢 − 𝜇𝑠

+ ∫

∞

0

𝛼
0
(𝑎) 𝑦 (𝑎) 𝑑𝑎 + 𝛼

1
𝑧 + 𝛼

2
𝑢,

𝑦
󸀠
(𝑎) = − 𝜆𝑦 − 𝛼

0
(𝑎) 𝑦 − 𝜇𝑦 − 𝛾 (𝑎) 𝑦,

𝑦 (0) = 𝛽
1
𝑠𝑧 + 𝛽

1
𝑖
1
𝑥,

𝜆𝑧 = ∫

∞

0

𝛾 (𝑎) 𝑦 (𝑎) 𝑑𝑎 − 𝜇𝑧 − 𝛿𝑖
1
𝑢 − 𝛼

1
𝑧,

𝜆𝑢 = 𝛽
2
𝑠𝑢 − (𝜇 + 𝛼

2
) 𝑢.

(36)

From the last equation we have

𝜆 = (𝜇 + 𝛼
2
) (
𝑅
2

𝑅
1

− 1) , or 𝑢 = 0. (37)

Hence 𝑅
1
> 𝑅

2
the partial characteristic root of (36) is

negative. Substituting

𝑦 (𝑎) = 𝑦 (0) 𝜋 (𝑎) 𝑒
−(𝜆+𝜇)𝑎

, 𝑦 (0) = 𝛽
1
𝑠𝑧 + 𝛽

1
𝑖
1
𝑥 (38)

in the first and fourth equations and cancelling 𝑥, 𝑧, we arrive
at the following characteristic equation:

(𝜆 + 𝜇 + 𝛼
1
− 𝛽

1
𝑠𝐶 (𝜆)) (𝜆 + 𝜇 + 𝛽

1
𝑖
1
(1 − 𝐵 (𝜆)))

− 𝛽
1
𝑖
1
𝐶 (𝜆) (𝛼

1
+ 𝛽

1
𝑠 (𝐵 (𝜆) − 1)) = 0.

(39)

Substituting the formula

1 − 𝐵 (𝜆) = 𝐶 (𝜆) + (𝜆 + 𝜇) 𝐸 (𝜆) , (40)

where

𝐸 (𝜆) = ∫

∞

0

𝜋 (𝑎) 𝑒
−(𝜆+𝜇)𝑎 (41)

into (39), we obtain the equivalent characteristic equation
with (39) as follows:
(𝜆 + 𝜇 + 𝛼

1
) (1 + 𝛽

1
𝑖
1
𝐸 (𝜆)) + 𝛽

1
𝑖
1
𝐶 (𝜆)

𝜇 + 𝛼
1

=
𝐶 (𝜆)

𝐶
. (42)

It is easy to see if (42) has the roots with Re 𝜆 > 0, the left
sidemode of (42) is larger than 1, while the right sidemode of
(42) is less than 1, which leads to a contradiction. Hence the
characteristic roots of (42) have negative real parts, then the
TB dominated equilibrium𝐸

1
is locally asymptotically stable.

Therefore we are ready to establish the first result.

Theorem 4. Let 𝑅
1
> 1 and 𝑅

1
> 𝑅

2
. Then, the TB dominated

equilibrium 𝐸
1
is locally asymptotically stable.

For all 𝑥 = (𝑆, 0
𝑅
, 𝑒, 𝐼

1
, 𝐼
2
, 𝐽) ∈ 𝑋

0
, we define 𝑃

𝑆
: 𝑋

0
→

𝑅,𝑃
𝐼
1

, 𝑃
𝐼
2

: 𝑋
0
→ 𝑅 and 𝑃

𝐼
12

: 𝑋
0
→ 𝑅 by

𝑃
𝑆
(𝑥) = 𝑆, 𝑃

𝐼
1
(𝑥) = 𝐼

1
, 𝑃

𝐼
2
(𝑥) = 𝐼

2
. (43)

Set
𝑀

𝐼
12

= 𝑋
0+
, 𝑀

𝐼
120

= {𝑥 ∈ 𝑀
𝐼
12

| 𝑃
𝐼
1

𝑥 ̸= 0, 𝑃
𝐼
2

𝑥 ̸= 0} ,

𝜕𝑀
𝐼
120

=

𝑀
𝐼
12

𝑀
𝐼
120

, 𝑀
𝐼
1

= 𝜕𝑀
𝐼
120

,

𝑀
𝐼
10

= {𝑥 ∈ 𝑀
𝐼
1

| 𝑃
𝐼
1

𝑥 ̸= 0, 𝑃
𝐼
2

x = 0} , 𝜕𝑀
𝐼
10

=

𝑀
𝐼
1

𝑀
𝐼
10

,

𝑀
𝐼
2

= 𝜕𝑀
𝐼
10

, 𝑀
𝐼
20

= {𝑥 ∈ 𝑀
𝐼
2

| 𝑃
𝐼
2

𝑥 ̸= 0, 𝑃
𝐼
1

𝑥 ̸= 0} ,

𝜕𝑀
𝐼
20

=

𝑀
𝐼
2

𝑀
𝐼
20

, 𝑀
𝑆
= 𝜕𝑀

𝐼
20

(44)

(see Figure 2).

Lemma 5. If 𝑅
1
> 1, lim inf 𝐼

1
(𝑡) ≥ 𝜀 in𝑀

𝐼
20

.

Proof. Let 𝑥 = (𝑆
0
, 0

𝑅
, 𝑒, 0

𝑅
, 0

𝑅
) ∈ 𝑀

𝐼
10

. We assume there is a
𝑡
0
> 0 such that 𝐼

1
< 𝜀 for all 𝑡 ≥ 𝑡

0
. From the first equation

of (1) in𝑀
𝐼
10

, it is easy to get

𝑑𝑆

𝑑𝑡
≥ Λ − 𝜀𝛽

1
𝑆 − 𝜇𝑆,

𝑆 (0) = 𝑆
0
.

(45)
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Figure 2: Zoning the area.

We solve them as follows:

𝑆 (𝑡) ≥

Λ (1 − 𝑒
−(𝜇+𝛽

1
𝜀)𝑡
)

𝜇
≐ 𝑆

∗
(𝑡) . (46)

And 𝑆∗(𝑡) → Λ/𝜇, as 𝑡 → +∞. Since 𝑅
1
> 1, there

exists 𝛿 > 0 and 𝑇
1
> 0 which satisfy 𝛽

1
(Λ/𝜇)

∫
𝛿

0
𝑒
−(𝜇+𝛼

1
)𝑠
∫
𝑇
1

0
𝛾(𝑎)𝜋(𝑎)𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠 > 1. From the second

and third equations of (1), and integrating them from the
characteristic line 𝑡 − 𝑎 = 𝑐, we obtain

𝑒 (𝑎, 𝑡) =
{

{

{

𝛽
1
𝑆 (𝑡 − 𝑎) 𝐼

1
(𝑡 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
, 𝑡 ≥ 𝑎,

𝑒
0
(𝑎 − 𝑡)

𝜋 (𝑎)

𝜋 (𝑎 − 𝑡)
𝑒
−𝜇𝑡
, 𝑡 < 𝑎.

(47)

From the fourth equation of (1), we get

𝐼
󸀠

1
(𝑡) = 𝛽

1
∫

𝑡

0

𝛾 (𝑎) 𝑆 (𝑡 − 𝑎) 𝐼
1
(𝑡 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎

+ 𝛽
1
∫

∞

𝑡

𝛾 (𝑎) 𝑒
0
(𝑎 − 𝑡)

𝜋 (𝑎)

𝜋 (𝑎 − 𝑡)
𝑒
−𝜇𝑡
𝑑𝑎

− (𝜇 + 𝛼
1
) 𝐼

1
.

(48)

Solving it, we have

𝐼
1
(𝑡) ≥ 𝛽

1

Λ

𝜇
∫

𝑡

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑡−𝑠

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠, ∀𝑡 ≥ 𝑡

0
.

(49)

There exist a 𝑇
1
> 0, such that

𝐼
1
(𝑡 + 𝑇

1
)

≥ 𝛽
1

Λ

𝜇
∫

𝑡+𝑇
1

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑡+𝑇
1
−𝑠

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠,

≥ 𝛽
1

Λ

𝜇
∫

𝑡

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑇
1

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠, ∀𝑡 ≥ 𝑡

0
.

(50)

Thus, for 𝑡 ≥ 𝛿, we have

𝐼
1
(𝑡 + 𝑇

1
)

≥ 𝛽
1

Λ

𝜇
∫

𝛿

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑇
1

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠, ∀𝑡 ≥ 𝑡

0
.

(51)

By Assumption 1, there exists 𝑡
1
≥ 0, such that 𝐼

1
(𝑡+𝑇

1
) ≥

0, for all 𝑡 + 𝑇
1
≥ 𝑡

1
. Hence, there exists 𝜉 > 0, such that

𝐼
1
(𝑡 + 𝑇

1
) ≥ 𝜉, for all 𝑡 + 𝑇

1
∈ [2𝑡

1
, 2𝑡

1
+ 𝛿]. Set

𝑡
2
= sup {𝑡 + 𝑇

1
≥ 2𝑡

1
+ 𝛿 : 𝐼

1
(𝑙) ≥ 𝜉, ∀𝑙 ∈ [2𝑡

1
+ 𝛿, 𝑡]} .

(52)

Assuming that 𝑡
2
< ∞, it follows that

𝐼
1
(𝑡
2
) ≥ 𝛽

1

Λ

𝜇
∫

𝛿

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑇
1

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋 (𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠,

≥ 𝛽
1

Λ

𝜇
∫

𝛿

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑇
1

0

𝛾 (𝑎) 𝜋 (𝑎) 𝑒
−𝜇𝑎
𝑑𝑎 𝑑𝑠 𝜉.

(53)

Thus, 𝐼
1
(𝑡
2
) > 𝜉. By the continuity for 𝑡 → 𝐼

1
(𝑡), it

follows that there exists an 𝜀
1
> 0, such that 𝐼

1
(𝑡) ≥ 𝜉,

for all 𝑡 ∈ [𝑡
2
, 𝑡
2
+ 𝜀

1
] which contradicts the definition of

𝑡
2
. Therefore, 𝐼

1
(𝑡) ≥ 𝜉, for all 𝑡 > 2𝑡

1
. Denote 𝐼

1∞
=

lim inf
𝑡→+∞

𝐼
1
(𝑡) ≥ 𝜉 > 0. Using (51), it follows that

𝐼
1∞
≥ 𝐼

1∞
𝛽
1
(Λ/𝜇) ∫

𝛿

0
𝑒
−(𝜇+𝛼

1
)𝑠
∫
𝑇
1

0
𝛾(𝑎)𝜋(𝑎)𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠, which

is impossible. Thus, 𝐼
1
(𝑡) ≥ 𝜀.

Theorem 6. If 𝑅
1
> 1, system (1) is permanent in 𝑀

𝐼
10

.
Moreover there exists 𝐴

𝐼
10

a compact subset of 𝑀
𝐼
10

which is
a global attractor for {𝑈(𝑡)}

𝑡≥0
in𝑀

𝐼
10

.

Proof. Suppose that 𝑥 = (𝑆(𝑡), 0, 𝑒, 𝐼
1
, 0, 0) ∈ 𝑀

𝐼
10

be any
solution of (1). From the first equation of (1), we have

𝑆
󸀠
(𝑡) > 𝜇 − (𝛽

1
+ 𝜇) 𝑆 (𝑡) . (54)
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Consider the comparison equation.

𝑢
󸀠
(𝑡) = 𝜇 − (𝛽

1
+ 𝜇) 𝑢 (𝑡) ,

𝑢 (0) = 𝑆 (0) .

(55)

Similarly, (55) exists as a positive unique steady state. So we
have 𝑆(𝑡) ≥ 𝑢∗ − 𝜀

1
≐ 𝑚

1
, for 𝑡 large enough, where 𝑢∗ =

𝜇/(𝜇 + 𝛽
1
). From the second and third equations of (1) and

Volterra’s formulation, we have 𝑒(𝑎, 𝑡) ≥ 𝛽
1
𝑚
1
𝜋(𝑎)𝑒

−𝜇𝑎
≐ 𝑚

2
,

for 𝑡 large enough.

4.3. Stability of the HIV Dominated Equilibrium. In this sub-
section we establish that the equilibrium 𝐸

2
is locally stable

whenever it exists. In this case 𝑒(0) = 0, 𝑖
1
= 0, 𝑗 = 0, 𝑠 =

Λ/𝜇𝑅
2
, 𝑖
2
= (Λ/𝜇)(1 − 1/𝑅

2
). The linear eigenvalue problem

becomes

𝜆𝑥 = − 𝛽
1
𝑠𝑧 − 𝛽

2
𝑠𝑢 − 𝛽

2
𝑖
2
𝑥 − 𝜇𝑥

+ ∫

∞

0

𝛼
0
(𝑎) 𝑦 (𝑎) 𝑑𝑎 + 𝛼

1
𝑧 + 𝛼

2
𝑢,

𝑦
󸀠
(𝑎) = − 𝜆𝑦 − 𝛼

0
(𝑎) 𝑦 − 𝜇𝑦 − 𝛾 (𝑎) 𝑦,

𝑦 (0) = 𝛽
1
𝑠𝑧,

𝜆𝑧 = ∫

+∞

0

𝛾 (𝑎) 𝑦 (𝑎) 𝑑𝑎 − 𝜇𝑧 − 𝛿𝑖
2
𝑧 − 𝛼

1
𝑧,

𝜆𝑢 = 𝛽
2
𝑠𝑢 + 𝛽

2
𝑖
2
𝑥 − (𝜇 + 𝛼

2
) 𝑢.

(56)

From the equation for 𝑦(𝑎) we have

𝑦 (𝑎) = 𝑦 (0) 𝜋 (𝑎) 𝑒
−(𝜆+𝜇)𝑎

. (57)

Substituting 𝑦(𝑎) in the equation for the initial condition
𝑦(0) and assuming that 𝑦(0) ̸= 0 we obtain the following
characteristic equation:

𝜆 + 𝛿𝑖
2
= 𝛽

1
𝑠 ∫

∞

0

𝛾 (𝑎) 𝜋 (𝑎) 𝑒
−(𝜆+𝜇)𝑎

𝑑𝑎 − (𝜇 + 𝛼
1
)

= (𝜇 + 𝛼
1
) (
𝑅
1
(𝜆)

𝑅
2

− 1) .

(58)

Denoting the left hand side of the equation above byF
1
(𝜆) =

𝜆+𝛿𝑖
2
, andF

2
(𝜆) = (𝜇+𝛼

1
)((𝑅

1
(𝜆)/𝑅

2
)−1), and also noting

that

𝑅
󸀠

1
(𝜆) < 0, lim

𝑡→+∞

𝑅
1
(𝜆) = 0, lim

𝑡→−∞

𝑅
1
(𝜆) = +∞,

(59)

it is easy to see that F
1
(𝜆) is an increasing function with 𝜆.

Note thatF
1
(0) = 𝛿𝐼

2
≥ 0. ButF

2
(0) ≤ (𝜇 + 𝛼

1
)((𝑅

1
/𝑅

2
) −

1) < 0, when 𝑅
1
< 𝑅

2
. Therefore the characteristic roots of

this equation have only negative real part. Furthermore, for
𝑦(0) = 𝑦(𝑎) = 0, and 𝑧 = 0,

𝜆𝑥 = − 𝛽
2
𝑠𝑢 − 𝛽

2
𝑖
2
𝑥 − 𝜇𝑥 + 𝛼

2
𝑢,

𝜆𝑢 = 𝛽
2
𝑠𝑢 + 𝛽

2
𝑖
2
𝑥 − (𝜇 + 𝛼

2
) 𝑢.

(60)

We express 𝑥 from the first equation

𝑥 =
(−𝛽

2
𝑠 + 𝛼

2
) 𝑢

𝜆 + 𝜇 + 𝛽
2
𝑖
2

, (61)

and substitute it into the second equation. In addition,
assuming that 𝑢 is nonzero, we cancel it and obtain the
following characteristic equation:

𝜆 + 𝜇 + 𝛼
2
= 𝛽

2
𝑠 +
𝛽
2
𝑖
2
(−𝛽

2
𝑠 + 𝛼

2
)

𝜆 + 𝜇 + 𝛽
2
𝑖
2

, (62)

that is,

(𝜆 + 𝜇) (𝜆 + 𝜇 + 𝛼
2
+ 𝛽

2
𝑖
2
− 𝛽

2
𝑠) = 0. (63)

Noticing that 𝛽
2
𝑠 = 𝜇 + 𝛼

2
, we obtain the following

eigenvalues: 𝜆 = −𝜇 and 𝜆 = −𝛽
2
𝑖
2
, which are both negative.

Consequently, the equilibrium 𝐸
2
is locally asymptotically

stable.
Therefore, we have the following theorem for equilibrium

𝐸
2
.

Theorem 7. Let 𝑅
2
> 1. Assume that tuberculosis cannot

invade the equilibrium of HIV, that is, 𝑅
1
< 𝑅

2
. Then the

equilibrium 𝐸
2
is locally asymptotically stable.

Lemma 8. If 𝑅
2
> 1, then lim inf 𝐼

2
(𝑡) ≥ 𝜀 in𝑀

𝐼
20

.

Proof. Let 𝑥 = (𝑆
0
, 0

𝑅
, 0

1

𝐿
, 0

𝑅
, 𝐼
2
, 0

𝑅
) ∈ 𝑀

𝐼
20

. We assume there
is a 𝑡

0
> 0 such that 𝐼

2
< 𝜀 for all 𝑡 ≥ 𝑡

0
. From the first equation

of (1) in𝑀
𝐼
20

, it is easy to get

𝑑𝑆

𝑑𝑡
≥ Λ − 𝜀𝛽

2
𝑆 − 𝜇𝑆,

𝑆 (0) = 𝑆
0
.

(64)

We solve them,

𝑆 (𝑡) ≥

Λ (1 − 𝑒
−(𝜇+𝛽

2
𝜀)𝑡
)

𝜇
≐ 𝑆

∗
(𝑡) . (65)

Then 𝑆(𝑡) ≥ 𝑆∗(𝑡), and 𝑆(𝑡) → Λ/𝜇, as 𝑡 → +∞. From the
fourth of equation (1), ∃𝑡

0
> 0, we have

𝐼
󸀠

2
(𝑡) ≥ 𝛽

2

Λ

𝜇
𝐼
2
(𝑡) − (𝜇 + 𝛼

2
) 𝐼

2
(𝑡) , ∀𝑡 ≥ 𝑡

0
. (66)

Solving it, we have

𝐼
2
(𝑡) ≥ 𝛽

2

Λ

𝜇
∫

𝑡

0

𝑒
−(𝜇+𝛼

2
)(𝑡−𝑠)
𝐼
2
(𝑡 − 𝑠) 𝑑𝑠. (67)

We do lim inf on both side of (67), and denote 𝐼
2∞
=

lim inf
𝑡→+∞

𝐼
2
(𝑡) > 0, thus

𝐼
2∞
≥ 𝑅

2
𝐼
2∞
, (68)

which is impossible. Thus, 𝐼
2
(𝑡) ≥ 𝜀.
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Theorem 9. If 𝑅
2
> 1, system (1) is permanent in 𝑀

𝐼
20

.
Moreover there exists 𝐴

𝐼
20

a compact subset of 𝑀
𝐼
20

which is
a global attractor for {𝑈(𝑡)}

𝑡≥0
in𝑀

𝐼
20

.

Proof. Suppose that 𝑥 = (𝑆(𝑡), 0, 0, 𝐼
2
(𝑡), 0) ∈ 𝑀

𝐼
20

be any
solution of (1). From the first equation of (1), we have

𝑆
󸀠
(𝑡) > Λ − (𝛽

2
+ 𝜇) 𝑆 (𝑡) . (69)

Consider the comparison equation

𝑢
󸀠
(𝑡) = Λ − (𝛽

2
+ 𝜇) 𝑢 (𝑡) ,

𝑢 (0) = 𝑆 (0) .

(70)

Similarly, (70) exists as a positive unique solution. So we
have 𝑆(𝑡) ≥ 𝑢∗ − 𝜀

1
≐ 𝑚

2
, for 𝑡 large enough, where 𝑢∗ =

Λ/(𝛽
2
+ 𝜇).

4.4. Stability of Coexistence Equilibrium 𝐸
∗
. In this subsec-

tion we establish that the equilibrium 𝐸
∗
is locally sta-

ble whenever it exists. In this case 𝑠 = Λ/𝜇𝑅
2
, 𝑒 =

𝑒(0)𝜋(𝑎)𝑒
−𝜇𝑎
, 𝑒(0) = 𝛽

1
𝑠𝑖
1
, 𝑖

1
= (Λ/𝛼

1
)((1 − (1/𝑅

2
+ 𝜇(𝜇 +

𝛼
1
)/Λ𝛿))/((Λ𝛽

1
/𝜇𝛼

1
𝑅
2
)(1−𝐵)−1)), 𝑖

2
= ((𝜇+𝛿)/𝛿)(𝑅

1
/𝑅

2
−

1), 𝑗 = 𝛿𝑖
1
𝑖
2
/(𝜇 + 𝜈). The characteristic equations at the

coexistence equilibrium are as follows:

(𝜆 + 𝜇 + 𝛼
1
+ 𝛿𝑖

2
− 𝛽

1
𝑠𝐶 (𝜆))

× (𝜆 + 𝛽
1
𝑖
1
+ 𝛽

2
𝑖
2
+ 𝜇 − 𝛽

1
𝑖
1
𝐵 (𝜆) +

𝛽
2
𝑖
2
𝜇

𝜆
)

= (𝛽
1
𝑠𝐵 (𝜆) − 𝛽

1
𝑠) (𝛽

1
𝑖
1
−
𝛿𝛽

2
𝑖
1
𝑖
2

𝜆
) .

(71)

Theorem 10. If 𝑅
1
> 𝑅

2
, [1 − (1/𝑅

2
+ (𝜇(𝜇 + 𝛼

1
)/

Λ𝛿))][((𝜆𝛽
1
/𝜇𝛼

1
𝑅
2
)(1 − 𝐵)) − 1] > 0, and the characteristic

equation (71) has only negative real parts roots, then the
coexistence equilibrium 𝐸

∗
is locally asymptotically stable.

5. Persistence of the System

In this section, we consider persistence of the system in
𝑀

𝐼
120

when 𝜈 = 0. It is easy to check if the system (1)
is dissipative and the dynamical system is asymptotically
smooth. 𝑀

𝐼
120

, 𝑀
𝐼
10

, 𝑀
𝐼
20

, and 𝑀
𝑠
are positively invariant.

Define

𝜕Γ = 𝑀
𝐼
10

∪𝑀
𝐼
20

∪𝑀
𝑠
,

𝜕Γ = 𝑀
𝐼
120

.

(72)

Assuming the boundary equilibria of (1) are globally asymp-
totically stable, we have

𝐴
𝜕𝑀
𝐼120

:= ∪
(𝑆
0
,𝑒
0
(⋅),𝐼
1
,𝐼
2
,𝐽)∈𝜕Γ
𝜔 ((𝑆

0
, 𝑒
0
(⋅) , 𝐼

1
, 𝐼
2
, 𝐽))

= {𝐸
0
, 𝐸

1
, 𝐸

2
} .

(73)

By the above conclusions, it follows that 𝐴
𝜕𝑀
𝐼120

is isolated
and has an acyclic covering𝑀 = {𝐸

0
, 𝐸

1
, 𝐸

2
}. Since the orbit

of any bounded set is bounded, and from Theorem 4.2 in
[17], we only need to show that 𝐸

0
, 𝐸

1
, 𝐸

2
are ejective in𝑀

𝐼
120

if globally stable conditions of 𝐸
0
, 𝐸

1
, 𝐸

2
are not satisfied.

Therefore, we have the following lemmas.

Lemma 11. Let Assumption 1 be satisfied and let 𝐸
0
be globally

asymptotically stable. If 𝑅
1
> 1, then 𝐸

0
is ejective in𝑀

𝐼
120

for
{𝑈

𝐼
12

(𝑡)}
𝑡≥0

.

Proof. Let 𝛿 > 0, 𝑇
1
> 0 and 𝜀 ∈ (0, 1) satisfy

𝛽
1
(
Λ

𝜇
− 𝜀)∫

𝛿

0

𝑒
−(𝜇+𝛼

1
)𝑠
∫

𝑇
1

0

𝛾 (𝑎) 𝜋
1
(𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠 > 1. (74)

Let 𝑥 = (𝑆
0
, 0

𝑅
, 𝐼
10
, 𝐼
20
, 𝐽
0
) ∈ 𝑀

𝐼
120

with ‖𝑥 − 𝑥
𝑆
‖ < 𝜀. Assume

that

󵄩󵄩󵄩󵄩𝑈 (𝑡) 𝑥 − 𝑥𝑠
󵄩󵄩󵄩󵄩 ≤ 𝜀, 𝑡 ≥ 0. (75)

Defining 𝑆(𝑡) = 𝑃
𝑆
𝑈(𝑡)𝑥, and 𝐼

1
(𝑡) = 𝑃

𝐼
1

𝑈(𝑡)𝑥, for all 𝑡 ≥ 0.
from (75) it follows that

𝑆 (𝑡) ≥
Λ

𝜇
− 𝜀, ∀𝑡 ≥ 0. (76)

From the second and third equations of (1), and integrating
them from the characteristic line 𝑡 − 𝑎 = 𝑐, we obtain

𝑒 (𝑎, 𝑡) ≥

{{{

{{{

{

𝛽
1
(
Λ

𝜇
− 𝜀) 𝐼

1
(𝑡 − 𝑎) 𝜋

1
(𝑎) 𝑒

−𝜇𝑎
, 𝑡 ≥ 𝑎,

𝑒
0
(𝑎 − 𝑡)

𝜋
1
(𝑎)

𝜋
1
(𝑎 − 𝑡)

𝑒
−𝜇𝑡
, 𝑡 < 𝑎,

(77)

where from the fourth equation of (1), we get

𝐼
󸀠

1
(𝑡) ≥ 𝛽

1

Λ

𝜇
∫

𝑡

0

𝐼
1
(𝑡 − 𝑎) 𝜋

1
(𝑎) 𝑒

−𝜇𝑎
𝑑𝑎

+ 𝛽
1
∫

∞

𝑡

𝛾 (𝑎) 𝑒
0
(𝑎 − 𝑡)

𝜋
1
(𝑎)

𝜋
1
(𝑎 − 𝑡)

𝑒
−𝜇𝑡
𝑑𝑎

− (𝜇 + 𝛼
1
) 𝐼

1
.

(78)

Solving it, we have

𝐼
1
(𝑡) ≥ 𝛽

1
(
Λ

𝜇
− 𝜀)∫

𝑡

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑡−𝑠

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋

1
(𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠, ∀𝑡 ≥ 0.

(79)
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There exist a 𝑇
1
> 0, such that

𝐼
1
(𝑡 + 𝑇

1
)

≥ 𝛽
1
(
Λ

𝜇
− 𝜀)∫

𝑡+𝑇
1

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑡+𝑇
1
−𝑠

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋

1
(𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠,

≥ 𝛽
1
(
Λ

𝜇
− 𝜀)∫

𝑡

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑇
1

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋

1
(𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠, ∀𝑡 ≥ 0.

(80)

Thus, for 𝑡 ≥ 𝛿, we have

𝐼
1
(𝑡 + 𝑇

1
)

≥ 𝛽
1
(
Λ

𝜇
− 𝜀)∫

𝛿

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑇
1

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋

1
(𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠, ∀𝑡 ≥ 0.

(81)

By Assumption 1, there exists 𝑡
1
≥ 0, such that 𝐼

1
(𝑡+𝑇

1
) ≥

0, for all 𝑡 + 𝑇
1
≥ 𝑡

1
. Hence, there exists 𝜉 > 0, such that

𝐼
1
(𝑡 + 𝑇

1
) ≥ 𝜉, for all 𝑡 + 𝑇

1
∈ [2𝑡

1
, 2𝑡

1
+ 𝛿]. Set

𝑡
2
= sup {𝑡 + 𝑇

1
≥ 2𝑡

1
+ 𝛿 : 𝐼 (𝑙) ≥ 𝜉, ∀𝑙 ∈ [2𝑡

1
+ 𝛿, 𝑡]} .

(82)

Assume that 𝑡
2
< ∞. Then

𝐼
1
(𝑡
2
) ≥ 𝛽

1
(
Λ

𝜇
− 𝜀)∫

𝛿

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑇
1

0

𝛾 (𝑎) 𝐼
1
(𝑡 − 𝑠 − 𝑎) 𝜋

1
(𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠,

≥ 𝛽
1
(
Λ

𝜇
− 𝜀)∫

𝛿

0

𝑒
−(𝜇+𝛼

1
)𝑠

× ∫

𝑇
1

0

𝛾 (𝑎) 𝜋
1
(𝑎) 𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠 𝜉.

(83)

Thus, 𝐼
1
(𝑡
2
) > 𝜉. By the continuity for 𝑡 → 𝐼

1
(𝑡), it follows

that there exists an 𝜀
2
> 0, such that 𝐼

1
(𝑡) ≥ 𝜉, for all 𝑡 ∈

[𝑡
2
, 𝑡
2
+ 𝜀

2
] which contradicts the definition of 𝑡

2
. Therefore,

𝐼
1
(𝑡) ≥ 𝜉, for all 𝑡 > 2𝑡

1
. Denote 𝐼

1∞
= lim inf

𝑡→+∞
𝐼
1
(𝑡) ≥

𝜉 > 0. Using (81), it follows that 𝐼
1∞
≥ 𝐼

1∞
𝛽
1
(Λ/𝜇 −

𝜀) ∫
𝛿

0
𝑒
−(𝜇+𝛼

1
)𝑠
∫
𝑇
1

0
𝛾(𝑎)𝐼

1
(𝑡 − 𝑠 − 𝑎)𝜋

1
(𝑎)𝑒

−𝜇𝑎
𝑑𝑎 𝑑𝑠, which is

impossible.

Lemma 12. Let Assumption 1 be satisfied and let 𝐸
1
and 𝐸

2
be

globally asymptotically stable. Then one has the following.

(i) If 𝑅
1
> 1, then 𝑥

𝐼
1

= 𝐸
1
is ejective in𝑀

𝐼
120

.
(ii) If 𝑅

2
> 1, then 𝑥

𝐼
2

= 𝐸
2
is ejective in𝑀

𝐼
120

.

Theorem 13. Let Assumption 1 be satisfied and let 𝐸
0
, 𝐸

1
, and

𝐸
2
be globally asymptotically stable. Assume 𝑅

1
> 1, 𝑅

2
> 1.

Then there exists 𝜀 > 0 such that for all 𝑥 ∈ 𝑀
𝐼
120

,

lim inf 󵄩󵄩󵄩󵄩󵄩𝑃𝐼12𝑈 (𝑡) 𝑥
󵄩󵄩󵄩󵄩󵄩
≥ 𝜀. (84)

Proof. It is a consequence ofTheorem 4.2 in [18] applied with
Ω(𝜕𝑀

𝐼
120

) = {𝐸
0
} ∪ {𝐸

1
} ∪ {𝐸

2
}. Using Lemma 12, the result

follows.

6. Simulation

In this section, we use (1) to examine how the prevalence
of HIV impacts on TB dynamics. We also present some
numerical results on the stability of 𝐸

0
(the disease-free

equilibrium), 𝐸
1
(the TB dominated equilibrium), and 𝐸

2

(the HIV dominated equilibrium). We perform a numerical
analysis to exhibit the TB impact on HIV under different
treatments with (1). We now give three examples to illustrate
the main results mentioned in the above section.

Example 14. In (1), we set Λ = 2, 𝜇 = 0.6, 𝛿 = 73.13, 𝛽
1
=

0.49, 𝛽
2
= 0.15, 𝜈 = 0.9,

𝛾 (𝑎) = {
0.02 𝑎 ≥ 1.49

0 0 ≤ 𝑎 ≤ 1.49,

𝛼
0
(𝑎) = {

0.1 𝑎 ≥ 1.49

0 0 ≤ 𝑎 ≤ 1.49,

(85)

𝛼
1
= 0.01, 𝛼

2
= 0.03. We have 𝑅

1
= 0.07438 < 1 and

𝑅
2
= 0.79365 < 1, which satisfy the conditions of Theorems

2 and 3. 𝐸
0
should be globally asymptotically stable (see

Figure 3(a)). In this case, both TB andHIVwill be eliminated.

Example 15. In (1), Λ = 2, 𝜇 = 1, 𝛿 = 4, 𝛽
1
= 50.49, 𝛽

2
=

0.15, 𝜈 = 0.9,

𝛾 (𝑎) = {
0.1 𝑎 ≥ 1.49

0 0 ≤ 𝑎 ≤ 1.49,

𝛼
0
(𝑎) = {

0.1 𝑎 ≥ 1.49

0 0 ≤ 𝑎 ≤ 1.49,

(86)

𝛼
1
= 0.01, 𝛼

2
= 0.03. We have 𝑅

1
= 34.48770 > 1 >

𝑅
2
= 0.79365, which satisfy the conditions of Theorem 4. 𝐸

1

should be globally asymptotically stable (see Figure 3(b)). In
this case, TB is dominated in the coinfected dynamics.

Example 16. In (1), Λ = 2, 𝜇 = 0.6, 𝛿 = 0.0073, 𝛽
1
= 0.49,

𝛽
2
= 4.15, 𝜈 = 0.9,

𝛾 (𝑎) = {
0.1 𝑎 ≥ 1.49

0 0 ≤ 𝑎 ≤ 1.49,

𝛼
0
(𝑎) = {

0.1 𝑎 ≥ 1.49

0 0 ≤ 𝑎 ≤ 1.49,

(87)
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Figure 3: (a) show that 𝐸
0
is globally asymptotically stable. (b) shows that 𝐸

1
is globally asymptotically stable.
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Figure 4: shows that 𝐸
2
is globally asymptotically stable.

𝛼
1
= 0.01, 𝛼

2
= 0.03. We have 𝑅

2
= 11.37566 > 1 >

𝑅
1
= 0.33470, which satisfies the conditions ofTheorem 7.𝐸

2

should be globally asymptotically stable (see left of Figure 4).
In this case, HIV is dominated in the coinfected dynamics.

6.1. Effect of Treatment Parameter 𝛼
𝑖
, 𝑖=0, 1,2. We examined

hypothetical treatment to gain insight into the underlying co-
epidemic dynamics.We considered nine treatment scenarios:
no treatment 𝛼

0
= 0 (latent TB treatment) (IPT), 𝛼

0
= 0.5

(latent TB treatment) (IPT), 𝛼
0
= 1 (latent TB treatment)

(IPT), no treatment 𝛼
2
= 0, 𝛼

2
= 0.5 (HAART), and 𝛼

2
= 1

(HAART), where 𝛼
𝑖
, 𝑖 = 0, 1 denotes the fraction of the

eligible population receiving the corresponding treatment.
First, we considered the effect of each type of treatment

in isolation (e.g., IPT for individuals with treatment for latent
or active TB, but not AIDS). Exclusively treating people
with latent TB reduced the number of new active TB cases,
which subsequently decreased the number of new latent TB
infections (Figure 5(a)). However, latent TB treatment had
an adverse effect on the HIV epidemic: the number of new

HIV cases increased because individuals coinfectedwithHIV
and latent TB lived longer (due to latent TB treatment) and
thus could infect more people with HIV(see Figure 5(c)).
Similarly, active TB treatment reduced the number of people
with infectious TB, which subsequently reduced the number
of new latent and active TB cases (Figure 5(b)). Once again,
newHIV cases increased due to longer life expectancy among
those who were coinfected with HIV. Hence, the coinfected
people have same effect of people infected by latent TB and
active TB.

Second, we considered the effect of each type of treatment
in isolation (e.g., HAART for individuals with AIDS, but
no treatment for latent or active TB). The provision of
HAART significantly slowed the HIV epidemic (Figure 6(c)).
However, exclusively treating HIV-infected individuals with
HAART adversely affects the TB epidemic (Figures 6(a)
and 6(b)). Because HAART reduces AIDS-related mortality,
treated individuals have a longer time to potentially infect
others with TB, especially in the absence of any TB treatment.
Thus, the numbers of new latent and active TB cases increased
as more people were given HAART. However, the coinfected
people have the same effect of people infected by HIV (see
Figure 6(d)).

7. Discussion

We have developed a mathematical model for modelling the
coepidemics, calculated the basic reproduction number, the
disease-free equilibrium, the dominated equilibria (defined
as a state where one disease is eradicated, while the other
disease remains endemic), and got the conditions for local
and global stability. We presented the sufficient conditions
for the local stability of the TB dominated equilibrium in
Theorem 4. We also obtained the persistence. In the case of
the HIV dominated equilibrium, we presented the sufficient
condition for the local stability in Theorem 7. We also
obtained the persistence of (1). We simulated and illustrated
our analyzed results in Section 6.
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Figure 5: We take different latent TB treatments while we take no treatment of HAART and active TB.
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Figure 6: We take different HAART while we take no treatment of IPT.



Journal of Applied Mathematics 13

Our models have several limitations. We simplified the
complicated infection dynamics of TB and HIV to develop
a tractable framework, which helped us gain insights about
the basic reproduction number and equilibria. We assumed
uniform patterns within compartments, that is, the mixing
between compartments is homogeneous. To appropriately
guide policy recommendations, our coepidemicmodelwould
need to be significantly expanded.We also apply a coepidemic
model to describe the HIV coinfected with other diseases,
such as HIV and hepatitis C (HCV). Some 50%–90% of HIV-
infected injection drug users are coinfected with HCV [19].
The successful HIV treatment may be adversely impacted
by the presence of HCV, and HCV may cause liver damage
to occur more quickly in HIV-infected individuals [19].
Modelling this kind of coinfection may play particularly
important role on evaluating interventions time targeted to
injection drug.

Unfortunately, we are unable yet to study the models that
introduce a discrete delay and an impulsive perturbation in
our model. We will explore them in the future.
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