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We present the greatest value 𝑝 such that the inequality𝑃(𝑎, 𝑏) > 𝐿𝑝(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏, where 𝑃(𝑎, 𝑏) and 𝐿𝑝(𝑎, 𝑏)
denote the Seiffert and 𝑝th generalized logarithmic means of 𝑎 and 𝑏, respectively.

1. Introduction

For 𝑝 ∈ R, the 𝑝th generalized logarithmic mean 𝐿𝑝 :

(0,∞)
2
→ (0,∞) is defined by

𝐿𝑝 (𝑎, 𝑏) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

[
𝑏
𝑝+1

− 𝑎
𝑝+1

(𝑝 + 1) (𝑏 − 𝑎)
]

1/𝑝

, 𝑎 ̸= 𝑏, 𝑝 ̸= 0, −1,

1

𝑒
(
𝑏
𝑏

𝑎𝑎
)

1/(𝑏−𝑎)

, 𝑎 ̸= 𝑏, 𝑝 = 0,

𝑏 − 𝑎

log 𝑏 − log 𝑎
, 𝑎 ̸= 𝑏, 𝑝 = −1,

𝑎, 𝑎 = 𝑏,

(1)

and the Seiffert mean 𝑃 : (0,∞)
2
→ (0,∞) [1] is defined by

𝑃 (𝑎, 𝑏) =

{{

{{

{

𝑎 − 𝑏

4 arctan (√𝑎/𝑏) − 𝜋
, 𝑎 ̸= 𝑏,

𝑎, 𝑎 = 𝑏.

(2)

It is well known that the generalized logarithmic mean
𝐿𝑝(𝑎, 𝑏) is continuous and strictly increasing with respect to
𝑝 ∈ R for fixed 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. The special cases of
the generalized logarithmic mean are, for example, 𝐺(𝑎, 𝑏) =
√𝑎𝑏 = 𝐿−2(𝑎, 𝑏) is the geometric mean, 𝐿(𝑎, 𝑏) = (𝑏 − 𝑎)/

(log 𝑏 − log 𝑎) = 𝐿−1(𝑎, 𝑏) is the logarithmic mean, 𝐼(𝑎, 𝑏) =

1/𝑒(𝑏
𝑏
/𝑎
𝑎
)
1/(𝑏−𝑎)

= 𝐿0(𝑎, 𝑏) is the identric mean, and
𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2 = 𝐿1(𝑎, 𝑏) is the arithmetic mean. The
Seiffert mean 𝑃(𝑎, 𝑏) can be rewritten as (see [2, equation
(2.4)])

𝑃 (𝑎, 𝑏) =
{

{

{

𝑎 − 𝑏

2 arcsin [(𝑎 − 𝑏) / (𝑎 + 𝑏)]
, 𝑎 ̸= 𝑏,

𝑎, 𝑎 = 𝑏.

(3)

Recently, the bivariate means have been the subject of
intensive research. In particular, many remarkable inequal-
ities and properties for the generalized logarithmic and the
Seiffert means can be found in the literature [3–13].

In [1, 11], Seiffert proved that the inequalities

𝐿−1 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝐿0 (𝑎, 𝑏) = 𝐼 (𝑎, 𝑏) ,

2

𝜋
𝐴 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏) ,

𝑃 (𝑎, 𝑏) >
𝐺 (𝑎, 𝑏) 𝐴 (𝑎, 𝑏)

𝐿 (𝑎, 𝑏)
,

𝑃 (𝑎, 𝑏) >
3𝐴 (𝑎, 𝑏) 𝐺 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏) + 2𝐺 (𝑎, 𝑏)

(4)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
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Sándor [14] presented the bounds for the Seiffert mean
𝑃(𝑎, 𝑏) in terms of the arithmeticmean𝐴(𝑎, 𝑏) and geometric
mean 𝐺(𝑎, 𝑏) as follows:

1

2
𝐴 (𝑎, 𝑏) +

1

2
𝐺 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) <

2

3
𝐴 (𝑎, 𝑏) +

1

3
𝐺 (𝑎, 𝑏)

(5)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Hästö [15] proved that the double inequality 𝑀𝛼(𝑎, 𝑏) <

𝑃(𝑎, 𝑏) < 𝑀𝛽(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only
if 𝛼 ≤ log 2/ log𝜋 and 𝛽 ≥ 2/3, where 𝑀𝑝(𝑎, 𝑏) = ((𝑎

𝑝
+

𝑏
𝑝
)/2)
1/𝑝 is the 𝑝th power mean of 𝑎 and 𝑏.

In [16], the authors found the greatest value 𝛼 and least
value 𝛽 such that the double inequality 𝛼𝐶(𝑎, 𝑏) + (1 −

𝛼)𝐺(𝑎, 𝑏) < 𝑃(𝑎, 𝑏) < 𝛽𝐶(𝑎, 𝑏) + (1 − 𝛽)𝐺(𝑎, 𝑏) holds for all
𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where 𝐶(𝑎, 𝑏) = (𝑎

2
+ 𝑏
2
)/(𝑎 + 𝑏) is the

contraharmonic mean of 𝑎 and 𝑏.
Motivated by the first inequality in (4), Gao [17] gave the

best possible constants 𝜆 and 𝜇 such that the double inequal-
ity 𝜆𝐼(𝑎, 𝑏) < 𝑃(𝑎, 𝑏) < 𝜇𝐼(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with
𝑎 ̸= 𝑏.

In [18], the author solved the following open problempro-
posed by Long and Chu [19]: what is the smallest 𝑝 (largest 𝑞)
such that the inequality 𝛼𝐴(𝑎, 𝑏)+(1−𝛼)𝐺(𝑎, 𝑏) < 𝐿𝑝(𝑎, 𝑏)(>
𝐿𝑞(𝑎, 𝑏)) holds for 𝛼 ∈ (0, 1/2)(𝛼 ∈ (1/2, 1)) and all 𝑎, 𝑏 > 0

with 𝑎 ̸= 𝑏?
Chu et al. [20] proved that the double inequality

𝐿𝑝(𝑎, 𝑏) < 𝑇(𝑎, 𝑏) < 𝐿𝑞(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏

if and only if 𝑝 ≤ 3 and 𝑞 ≥ 𝑞0 = 3.152 . . ., where 𝑇(𝑎, 𝑏) =
(𝑎 − 𝑏)/[2 arctan((𝑎 − 𝑏)/(𝑎 + 𝑏))] is the second Seiffert mean
of 𝑎 and 𝑏, and 𝑝0 = 3.152 . . . is the unique solution of the
equation (𝑥 + 1)−1/𝑥 = 2/𝜋.

In [21], the authors answered the question: what are the
greatest value 𝑝1 = 𝑝1(𝑞) and the least value 𝑝2 = 𝑝2(𝑞)

such that the double inequality 𝐿𝑝
1

(𝑎, 𝑏) < [𝐿(𝑎
𝑞
, 𝑏
𝑞
)]
1/𝑞

<

𝐿𝑝
2

(𝑎, 𝑏) holds for any 𝑞 > 0 with 𝑞 ̸= 1 and all 𝑎, 𝑏 > 0 with
𝑎 ̸= 𝑏?

Motivated by the first inequality in (4), it is natural to
ask what are the best possible generalized logarithmic mean
bounds for the Seiffertmean𝑃(𝑎, 𝑏)? It is the aim of this paper
to answer this question.

2. Preliminaries

In order to prove our main results, we need two lemmas,
which we present in this section.

Lemma 1. Let the function 𝐸 : (−1, +∞) → R+ be defined
with

(𝑥 + 1)
−1/𝑥

, 𝑥 ∈ (−1, 0) ∪ (0, +∞) ,

1

𝑒
, 𝑥 = 0.

(6)

Then, 𝐸 is a continuous and strictly increasing function.

Proof. From (6), we clearly see that

lim
𝑥󳨀→0

𝐸 (𝑥) =
1

𝑒
= 𝐸 (0) , (7)

lim
𝑥󳨀→−1+

𝐸 (𝑥) = 0,

lim
𝑥󳨀→+∞

𝐸 (𝑥) = 1.

(8)

If 𝑥 ∈ (−1, 0) ∪ (0, +∞), then simple computation yields

𝐸
󸀠
(𝑥) =

(1 + 𝑥) log (1 + 𝑥) − 𝑥
𝑥2 (1 + 𝑥)

𝐸 (𝑥) . (9)

If we define

𝐹 (𝑥) = (1 + 𝑥) log (1 + 𝑥) − 𝑥, (10)

then

𝐹
󸀠
(𝑥) = log (1 + 𝑥) . (11)

Equation (11) implies that

𝐹
󸀠
(𝑥) < 0, 𝑥 ∈ (−1, 0) ,

𝐹
󸀠
(𝑥) > 0, 𝑥 ∈ (0, +∞) .

(12)

Equations (10) and (12) lead to

𝐹 (𝑥) > lim
𝑥󳨀→0

𝐹 (𝑥) = 0 (13)

for 𝑥 ∈ (−1, 0) ∪ (0, +∞).
From (9) and (10) together with (13), we clearly see that

𝐸
󸀠
(𝑥) > 0 (14)

for 𝑥 ∈ (−1, 0) ∪ (0, +∞).
Therefore, the continuity of 𝐸 follows from (6) and (7),

and the strict monotonicity of 𝐸 follows from (8), (14) and
the continuity of 𝐸.

Remark 2. From Lemma 1, we clearly see that for any fixed
𝜆 ∈ (0, 1), there exists a unique 𝑥 ∈ (−1,∞) such𝐸(𝑥) = 𝜆. In
particular, for 𝜆 = 1/𝜋, making use of Mathematica software,
we get

𝐸 (−0.241) −
1

𝜋
= 0.000166 ⋅ ⋅ ⋅ > 0,

𝐸 (−0.242) −
1

𝜋
= −0.000062 ⋅ ⋅ ⋅ < 0.

(15)

Therefore, the unique solution of the equation𝐸(𝑥) = 1/𝜋
belongs to the interval (−0.242, −0.241).

Lemma 3. Let 𝑝 ∈ (−0.242, −0.241) and let 𝑔 : [1, +∞) →

R be definedwith 𝑔(𝑡) = 𝑝𝑡2𝑝+3+ 2(𝑝−1)𝑡2𝑝+2−(3𝑝+2)𝑡2𝑝+1−
𝑝(2𝑝+ 1)𝑡

𝑝+3
+ (2𝑝
2
+𝑝+ 4)𝑡

𝑝+2
+ (2𝑝
2
+𝑝+ 4)𝑡

𝑝+1
−𝑝(2𝑝+

1)𝑡
𝑝
−(3𝑝+2)𝑡

2
+2(𝑝−1)𝑡+𝑝. Then, there exists 𝜆 ∈ (1, +∞)

such that 𝑔(𝑡) < 0 for 𝑡 ∈ (1, 𝜆) and 𝑔(𝑡) > 0 for 𝑡 ∈ (𝜆, +∞).



Journal of Applied Mathematics 3

Proof. Simple computations lead to

𝑔 (1) = 0, (16)

lim
𝑡󳨀→+∞

𝑔 (𝑡) = +∞, (17)

𝑔
󸀠
(𝑡) = 𝑝 (2𝑝 + 3) 𝑡

2𝑝+2
+ 4 (𝑝 − 1) (𝑝 + 1) 𝑡

2𝑝+1

− (2𝑝 + 1) (3𝑝 + 2) 𝑡
2𝑝
− 𝑝 (𝑝 + 3) (2𝑝 + 1) 𝑡

𝑝+2

+ (𝑝 + 2) (2𝑝
2
+ 𝑝 + 4) 𝑡

𝑝+1
+ (𝑝 + 1)

× (2𝑝
2
+ 𝑝 + 4) 𝑡

𝑝
− 𝑝
2
(2𝑝 + 1) 𝑡

𝑝−1

− 2 (3𝑝 + 2) 𝑡 + 2 (𝑝 − 1) ,

(18)

𝑔
󸀠
(1) = 0, (19)

lim
𝑡󳨀→+∞

𝑔
󸀠
(𝑡) = +∞, (20)

𝑔
󸀠󸀠
(𝑡) = 2𝑝 (𝑝 + 1) (2𝑝 + 3) 𝑡

2𝑝+1

+ 4 (𝑝 − 1) (𝑝 + 1) (2𝑝 + 1) 𝑡
2𝑝
− 2𝑝

× (2𝑝 + 1) (3𝑝 + 2) 𝑡
2𝑝−1

− 𝑝 (𝑝 + 2) (𝑝 + 3) (2𝑝 + 1) 𝑡
𝑝+1

+ (𝑝 + 1) (𝑝 + 2) (2𝑝
2
+ 𝑝 + 4) 𝑡

𝑝

+ 𝑝 (𝑝 + 1) (2𝑝
2
+ 𝑝 + 4) 𝑡

𝑝−1

− 𝑝
2
(𝑝 − 1) (2𝑝 + 1) 𝑡

𝑝−2
− 2 (3𝑝 + 2) ,

(21)

𝑔
󸀠󸀠
(1) = 0, (22)

lim
𝑡󳨀→+∞

𝑔
󸀠󸀠
(𝑡) = +∞. (23)

Let ℎ(𝑡) = 𝑡3−𝑝𝑔󸀠󸀠󸀠(𝑡). Further computations lead to

ℎ (𝑡) = 2𝑝 (𝑝 + 1) (2𝑝 + 1) (2𝑝 + 3) 𝑡
𝑝+3

+ 8𝑝 (𝑝 − 1) (𝑝 + 1) (2𝑝 + 1) 𝑡
𝑝+2

− 2𝑝 (2𝑝 − 1) (2𝑝 + 1) (3𝑝 + 2) 𝑡
𝑝+1

− 𝑝 (𝑝 + 1) (𝑝 + 2) (𝑝 + 3)

× (2𝑝 + 1) 𝑡
3
+ 𝑝 (𝑝 + 1) (𝑝 + 2)

× (2𝑝
2
+ 𝑝 + 4) 𝑡

2
+ 𝑝 (𝑝 − 1)

× (𝑝 + 1) (2𝑝
2
+ 𝑝 + 4) 𝑡

− 𝑝
2
(𝑝 − 2) (𝑝 − 1) (2𝑝 + 1) ,

(24)

ℎ (1) = 0, (25)

lim
𝑡󳨀→+∞

ℎ (𝑡) = +∞, (26)

ℎ
󸀠
(𝑡) = 2𝑝 (𝑝 + 1) (𝑝 + 3) (2𝑝 + 1) (2𝑝 + 3) 𝑡

𝑝+2

+ 8𝑝 (𝑝 − 1) (𝑝 + 1) (𝑝 + 2) (2𝑝 + 1) 𝑡
𝑝+1

− 2𝑝 (𝑝 + 1) (2𝑝 − 1) (2𝑝 + 1) (3𝑝 + 2) 𝑡
𝑝

− 3𝑝 (𝑝 + 1) (𝑝 + 2) (𝑝 + 3) (2𝑝 + 1) 𝑡
2

+ 2𝑝 (𝑝 + 1) (𝑝 + 2) (2𝑝
2
+ 𝑝 + 4) 𝑡 + 𝑝

× (𝑝 − 1) (𝑝 + 1) (2𝑝
2
+ 𝑝 + 4) ,

(27)

ℎ
󸀠
(1) = 24𝑝

3
(𝑝 + 1) < 0, (28)

lim
𝑡󳨀→+∞

ℎ
󸀠
(𝑡) = +∞, (29)

ℎ
󸀠󸀠
(𝑡) = 2𝑝 (𝑝 + 1) (𝑝 + 2) (𝑝 + 3) (2𝑝 + 1) (2𝑝 + 3) 𝑡

𝑝+1

+ 8𝑝 (𝑝 − 1) (𝑝 + 1)
2
(𝑝 + 2) (2𝑝 + 1) 𝑡

𝑝

− 2𝑝
2
(𝑝 + 1) (2𝑝 − 1) (2𝑝 + 1) (3𝑝 + 2) 𝑡

𝑝−1

− 6𝑝 (𝑝 + 1) (𝑝 + 2) (𝑝 + 3) (2𝑝 + 1) 𝑡

+ 2𝑝 (𝑝 + 1) (𝑝 + 2) (2𝑝
2
+ 𝑝 + 4) ,

(30)

ℎ
󸀠󸀠
(1) = 𝑝

3
(72𝑝
2
+ 156𝑝 + 84) < 0, (31)

lim
𝑡󳨀→+∞

ℎ
󸀠󸀠
(𝑡) = +∞, (32)

ℎ
󸀠󸀠󸀠
(𝑡) = 2𝑝(𝑝 + 1)

2
(𝑝 + 2) (𝑝 + 3) (2𝑝 + 1)

× (2𝑝 + 3) 𝑡
𝑝
+ 8𝑝
2
(𝑝 − 1) (𝑝 + 1)

2

× (𝑝 + 2) (2𝑝 + 1) 𝑡
𝑝−1

− 2𝑝
2
(𝑝 − 1)

× (𝑝 + 1) (2𝑝 − 1) (2𝑝 + 1)

× (3𝑝 + 2) 𝑡
𝑝−2

− 6𝑝 (𝑝 + 1)

× (𝑝 + 2) (𝑝 + 3) (2𝑝 + 1) ,

(33)

ℎ
󸀠󸀠󸀠
(1) = 𝑝

2
(112𝑝

4
+ 312𝑝

3
+ 352𝑝

2
+ 192𝑝 + 40) > 0,

(34)

ℎ
(4)
(𝑡) = 2𝑝

2
(𝑝 + 1)

2
(𝑝 + 2) (𝑝 + 3)

× (2𝑝 + 1) (2𝑝 + 3) 𝑡
𝑝−1

+ 8𝑝
2
(𝑝 − 1)

2
(𝑝 + 1)

2
(𝑝 + 2) (2𝑝 + 1) 𝑡

𝑝−2

+ 2𝑝
2
(1 − 𝑝) (2 − 𝑝) (1 − 2𝑝)

× (𝑝 + 1) (2𝑝 + 1) (3𝑝 + 2) 𝑡
𝑝−3

> 0.

(35)
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Inequalities (34) and (35) imply that

ℎ
󸀠󸀠󸀠
(𝑡) > 0 (36)

for 𝑡 ∈ (1,∞).
From (31) and (32) together with (36), we clearly see that

there exists 𝑡0 ∈ (1,∞) such that ℎ󸀠󸀠(𝑡) < 0 for 𝑡 ∈ (1, 𝑡0) and
ℎ
󸀠󸀠
(𝑡) > 0 for 𝑡 ∈ (𝑡0,∞). Hence, ℎ󸀠 is strictly decreasing on

(1, 𝑡0) and strictly increasing on (𝑡0,∞).
It follows from (28) and (29) together with the mono-

tonicity of ℎ󸀠 that there exists 𝑡1 ∈ (1,∞) such that ℎ is strictly
decreasing on (1, 𝑡1) and strictly increasing on (𝑡1,∞).

Equations (25)-(26) and the monotonicity of ℎ lead to the
conclusion that there exists 𝑡2 ∈ (1,∞) such that ℎ(𝑡) < 0 for
𝑡 ∈ (1, 𝑡2) and ℎ(𝑡) > 0 for 𝑡 ∈ (𝑡2,∞).Therefore, 𝑔󸀠󸀠 is strictly
decreasing on (1, 𝑡2) and strictly increasing on (𝑡2,∞).

From (22) and (23) together with the monotonicity of 𝑔󸀠󸀠,
we clearly see that there exists 𝑡3 ∈ (1,∞) such that 𝑔󸀠 is
strictly decreasing on (1, 𝑡3) and strictly increasing on (𝑡3,∞).

Equations (19)-(20) and themonotonicity of 𝑔󸀠 imply that
there exists 𝑡4 ∈ (1,∞) such that 𝑔 is strictly decreasing on
(1, 𝑡4) and strictly increasing on (𝑡4,∞).

Therefore, Lemma 3 follows from (16) and (17) together
with the monotonicity of 𝑔.

3. Main Results

Theorem 4. Let 𝐸 be as in Lemma 1 and let 𝑝 be the unique
solution of the equation 𝐸(𝑥) = 1/𝜋. Then, for all 𝑎, 𝑏 > 0,
𝑎 ̸= 𝑏, the inequality

𝐿𝑝 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) (37)

holds, and 𝐿𝑝(𝑎, 𝑏) is the best possible lower generalized
logarithmic mean bound for the Seiffert mean 𝑃(𝑎, 𝑏).

Proof. From Remark 2, it follows that

𝑝 ∈ (−0.242, −0.241) . (38)

We first prove that the inequality (37) holds. Without loss
of generality, we assume that 𝑎 > 𝑏. If 𝑡 = 𝑎/𝑏 > 1, then, from
(1) and (2), we have

log 𝐿𝑝 (𝑎, 𝑏) − log𝑃 (𝑎, 𝑏)

=
1

𝑝
log 𝑡

𝑝+1
− 1

(𝑝 + 1) (𝑡 − 1)

+ log (4 arctan√𝑡 − 𝜋) − log (𝑡 − 1) ,

(39)

If

𝑓 (𝑡) =
1

𝑝
log 𝑡

𝑝+1
− 1

(𝑝 + 1) (𝑡 − 1)

+ log (4 arctan√𝑡 − 𝜋) − log (𝑡 − 1) ,

(40)

then simple computations lead to

lim
𝑡󳨀→1

𝑓 (𝑡) = lim
𝑡󳨀→+∞

𝑓 (𝑡) = 0, (41)

𝑓
󸀠
(𝑡) =

(𝑝 + 1)(𝑡
𝑝
− 1)

𝑝 (𝑡𝑝+1 − 1)(𝑡 − 1)(4 arctan√𝑡 − 𝜋)
𝑓1 (𝑡) , (42)

where

𝑓1 (𝑡)=−4 arctan√𝑡+𝜋+
2𝑝(𝑡
𝑝+1

− 1)(𝑡 − 1)

(𝑝 + 1)√𝑡(𝑡 + 1)(𝑡𝑝 − 1)
,

lim
𝑡󳨀→1

𝑓1 (𝑡) = 0,

lim
𝑡󳨀→+∞

𝑓1 (𝑡) = +∞,

(43)

𝑓
󸀠

1
(𝑡) =

𝑓2 (𝑡)

(1 + 𝑝) (𝑡 + 1)
2
(𝑡𝑝 − 1)

2
𝑡3/2

, (44)

where

𝑓2 (𝑡) = 𝑝𝑡
2𝑝+3

+ 2 (𝑝 − 1) 𝑡
2𝑝+2

− (3𝑝 + 2) 𝑡
2𝑝+1

− 𝑝 (2𝑝 + 1) 𝑡
𝑝+3

+ (2𝑝
2
+ 𝑝 + 4) 𝑡

𝑝+2

+ (2𝑝
2
+ 𝑝 + 4) 𝑡

𝑝+1
− 𝑝 (2𝑝 + 1) 𝑡

𝑝

− (3𝑝 + 2) 𝑡
2
+ 2 (𝑝 − 1) 𝑡 + 𝑝.

(45)

From (38) and (44)-(45) together with Lemma 3, we
clearly see that there exists 𝜆 ∈ (1, +∞) such that 𝑓1 is strictly
decreasing on (1, 𝜆) and strictly increasing on (𝜆,∞). Then,
(38) and (42)-(43) together with themonotonicity of𝑓1 imply
that there exists 𝜇 ∈ (1, +∞) such that 𝑓 is strictly decreasing
on (1, 𝜇) and strictly increasing on (𝜇, +∞).

Therefore, 𝐿𝑝(𝑎, 𝑏) < 𝑃(𝑎, 𝑏) follows from (39)–(41) and
the monotonicity of 𝑓.

Next, we prove that 𝐿𝑝(𝑎, 𝑏) is the best possible lower
generalized logarithmic mean bound for the Seiffert mean
𝑃(𝑎, 𝑏).

For any 0 < 𝜀 < −𝑝, from (1) and (2), we get

lim
𝑡󳨀→+∞

𝐿𝑝+𝜀 (𝑡, 1)

𝑃 (𝑡, 1)
= 𝜋(𝑝 + 1 + 𝜀)

−1/(𝑝+𝜀)
. (46)

Lemma 1 and (46) lead to

lim
𝑡󳨀→+∞

𝐿𝑝+𝜀 (𝑡, 1)

𝑃 (𝑡, 1)
> 1. (47)

Inequality (47) implies that, for 0 < 𝜀 < −𝑝, there exists
𝑇 = 𝑇(𝜀) > 1 such that 𝐿𝑝+𝜀(𝑡, 1) > 𝑃(𝑡, 1) for 𝑡 ∈ (𝑇,∞).

Theorem 5. 𝐿0(𝑎, 𝑏) is the best possible upper generalized
logarithmic mean bound for the Seiffert mean 𝑃(𝑎, 𝑏).

Proof. For any 0 < 𝜀 < 1 and 𝑥 > 0, from (1) and (2), we have

[𝑃 (1 + 𝑥, 1)]
𝜀
− [𝐿−𝜀 (1 + 𝑥, 1)]

𝜀

=
𝑓 (𝑥)

[(1 + 𝑥)
1−𝜀

− 1] [4 arctan√1 + 𝑥 − 𝜋]
𝜀 ,

(48)

where𝑓(𝑥) = [(1+𝑥)1−𝜀−1]𝑥𝜀−(1−𝜀)(4 arctan√1 + 𝑥−𝜋)𝜀𝑥.
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When 𝑥 → 0, then making use of the Taylor expansion,
we get

𝑓 (𝑥) = [(1 − 𝜀) 𝑥 −
1

2
𝜀 (1 − 𝜀) 𝑥

2

+
1

6
𝜀 (1 − 𝜀) (1 + 𝜀) 𝑥

3
+ 𝑜 (𝑥

3
)] 𝑥
𝜀

− (1 − 𝜀) [𝑥 −
1

2
𝑥
2
+
7

24
𝑥
3
+ 𝑜 (𝑥

3
)]

𝜀

𝑥

=
1

24
𝜀
2
(1 − 𝜀) 𝑥

3+𝜀
+ 𝑜 (𝑥

3+𝜀
) .

(49)

Equations (48) and (49) imply that for any 0 < 𝜀 < 1, there
exists 𝛿 = 𝛿(𝜀) > 0 such that

𝑃 (1 + 𝑥, 1) > 𝐿−𝜀 (1 + 𝑥, 1) (50)

for 𝑥 ∈ (0, 𝛿).
Therefore, Theorem 5 follows from inequalities (4) and

(50).
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