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This paper introduces a novel neural-network-based approach for extracting some eigenpairs of real normal matrices of order
n. Based on the proposed algorithm, the eigenvalues that have the largest and smallest modulus, real parts, or absolute values of
imaginary parts can be extracted, respectively, aswell as the corresponding eigenvectors. Although the ordinary differential equation
on which our proposed algorithm is built is only n-dimensional, it can succeed to extract n-dimensional complex eigenvectors that
are indeed 2n-dimensional real vectors. Moreover, we show that extracting eigen-pairs of general real matrices can be reduced to
those of real normal matrices by employing the norm-reducing skill. Numerical experiments verified the computational capability
of the proposed algorithm.

1. Introduction

The problem of extracting special eigenpairs of real matrices
has attracted much attention both in theory [1–4] and in
many engineering fields such as real-time signal processing
[5–8] and principal or minor component analysis [9–12]. For
example, we may wish to get eigenvectors and the corre-
sponding eigenvalues that (1) have the largest or smallest
modulus; (2) have the largest or smallest real parts; (3) have
the largest or smallest imaginary parts in absolute value. Two
most popularmethods for this problemare the powermethod
and the Rayleigh quotient method in their direct forms or in
the context of inverse iteration [13]. Recently, many neural-
network-based methods have also been proposed to solve
this problem [14–23]. However, most of those neural network
based methods focused on computing eigenpairs of real
symmetric matrices. The following two ordinary differential
equations (ODEs):

d𝑥 (𝑡)

d𝑡
= 𝐴𝑥 (𝑡) − 𝑥 (𝑡)

𝑇
𝐴𝑥 (𝑡) 𝑥 (𝑡) , (1)

d𝑥 (𝑡)

d𝑡
= 𝑥 (𝑡)

𝑇
𝑥 (𝑡) 𝐴𝑥 (𝑡) − 𝑥 (𝑡)

𝑇
𝐴𝑥 (𝑡) 𝑥 (𝑡) (2)

were proposed by [19, 23], respectively, where 𝐴 is a real
symmetric matrix. Both (1) and (2) are efficient to compute
the largest eigenvalue of 𝐴, as well as the corresponding
eigenvector. In addition, they can succeed to compute the
smallest eigenvalue of 𝐴 and the corresponding eigenvector
by simply replacing 𝐴 with −𝐴, for example,

d𝑥 (𝑡)

d𝑡
= −𝑥 (𝑡)

𝑇
𝑥 (𝑡) 𝐴𝑥 (𝑡) + 𝑥 (𝑡)

𝑇
𝐴𝑥 (𝑡) 𝑥 (𝑡) . (3)

The followingODE for solving the generalized eigenvalue
problem was proposed by [22]

d𝑥 (𝑡)

d𝑡
= 𝐴𝑥 (𝑡) − 𝑓 (𝑥 (𝑡)) 𝐵𝑥 (𝑡) , (4)

where𝐴 and 𝐵 are two real symmetric matrices, and𝑓 can be
a general form to some degree. Particularly, if 𝐵 is the identity
matrix, (4) can be used to solve the standard eigenvalue
problem as (1) and (2).

References [16–18] extended those neural network based
approaches to the case of real antisymmetric or special real
matrices of order 𝑛, where the proposed neural networks can
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be summarized by 2𝑛-dimensional ODEs since eigenvectors
in those cases may be 𝑛-dimensional complex vectors, that is,
2𝑛-dimensional real vectors.

In this paper, we propose an approach for extracting six
types of eigenvalues of 𝑛-by-𝑛 real normal matrices and the
corresponding eigenvectors based on (2) or (3). Although
eigenvectors of real normal matrices may be 𝑛-dimensional
complex vectors, the computation of our proposed method
can be achieved in 𝑛-dimensional real vector space, which
can reduce the scale of networks a lot.Then, we show that any
real matrix can be made arbitrarily close to a normal matrix
by a series of similarity transformations, based on which our
proposed algorithm can be extended to the case of arbitrary
real matrices.

2. Main Results

Let 𝑖 = √−1 be the imaginary unit, 𝑥 the conjugate of 𝑥,
and diag[𝐴

1
, . . . , 𝐴

𝑝
] a block diagonal matrix, where 𝐴

𝑖
, 𝑖 =

1, . . . , 𝑝, is a square matrix at the 𝑖th diagonal block. Unless
specially stated, 𝐴 is a real normal matrix in this paper.

Lemma 1. In [13], 𝐴 is a real normal matrix of order 𝑛 if and
only if there exists an orthogonal matrix 𝑈 such that

𝑈
𝑇
𝐴𝑈 = diag[𝜆

1
, . . . , 𝜆

𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟

, 𝐴
𝑟+1

, . . . , 𝐴
𝑟+𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

] ,

𝑟 + 2𝑘 = 𝑛, 0 ≤ 𝑟 ≤ 𝑛,

(5)

where

𝑈 = [

[

𝑢
1
, . . . , 𝑢

𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟 real eigenvectors

, 𝑢
𝑅

𝑟+1
, 𝑢
𝐼

𝑟+1
, . . . , 𝑢

𝑅

𝑟+𝑘
, 𝑢
𝐼

𝑟+𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 pairs of complex eigenvectors

]

]

,

𝐴
𝑟+𝑗

= (
𝑎
𝑟+𝑗

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑟+𝑗

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑟+𝑗

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑟+𝑗

) , 𝑗 = 1, . . . , 𝑘.

(6)

Here, 𝜆
𝑗
, 𝑗 = 1, . . . , 𝑟, are 𝑟 real eigenvalues of𝐴 corresponding

to the 𝑟 real eigenvectors 𝑢
𝑗
, and 𝑎

𝑟+𝑠
± i𝑏
𝑟+𝑠

, 𝑠 = 1, . . . , 𝑘, are 𝑘
pairs of complex eigenvalues of 𝐴 corresponding to the 𝑘 pairs
of complex eigenvectors 𝑢𝑅

𝑟+𝑠
± i𝑢𝐼
𝑟+𝑠

.

For simplicity, let 𝑎
𝑗
= 𝜆
𝑗
, 𝑏
𝑗
= 0 for 𝑗 = 1, . . . , 𝑟. Based

on (5) and (6), it is straightforward to verify

𝑈
𝑇
(𝐴 − 𝐴

𝑇
)
𝑇

(𝐴 − 𝐴
𝑇
)𝑈

= 4 diag [𝑏2
1
, . . . , 𝑏

2

𝑟
, 𝑏
2

𝑟+1
, 𝑏
2

𝑟+1
, . . . , 𝑏

2

𝑟+𝑘
, 𝑏
2

𝑟+𝑘
]

(7)

𝑈
𝑇
(𝐴 + 𝐴

𝑇
)𝑈

= 2 diag [𝑎
1
, . . . , 𝑎

𝑟
, 𝑎
𝑟+1

, 𝑎
𝑟+1

, . . . , 𝑎
𝑟+𝑘

, 𝑎
𝑟+𝑘

]

(8)

𝑈
𝑇
(𝐴𝐴
𝑇
)𝑈

= diag [𝑎2
1
, . . . , 𝑎

2

𝑟
, 𝑎
2

𝑟+1
+ 𝑏
2

𝑟+1
, 𝑎
2

𝑟+1

+𝑏
2

𝑟+1
, . . . , 𝑎

2

𝑟+𝑘
+ 𝑏
2

𝑟+𝑘
, 𝑎
2

𝑟+𝑘
+ 𝑏
2

𝑟+𝑘
] .

(9)

Then, the following six definitions and two lemmas are
presented, which will be involved much in the sequel.

(C1) Let J
1
= {𝑠 | |𝑏

𝑠
| = max{|𝑏

1
|, . . . , |𝑏

𝑟+𝑘
|}. Then for all

𝑗, 𝑘 ∈ J
1
, 𝑎
𝑗
= 𝑎
𝑘
.

(C2) Let J
2
= {𝑠 | |𝑏

𝑠
| = min{|𝑏

1
|, . . . , |𝑏

𝑟+𝑘
|}. Then for all

𝑗, 𝑘 ∈ J
2
, 𝑎
𝑗
= 𝑎
𝑘
.

(C3) Let J
3

= {𝑠 | 𝑎
𝑠
= max{𝑎

1
, . . . , 𝑎

𝑟+𝑘
}. Then for all

𝑗, 𝑘 ∈ J
3
, |𝑏
𝑗
| = |𝑏
𝑘
|.

(C4) Let J
4

= {𝑠 | 𝑎
𝑠

= min{𝑎
1
, . . . , 𝑎

𝑟+𝑘
}. Then for all

𝑗, 𝑘 ∈ J
4
, |𝑏
𝑗
| = |𝑏
𝑘
|.

(C5) LetJ
5
= {𝑠 | 𝑎2

𝑠
+ 𝑏2
𝑠
= max{𝑎2

1
+ 𝑏2
1
, . . . , 𝑎2

𝑟+𝑘
+ 𝑏2
𝑟+𝑘

}.
Then for all 𝑗, 𝑘 ∈ J

5
, 𝑎
𝑗
= 𝑎
𝑘
.

(C6) Let J
6
= {𝑠 | 𝑎2

𝑠
+ 𝑏2
𝑠
= min{𝑎2

1
+ 𝑏2
1
, . . . , 𝑎2

𝑟+𝑘
+ 𝑏2
𝑟+𝑘

}.
Then for all 𝑗, 𝑘 ∈ J

6
, 𝑎
𝑗
= 𝑎
𝑘
.

Lemma 2 (Theorem 4 in [23]). Assume that nonzero 𝑥(0) ∈

𝑅𝑛 is not orthogonal to the eigensubspace correspond-
ing to the largest eigenvalue of 𝐴. Then, the solution of
(2) starting from 𝑥(0) converges to an eigenvector corre-
sponding to the largest eigenvalue of 𝐴 that is equal to
lim
𝑡→+∞

(𝑥(𝑡)
𝑇
𝐴𝑥(𝑡)/𝑥(𝑡)

𝑇
𝑥(𝑡)).

Lemma 3 (Theorem 5 in [23]). Assume that nonzero 𝑥(0) ∈

𝑅𝑛 is not orthogonal to the eigensubspace corresponding
to the smallest eigenvalue of 𝐴. Then, the solution of
(3) starting from 𝑥(0) converges to an eigenvector corre-
sponding to the smallest eigenvalue of 𝐴 that is equal to
lim
𝑡→+∞

(𝑥(𝑡)
𝑇
𝐴𝑥(𝑡)/𝑥(𝑡)

𝑇
𝑥(𝑡)).

Remark 4. If we randomly choose 𝑥(0), the projection of 𝑥(0)
on the eigensubspace corresponding to the largest or smallest
eigenvalue of𝐴will be nonzero with high probability. Hence,
(2) and (3) can almost work well with randomly generated
𝑥(0).

2.1. Computing the Eigenvalues with the Largest or Smallest
Imaginary Parts in Absolute Value, as well as the Correspond-
ing Eigenvectors. Without loss of generality, in this subsection
we assume that 𝑏

1
= ⋅ ⋅ ⋅ = 𝑏

𝑟
= 0 < 𝑏2

𝑟+1
≤ ⋅ ⋅ ⋅ ≤ 𝑏2

𝑟+𝑘
in (7).

Note that (𝐴 − 𝐴𝑇)
𝑇
(𝐴 − 𝐴𝑇) = −(𝐴 − 𝐴𝑇)

2.
Based on (7), we know that 0 (if any) is the eigenvalue of

−(𝐴 −𝐴𝑇)
2 corresponding to the eigenvector 𝑢

𝑗
, 𝑗 = 1, . . . , 𝑟,

and that 4𝑏2
𝑟+𝑠

, 𝑠 = 1, . . . , 𝑘, is the eigenvalue of −(𝐴 − 𝐴𝑇)
2

corresponding to the eigenvectors 𝑢𝑅
𝑟+𝑠

or 𝑢𝐼
𝑟+𝑠

. If replacing 𝐴

with the symmetric matrix −(𝐴 − 𝐴𝑇)
2 in (2) as

d𝑥 (𝑡)

d𝑡
= − 𝑥 (𝑡)

𝑇
𝑥 (𝑡) (𝐴 − 𝐴

𝑇
)
2

𝑥 (𝑡)

+ 𝑥(𝑡)
𝑇
(𝐴 − 𝐴

𝑇
)
2

𝑥 (𝑡) 𝑥 (𝑡)

(10)

based on Lemma 2, we know that 𝛼 = lim
𝑡→∞

𝑥(𝑡) is an
eigenvector of −(𝐴−𝐴𝑇)

2 corresponding to 4𝑏2
𝑟+𝑘

and 4𝑏2
𝑟+𝑘

=

lim
𝑡→∞

(−𝑥(𝑡)
𝑇
(𝐴 − 𝐴𝑇)

2
𝑥(𝑡)/𝑥(𝑡)

𝑇
𝑥(𝑡)) (thus, |𝑏

𝑟+𝑘
| has

been gotten), where 𝑥(𝑡) is a solution of (10). If 𝑏
𝑟+𝑘

= 0, 𝑏
𝑗
’s
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are all zero, meaning that𝐴 is symmetric. In this case, we can
directly use (2) or (3) to get the largest or smallest eigenvalue
of 𝐴 and the corresponding eigenvector, respectively. Hence,
we assume 𝑏

𝑟+𝑘
̸= 0.

The following lemma introduces an approach for comput-
ing 𝑎
𝑟+𝑘

under the condition (C1).

Lemma 5. Assume that (C1) holds. Let 𝛼 = lim
𝑡→∞

𝑥(𝑡),
where 𝑥(𝑡) is a solution of (10). Then, 𝑎

𝑟+𝑘
= 𝛼𝑇(𝐴 + 𝐴𝑇)𝛼/

2𝛼𝑇𝛼. In addition, there exists 𝑎2
𝑟+𝑘

+ 𝑏2
𝑟+𝑘

= 𝛼𝑇(𝐴𝐴𝑇)𝛼/𝛼𝑇𝛼.

Proof. Assume that 4𝑏2
𝑟+𝑗

, 𝑗 = 𝑠, 𝑠 + 1, . . . , 𝑘, 𝑠 ≥ 1, are the
largest eigenvalues of −(𝐴 − 𝐴𝑇)

2, that is; |𝑏
𝑟+𝑠

| = |𝑏
𝑟+𝑠+1

| =

⋅ ⋅ ⋅ = |𝑏
𝑟+𝑘

|. Therefore,

J
1
= {𝑟 + 𝑠, . . . , 𝑟 + 𝑘} . (11)

Based on Lemma 2 and (7), we know that 𝛼 should be a
linear combination of 𝑢𝑅

𝑗
and 𝑢𝐼

𝑗
, 𝑗 ∈ J

1
. Let

𝛼 = ∑
𝑗∈J
1

(𝛾
𝑗
𝑢
𝑅

𝑗
+ 𝜏
𝑗
𝑢
𝐼

𝑗
) , 𝛾

𝑗
, 𝜏
𝑗
∈ 𝑅. (12)

In addition, by (8) we have

(𝐴 + 𝐴
𝑇
) 𝑢
𝑅

𝑗
= 2𝑎
𝑗
𝑢
𝑅

𝑗
, (𝐴 + 𝐴

𝑇
) 𝑢
𝐼

𝑗
= 2𝑎
𝑗
𝑢
𝐼

𝑗
, 𝑗 ∈ J

1
.

(13)

And by (9), we have

(𝐴𝐴
𝑇
) 𝑢
𝑅

𝑗
= (𝑎
2

𝑗
+ 𝑏
2

𝑗
) 𝑢
𝑅

𝑗
,

(𝐴𝐴
𝑇
) 𝑢
𝐼

𝑗
= (𝑎
2

𝑗
+ 𝑏
2

𝑗
) 𝑢
𝐼

𝑗
, 𝑗 ∈ J

1
.

(14)

Because 𝑈 is an orthogonal matrix and for all 𝑗 ∈ J
1
,

𝑎
𝑗
= 𝑎
𝑟+𝑘

holds due to (C1), it is straightforward to verify

𝛼𝑇 (𝐴 + 𝐴𝑇) 𝛼

2𝛼𝑇𝛼
=

2𝑎
𝑟+𝑘

∑
𝑗∈J
1

(𝛾2
𝑗
+ 𝜏2
𝑗
)

2∑
𝑗∈J
1

(𝛾2
𝑗
+ 𝜏2
𝑗
)

= 𝑎
𝑟+𝑘

,

𝛼𝑇 (𝐴𝐴𝑇) 𝛼

𝛼𝑇𝛼
=

(𝑎2
𝑟+𝑘

+ 𝑏2
𝑟+𝑘

)∑
𝑗∈J
1

(𝛾2
𝑗
+ 𝜏2
𝑗
)

∑
𝑗∈J
1

(𝛾2
𝑗
+ 𝜏2
𝑗
)

= 𝑎
2

𝑟+𝑘
+ 𝑏
2

𝑟+𝑘
,

(15)

thus proving the lemma.

Remark 6. Based onLemma 5, if 𝑎2
𝑟+𝑘

+𝑏2
𝑟+𝑘

̸= 𝛼𝑇(𝐴𝐴𝑇)𝛼/𝛼𝑇𝛼,
(C1) does not hold surely, which can be used to checkwhether
(C1) holds or not.

The following lemma introduces an approach for comput-
ing a pair of conjugated eigenvectors of 𝐴 corresponding to
the eigenvalues 𝑎

𝑟+𝑘
± 𝑖|𝑏
𝑟+𝑘

| under the condition (C1).

Lemma 7. Assume that (C1) holds. Given any nonzero 4𝑏2
𝑟+𝑘

,
the largest eigenvalue of −(𝐴 − 𝐴𝑇)

2, and the corresponding
eigenvector 𝛼 obtained by (10), let 𝑎

𝑟+𝑘
= 𝛼𝑇(𝐴 + 𝐴𝑇)𝛼/2𝛼𝑇𝛼

and 𝛽 = (𝐴 − 𝐴𝑇)𝛼/2|𝑏
𝑟+𝑘

|. Then, 𝑎
𝑟+𝑘

± i|𝑏
𝑟+𝑘

| are two
eigenvalues of 𝐴 corresponding to the eigenvectors 𝛽 ± i𝛼,
respectively.

Proof. LetJ
1
and𝛼 take the formas (11) and (12), respectively.

Based on (13), we can write

(𝐴 + 𝐴𝑇)

2
𝛼 = 𝑎
𝑟+𝑘

𝛼. (16)

Following the decomposition of𝐴 as (5) and the definition of
𝛽, we have

󵄨󵄨󵄨󵄨𝑏𝑟+𝑘
󵄨󵄨󵄨󵄨 𝛽 = (𝐴 − 𝐴

𝑇
)
𝛼

2

= 𝑈
𝑇 diag [0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟

, 𝐵
𝑟+1

, . . . , 𝐵
𝑟+𝑘

]𝑈
𝛼

2
,

(17)

where

𝐵
𝑗
=

{{{{

{{{{

{

(
0 2

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗

󵄨󵄨󵄨󵄨󵄨
−2

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗

󵄨󵄨󵄨󵄨󵄨
0

) , 𝑗 ∈ {𝑟 + 1, . . . , 𝑟 + 𝑘} \J1

(
0 2

󵄨󵄨󵄨󵄨𝑏𝑟+𝑘
󵄨󵄨󵄨󵄨

−2
󵄨󵄨󵄨󵄨𝑏𝑟+𝑘

󵄨󵄨󵄨󵄨 0
) , 𝑗 ∈ J

1
.

(18)

Taking (12) into (17), we get

𝛽 = ∑
𝑗∈J
1

(𝜏
𝑗
𝑢
𝑅

𝑗
− 𝛾
𝑗
𝑢
𝐼

𝑗
) . (19)

Based on (13) and (19), it is straightforward to verify

(𝐴 + 𝐴
𝑇
)

2
𝛽 = 𝑎
𝑟+𝑘

𝛽. (20)

In addition, since 4𝑏2
𝑟+𝑘

is the eigenvalue of −(𝐴 − 𝐴𝑇)
2

corresponding to the eigenvector 𝛼, we have −(𝐴 − 𝐴𝑇)
2
𝛼 =

4𝑏2
𝑟+𝑘

𝛼. Hence, −(𝐴 − 𝐴𝑇)|𝑏
𝑟+𝑘

|𝛽 = 2𝑏2
𝑟+𝑘

𝛼. Since 𝑏
𝑟+𝑘

̸= 0, we
have

(𝐴 − 𝐴𝑇)

2
𝛽 = −

󵄨󵄨󵄨󵄨𝑏𝑟+𝑘
󵄨󵄨󵄨󵄨 𝛼.

(21)

By (20) and (21), we have

𝐴𝛽 =
𝐴 + 𝐴𝑇

2
𝛽 +

𝐴 − 𝐴
𝑇

2
𝛽 = 𝑎
𝑟+𝑘

𝛽 −
󵄨󵄨󵄨󵄨𝑏𝑟+𝑘

󵄨󵄨󵄨󵄨 𝛼.
(22)

By (16) and (17), we have

𝐴𝛼 =
𝐴 + 𝐴𝑇

2
𝛼 +

𝐴 − 𝐴
𝑇

2
𝛼 = 𝑎
𝑟+𝑘

𝛼 +
󵄨󵄨󵄨󵄨𝑏𝑟+𝑘

󵄨󵄨󵄨󵄨 𝛽.
(23)

Then, it is straightforward to verify

𝐴 (𝛽 + 𝑖𝛼) = (𝑎
𝑟+𝑘

+ 𝑖
󵄨󵄨󵄨󵄨𝑏𝑟+𝑘

󵄨󵄨󵄨󵄨) (𝛽 + 𝑖𝛼) ,

𝐴 (𝛽 − 𝑖𝛼) = (𝑎
𝑟+𝑘

− 𝑖
󵄨󵄨󵄨󵄨𝑏𝑟+𝑘

󵄨󵄨󵄨󵄨) (𝛽 − 𝑖𝛼) ,
(24)

thus proving the lemma.
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To get |𝑏
1
|, we can in advance get 4𝑏2

1
, the smallest

eigenvalue of −(𝐴 − 𝐴𝑇)
2 by replacing 𝐴 with −(𝐴 − 𝐴𝑇)

2

in (3) as follows:

d𝑥 (𝑡)

d𝑡
= 𝑥 (𝑡)

𝑇
𝑥 (𝑡) (𝐴 − 𝐴

𝑇
)
2

𝑥 (𝑡)

− 𝑥 (𝑡)
𝑇
(𝐴 − 𝐴

𝑇
)
2

𝑥 (𝑡) 𝑥 (𝑡) .

(25)

Let 𝛼∗ = lim
𝑡→∞

𝑥(𝑡), where 𝑥(𝑡) is a solution of (25). From
Lemma 3, we know 4𝑏2

1
= −(𝛼∗)

𝑇
(𝐴 − 𝐴𝑇)

2
𝛼∗/(𝛼∗)

𝑇
𝛼∗.

Then, the following lemma similar to Lemma 5 can be used
to compute 𝑎

1
.

Lemma 8. Assume that (C2) holds. Then, 𝑎
1

= (𝛼∗)
𝑇
(𝐴 +

𝐴𝑇)𝛼∗/2(𝛼∗)
𝑇
𝛼∗. In addition, there exists 𝑎2

1
+ 𝑏2
1

=

(𝛼∗)
𝑇
(𝐴𝐴𝑇)𝛼∗/(𝛼∗)

𝑇
𝛼∗.

Proof. The proof is almost the same to that in Lemma 5.

Note that 𝑏
1
may be zero; that is, −(𝐴 − 𝐴𝑇)

2 has real
eigenvalues. In this case, we have the following lemma.

Lemma 9. Assume that (C2) holds and 0 is the smallest
eigenvalue of −(𝐴 − 𝐴

𝑇)
2 corresponding to the eigenvector 𝛼∗.

Then, 𝑎
1
is the eigenvalue of𝐴 corresponding to the eigenvector

𝛼∗, where 𝑎
1
= (𝛼∗)

𝑇
(𝐴 + 𝐴𝑇)𝛼∗/2(𝛼∗)

𝑇
𝛼∗.

Proof. Following the conditions, we have −(𝐴 − 𝐴𝑇)
2
𝛼∗ = 0.

Hence, (𝛼∗)𝑇(𝐴−𝐴𝑇)
𝑇
(𝐴−𝐴𝑇)𝛼∗ = ‖(𝐴 − 𝐴𝑇)𝛼∗‖

2

2
= 0; that

is,

(𝐴 − 𝐴
𝑇
) 𝛼
∗
= 0. (26)

Note that 𝑏
1
= ⋅ ⋅ ⋅ = 𝑏

𝑟
= 0, 𝑟 ≥ 1, because 0 is the smallest

eigenvalue of −(𝐴 − 𝐴𝑇)
2. Based on the definition of J

2
, we

have

𝑎
1
= ⋅ ⋅ ⋅ = 𝑎

𝑟
, J
2
= {1, . . . , 𝑟} , 𝑟 ≥ 1. (27)

Applying Lemma 3 to (25), we know that𝛼∗ should be a linear
combination of 𝑢

1
, . . . , 𝑢

𝑟
. Let

𝛼
∗
= ∑
𝑗∈J
2

𝛾
𝑗
𝑢
𝑗
, 𝛾
𝑗
∈ 𝑅. (28)

By (8), we have

(𝐴 + 𝐴
𝑇
) 𝑢
𝑗
= 2𝑎
𝑗
𝑢
𝑗
= 2𝑎
1
𝑢
𝑗
, 𝑗 ∈ J

2
. (29)

Therefore,

𝐴 + 𝐴
𝑇

2
𝛼
∗
=

1

2
( ∑
𝑗∈J
2

𝛾
𝑗
(𝐴 + 𝐴

𝑇
) 𝑢
𝑗
) = 𝑎

1
𝛼
∗
. (30)

Then, by (26) and (30), it is straightforward to verify

𝐴𝛼
∗
=

𝐴 + 𝐴𝑇

2
𝛼
∗
+

𝐴 − 𝐴𝑇

2
𝛼
∗
= 𝑎
1
𝛼
∗
, (31)

thus proving the lemma.

In the case of 𝑏
1

̸= 0, that is, all the eigenvalues of −(𝐴 −

𝐴𝑇)
2 are complex numbers, we have the following lemma

similar to Lemma 7.

Lemma 10. Assume that (C2) holds. Given any nonzero 4𝑏2
1
,

the smallest eigenvalue of −(𝐴 − 𝐴𝑇)
2, and the corresponding

eigenvector 𝛼
∗ obtained by (25), let 𝑎

1
= (𝛼
∗
)
𝑇
(𝐴 + 𝐴

𝑇
)𝛼
∗
/

2(𝛼∗)
𝑇
𝛼∗ and 𝛽∗ = (𝐴 − 𝐴𝑇)𝛼∗/2|𝑏

1
|. Then, 𝑎

1
± i|𝑏
1
| are two

eigenvalues of 𝐴 corresponding to the eigenvectors 𝛽∗ ± i𝛼∗,
respectively.

Proof. The proof is almost the same to that in Lemma 7.

Remark 11. Among the following four real normal matrices

(

7 0 0 0 0

0 5 0 0 0

0 0 5 0 0

0 0 0 6 2

0 0 0 −2 6

), (

7 0 0 0 0

0 5 1 0 0

0 −1 5 0 0

0 0 0 6 2

0 0 0 −2 6

),

(

7 0 0 0 0

0 5 −2 0 0

0 2 5 0 0

0 0 0 5 2

0 0 0 −2 5

), (

7 0 0 0 0

0 5 2 0 0

0 −2 5 0 0

0 0 0 6 2

0 0 0 −2 6

),

(32)

only the first three meet (C1), but the last one does not. And
only the last three matrices meet (C2), but the first one does
not.

2.2. Computing the Eigenvalues with the Largest or Smallest
Real Parts, as well as the Corresponding Eigenvectors. As
shown in (8), 2𝑎

𝑗
, 𝑗 = 1, . . . , 𝑟 + 𝑘, are the eigenvalues of the

symmetricmatrix (𝐴+𝐴𝑇). In this subsection, we assume that
𝑎
1
≤ ⋅ ⋅ ⋅ ≤ 𝑎

𝑟
and 𝑎
𝑟+1

≤ ⋅ ⋅ ⋅ ≤ 𝑎
𝑟+𝑘

, which can be achieved by
reordering 𝑎

𝑗
and the corresponding columns of 𝑈.

If replacing 𝐴 with (𝐴 + 𝐴𝑇) in (2), we get

d𝑥 (𝑡)

d𝑡
= 𝑥 (𝑡)

𝑇
𝑥 (𝑡) (𝐴 + 𝐴

𝑇
) 𝑥 (𝑡)

− 𝑥 (𝑡)
𝑇
(𝐴 + 𝐴

𝑇
) 𝑥 (𝑡) 𝑥 (𝑡) .

(33)

Without loss of generality, assume that 𝑎
𝑟+𝑘

is the largest
real part of the eigenvalues of 𝐴 (it may be 𝑎

𝑟
. However,

Lemmas 12 and 13 have no difference in that case). Applying
Lemma 2 to (33), we can get 2𝑎

𝑟+𝑘
= lim

𝑡→∞
(𝑥(𝑡)
𝑇
(𝐴 +

𝐴𝑇)𝑥(𝑡)/𝑥(𝑡)
𝑇
𝑥(𝑡)), the largest eigenvalue of (𝐴 + 𝐴𝑇), and

the corresponding eigenvector 𝜁 = lim
𝑡→∞

𝑥(𝑡), where 𝑥(𝑡)

is a solution of (33).
The following lemma introduces an approach for comput-

ing |𝑏
𝑟+𝑘

| under the condition (C3).

Lemma 12. Assume that (C3) holds. Let 𝜁 = lim
𝑡→∞

𝑥(𝑡),
where 𝑥(𝑡) is a solution of (33). Then, |𝑏

𝑟+𝑘
| =

√(𝜁𝑇(𝐴𝐴𝑇)𝜁/𝜁𝑇𝜁) − 𝑎2
𝑟+𝑘

.
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Proof. By Lemma 2, we know that 𝜁 should be a linear
combination of 𝑢𝑅

𝑗
and 𝑢𝐼

𝑗
, 𝑗 ∈ J

3
. Let

𝜁 = ∑
𝑗∈J
3

(𝛾
𝑗
𝑢
𝑅

𝑗
+ 𝜏
𝑗
𝑢
𝐼

𝑗
) , 𝛾

𝑗
, 𝜏
𝑗
∈ 𝑅. (34)

Then, based on (9), we get

(𝐴𝐴
𝑇
) 𝑢
𝑅

𝑗
= (𝑎
2

𝑗
+ 𝑏
2

𝑗
) 𝑢
𝑅

𝑗
,

(𝐴𝐴
𝑇
) 𝑢
𝐼

𝑗
= (𝑎
2

𝑗
+ 𝑏
2

𝑗
) 𝑢
𝐼

𝑗
, 𝑗 ∈ J

3
.

(35)

Because 𝑈 is an orthogonal matrix and for all 𝑗 ∈ J
3
, 𝑎
𝑗
=

𝑎
𝑟+𝑘

and |𝑏
𝑗
| = |𝑏
𝑟+𝑘

| hold, that is, 𝑎2
𝑗
+ 𝑏2
𝑗
= 𝑎2
𝑟+𝑘

+ 𝑏2
𝑟+𝑘

for all
𝑗 ∈ J

3
, we have

𝜁𝑇 (𝐴𝐴𝑇) 𝜁

𝜁𝑇𝜁
=

(𝑎2
𝑟+𝑘

+ 𝑏2
𝑟+𝑘

)∑
𝑗∈J
3

(𝛾2
𝑗
+ 𝜏2
𝑗
)

∑
𝑗∈J
3

(𝛾2
𝑗
+ 𝜏2
𝑗
)

= 𝑎
2

𝑟+𝑘
+ 𝑏
2

𝑟+𝑘
,

(36)

thus proving the lemma.

The following lemma introduces an approach for comput-
ing a pair of conjugated eigenvectors of 𝐴 corresponding to
the eigenvalues 𝑎

𝑟+𝑘
± 𝑖|𝑏
𝑟+𝑘

| under the condition (C3).

Lemma 13. Assume that (C3) holds. Given any nonzero
2𝑎
𝑟+𝑘

, the largest eigenvalue of (𝐴 + 𝐴𝑇), and the cor-
responding eigenvector 𝜁 obtained by (33), let |𝑏

𝑟+𝑘
| =

√(𝜁𝑇(𝐴𝐴𝑇)𝜁/𝜁𝑇𝜁) − 𝑎2
𝑟+𝑘

. If 𝑏
𝑟+𝑘

= 0, 𝑎
𝑟+𝑘

is an eigenvalue
of 𝐴 corresponding to the eigenvector 𝜁. If 𝑏

𝑟+𝑘
̸= 0, let 𝜂 =

(𝐴−𝐴𝑇)𝜁/2|𝑏
𝑟+𝑘

|. Then, 𝑎
𝑟+𝑘

± i|𝑏
𝑟+𝑘

| are two eigenvalues of𝐴
corresponding to the eigenvectors 𝜂 ± i𝜁, respectively.

Proof. Combining the proofs of Lemmas 9 and 7, we can
prove this lemma.

If replacing 𝐴 with (𝐴 + 𝐴
𝑇
) in (3), we get

d𝑥 (𝑡)

d𝑡
= − 𝑥 (𝑡)

𝑇
𝑥 (𝑡) (𝐴 + 𝐴

𝑇
) 𝑥 (𝑡)

+ 𝑥 (𝑡)
𝑇
(𝐴 + 𝐴

𝑇
) 𝑥 (𝑡) 𝑥 (𝑡) .

(37)

Without loss of generality, assume that 𝑎
𝑟+1

is the smallest real
part of the eigenvalues of𝐴 (itmay be 𝑎

1
. However, Lemma 14

has no difference in that case). Applying Lemma 3 to (37), we
can obtain 2𝑎

𝑟+1
, the smallest eigenvalue of (𝐴+𝐴𝑇), as well as

the corresponding eigenvector, denoted by 𝜁∗. Then, we have
the following lemma.

Lemma 14. Assume that (C4) holds. Given any nonzero
2𝑎
𝑟+1

, the smallest eigenvalue of (𝐴 + 𝐴𝑇), and the cor-
responding eigenvector 𝜁∗ obtained by (37), let |𝑏

𝑟+1
| =

√((𝜁∗)
𝑇
(𝐴𝐴𝑇)𝜁∗/(𝜁∗)

𝑇
𝜁∗) − 𝑎2

𝑟+1
. If 𝑏
𝑟+1

= 0, 𝑎
𝑟+1

is the
eigenvalue of 𝐴 corresponding to the eigenvector 𝜁∗. If 𝑏

𝑟+1
̸= 0,

let 𝜂∗ = (𝐴 − 𝐴𝑇)𝜁∗/2|𝑏
𝑟+1

|. Then, 𝑎
𝑟+1

± i|𝑏
𝑟+1

| are two
eigenvalues of 𝐴 corresponding to the eigenvectors 𝜂∗ ± i𝜁∗,
respectively.

Proof. Combining the proofs of Lemmas 12, 9, and 7, we can
prove this lemma.

Remark 15. Among the following four real normal matrices

(

1 0 0 0 0

0 4 0 0 0

0 0 5 0 0

0 0 0 1 2

0 0 0 −2 1

), (

3 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 1 2

0 0 0 −2 1

),

(

3 0 0 0 0

0 4 2 0 0

0 −2 4 0 0

0 0 0 4 2

0 0 0 −2 4

), (

3 0 0 0 0

0 4 0 0 0

0 0 5 0 0

0 0 0 5 2

0 0 0 −2 5

),

(38)

only the first three meet (C3), but the last one does not. And
only the last three matrices meet (C4), but the first one does
not.

2.3. Computing the Eigenvalues with the Largest or Smallest
Modulus, as well as the Corresponding Eigenvectors. Reorder
the eigenvalues of the symmetric matrix 𝐴𝐴

𝑇 in (9) and the
corresponding columns of 𝑈 such that 𝑎2

1
≤ ⋅ ⋅ ⋅ ≤ 𝑎2

𝑟
and

𝑎2
𝑟+1

+ 𝑏2
𝑟+1

≤ ⋅ ⋅ ⋅ ≤ 𝑎2
𝑟+𝑘

+ 𝑏2
𝑟+𝑘

. Without loss of generality,
assume that 𝑎

𝑟+𝑘
± 𝑖|𝑏
𝑟+𝑘

| are the eigenvalues of 𝐴 that have
the largest modulus (it may be 𝑎

𝑟
. However, Lemma 16 has

no difference in that case), and that 𝑎
𝑟+1

± 𝑖|𝑏
𝑟+1

| are the
eigenvalues of 𝐴 that have the smallest modulus (it may be
𝑎
1
. However, Lemma 17 has no difference in that case).
Replacing 𝐴 with 𝐴𝐴𝑇 in (2), we get

d𝑥 (𝑡)

d𝑡
= 𝑥 (𝑡)

𝑇
𝑥 (𝑡) 𝐴𝐴

𝑇
𝑥 (𝑡) − 𝑥 (𝑡)

𝑇
𝐴𝐴
𝑇
𝑥 (𝑡) 𝑥 (𝑡) .

(39)

Applying Lemma 2 to (39), we can obtain 𝑎2
𝑟+𝑘

+ 𝑏2
𝑟+𝑘

=

lim
𝑡→∞

(𝑥(𝑡)
𝑇
𝐴𝑇𝐴𝑥(𝑡)/𝑥(𝑡)

𝑇
𝑥(𝑡)), the largest eigenvalue of

𝐴𝐴𝑇, and the corresponding eigenvector 𝜃 = lim
𝑡→∞

𝑥(𝑡),
where 𝑥(𝑡) is the solution of (39).Then, we have the following
lemma.

Lemma 16. Assume that (C5) holds. Given any 𝑎2
𝑟+𝑘

+𝑏2
𝑟+𝑘

, the
largest eigenvalue of 𝐴𝐴𝑇, and the corresponding eigenvector
𝜃 obtained by (39). Then, 𝑎

𝑟+𝑘
= 𝜃𝑇(𝐴 + 𝐴𝑇)𝜃/2𝜃𝑇𝜃. Thus,

|𝑏
𝑟+𝑘

| can be gotten. If 𝑏
𝑟+𝑘

= 0, 𝑎
𝑟+𝑘

is an eigenvalue of 𝐴
corresponding to the eigenvector 𝜃. If 𝑏

𝑟+𝑘
̸= 0, let 𝜔 = (𝐴 −

𝐴𝑇)𝜃/|2𝑏
𝑟+𝑘

|. Then, 𝑎
𝑟+𝑘

± i|𝑏
𝑟+𝑘

| are two eigenvalues of 𝐴

corresponding to the eigenvectors 𝜔 ± i𝜃, respectively.

Proof. Combining the proofs of Lemmas 5, 7, and 9, we can
prove this lemma.

Replacing 𝐴 with 𝐴𝐴𝑇 in (3), we get

d𝑥 (𝑡)

d𝑡
= −𝑥 (𝑡)

𝑇
𝑥 (𝑡) 𝐴𝐴

𝑇
𝑥 (𝑡) + 𝑥 (𝑡)

𝑇
𝐴𝐴
𝑇
𝑥 (𝑡) 𝑥 (𝑡) .

(40)
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Applying Lemma 3 to (40), we can obtain 𝑎2
𝑟+1

+ 𝑏2
𝑟+1

, the
smallest eigenvalue of𝐴𝐴𝑇, and the corresponding eigenvec-
tor, denoted by 𝜃∗. Then, we have the following lemma.

Lemma 17. Assume (C6) holds. Given any 𝑎2
𝑟+1

+ 𝑏2
𝑟+1

, the
smallest eigenvalue of 𝐴𝐴𝑇, and the corresponding eigenvector
𝜃
∗ obtained by (40). Then, 𝑎

𝑟+1
= (𝜃
∗
)
𝑇
(𝐴+𝐴

𝑇
)𝜃
∗
/2(𝜃
∗
)
𝑇
𝜃
∗.

So one can get that |𝑏
𝑟+1

|. If 𝑏
𝑟+1

= 0, 𝑎
𝑟+1

is an eigenvalue
of 𝐴 corresponding to the eigenvector 𝜃∗. If 𝑏

𝑟+1
̸= 0, let 𝜔∗ =

(𝐴 − 𝐴𝑇)𝜃∗/2|𝑏
𝑟+1

|. Then, 𝑎
𝑟+1

± i|𝑏
𝑟+1

| are two eigenvalues of
𝐴 corresponding to the eigenvectors 𝜔∗ ± i𝜃∗, respectively.

Proof. Combining the proofs of Lemmas 5, 7, and 9, we can
prove this lemma.

Remark 18. Among the following four real normal matrices

(

2 0 0 0 0

0 −2 0 0 0

0 0 6 0 0

0 0 0 1 2

0 0 0 −2 1

), (

3 0 0 0 0

0 6 0 0 0

0 0 6 0 0

0 0 0 1 2

0 0 0 −2 1

),

(

3 0 0 0

0 3 −4 0

0 4 3 0

0 0 0 3

0 0 0 −4

), (

3 0 0 0 0

0 4 0 0 0

0 0 5 0 0

0 0 0 3 4

0 0 0 −4 3

),

(41)

only the first three meet (C5), but the last one does not. And
only the last three meet (C6), but the first one does not.

However, there exists some specially constructed 𝐴

that meet none of (C1) to (C6), for example, 𝐴 =

diag[𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
], where

𝐴
1
= (

−4 1

−1 −4
) , 𝐴

2
= (

−4 3

−3 −4
) , 𝐴

3
= (

4 3

−3 4
) ,

𝐴
4
= (

4 1

−1 4
) .

(42)

Nevertheless, a randomly generated real normal matrix can
meet (C1) to (C6) with high probability.

2.4. Extension to Arbitrary Real Matrices. In this subsection,
𝐴 is an arbitrary real matrix of order 𝑛. Let ‖𝐴‖ be the
Frobenius norm of𝐴, and, 𝜆

𝑗
, 𝑗 = 1, . . . , 𝑛, be the eigenvalue

of 𝐴. Denote the set of all complex nonsingular matrices by
T.

By the Schur inequality [13], we know
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜆
2

𝑗

󵄨󵄨󵄨󵄨󵄨
≤ ‖𝐴‖

2 (43)

with equality if and only if 𝐴 is a normal matrix. Since the
spectrum of 𝐴 does not change by a similarity transforma-
tion, the inequality

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜆
2

𝑗

󵄨󵄨󵄨󵄨󵄨
≤

󵄩󵄩󵄩󵄩󵄩
𝑃
−1
𝐴𝑃

󵄩󵄩󵄩󵄩󵄩

2

, 𝑃 ∈ T (44)

holds with equality if and only if 𝑃−1𝐴𝑃 is a normal matrix.
In addition, [24] proved

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜆
2

𝑖

󵄨󵄨󵄨󵄨󵄨
= inf
𝑃∈T

󵄩󵄩󵄩󵄩󵄩
𝑃
−1
𝐴𝑃

󵄩󵄩󵄩󵄩󵄩

2

. (45)

Based on (45), if we can find a sequence 𝐴
𝑗
as follows:

𝐴
1
= 𝐴, 𝐴

𝑗+1
= 𝑃
−1

𝑗
𝐴
𝑗
𝑃
𝑗
,

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗+1

󵄩󵄩󵄩󵄩󵄩
<

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗

󵄩󵄩󵄩󵄩󵄩
,

𝑃
𝑗
∈ T, 𝑗 = 1, 2, . . .

(46)

such that
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜆
2

𝑖

󵄨󵄨󵄨󵄨󵄨
= lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗

󵄩󵄩󵄩󵄩󵄩

2

, (47)

where 𝐴
∞

= lim
𝑗→∞

𝐴
𝑗
is to be a normal matrix with

the same eigenvalues as 𝐴. Such skill, termed as the norm-
reducing technique, has been proposed by [25–27].Moreover,
following the idea presented by [26], it is easy to find that
when𝐴 is real,𝐴

∞
can be chosen to be a real normal matrix.

In a word, any real matrix 𝐴 can be translated into a real
normal matrix𝐴

∞
= 𝑃−1
∞

𝐴𝑃
∞
by a similarity transformation

𝑃
∞

= 𝑃
1
𝑃
2
⋅ ⋅ ⋅. Typical approaches for constructing 𝑃

𝑗
can

be found in [26]. Note that if 𝜆 is the eigenvalue of 𝐴
∞

corresponding to the eigenvector 𝑢, 𝜆 is the eigenvalue of 𝐴
corresponding to the eigenvector 𝑃

∞
𝑢. Hence, our proposed

algorithm can be extended to extract eigenpairs of arbitrary
real matrices by employing the norm-reducing technique.

Without loss of generality, we use the following random
matrix 𝐴 as an example to describe the norm-reducing
technique:

𝐴 = (

1.0541 0.4052 −1.0191 −0.5771 0.4158

−1.9797 −0.7025 −1.3852 −0.8364 0.0430

−1.8674 1.4990 0.9549 0.8530 −0.9489

−1.8324 0.1378 −0.6011 0.4773 0.5416

0.8486 −1.5868 −1.1719 0.3023 −0.8211

).

(48)

The Frobenius norm of 𝐴 is ‖𝐴‖ = √27.7629, and the
eigenvalues of matrix 𝐴 are 𝜆

1
= 2.8797, 𝜆

2
= 𝜆
3

=

−0.6900 + 1.8770𝑖, 𝜆
4
= −1.5144, and 𝜆

5
= 0.9774; obviously

‖𝐴‖ > √∑
5

𝑖=1
𝜆2
𝑖
= 19.5401, so 𝐴 is a nonnormal real matrix.

According to the approach that presented in [26], we can
construct 𝑃

𝑗
, 𝑗 = 1, 2, . . .. If the condition ‖𝐴

𝑖
−𝐴
𝑖+1

‖ < 10−10

can be satisfied, we break the iteration. After 129 iterations,
we can obtain a approximate normal matrix 𝐴

130
:

𝐴
130

= (

−0.7441 0.0007 1.6334 0.8210 0.0010

−0.0035 2.8797 −0.0038 0.0000 −0.0000

−1.4162 −0.0048 −0.9132 0.8223 0.0034

−1.1560 −0.0019 −0.1181 −1.2370 −0.0014

0.0011 −0.0000 0 −0.0036 0.9774

) ,

(49)

from which we have ‖𝐴∗
130

𝐴
130

− 𝐴
130

𝐴∗
130

‖ =

√0.00121231723027107 and ‖𝐴
130

‖ = √19.540133042214
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Figure 1: Trajectory of ‖𝐴
𝑖
‖
2.

that is very close to √∑
5

𝑖=1
𝜆2
𝑖
= √19.5400526824864; so the

matrix 𝐴
130

can be regarded as a normal matrix in practical
application, the corresponding 𝑃

∞
= 𝑃
1
𝑃
2
𝑃
3
⋅ ⋅ ⋅ 𝑃
129

are as
follows:

𝑃
∞

= (

−0.3499 −0.5290 −0.0090 0.2228 −0.0151

−0.4809 −0.0259 −0.6935 −0.4079 0.1559

−0.2914 0.7211 0.6743 0.0395 0.3437

−0.4484 0.1475 −0.3668 0.2444 −0.8704

0.0611 −0.3265 0.4294 −1.1028 −0.5166

) ,

(50)

which satisfy 𝐴
130

= 𝑃−1
∞

𝐴𝑃
∞
. We also can see that the

eigenvalues of 𝐴
130

are 𝜆
1
= −1.5144, 𝜆

2
= 𝜆
3
= −0.6900 +

1.8770𝑖, 𝜆
4

= 2.8797, and 𝜆
5

= 0.9774, which are just the
eigenvalues of original nonnormal matrix 𝐴. We presented
here the transient behavior of ‖𝐴

𝑖
‖
2 in Figure 1, where 𝑖 =

1, 2, 3, . . . is the iterations and 𝐴
1
= 𝐴.

In the following, we use 𝑁 = 1000 random matrices
to verify the average performance of the norm-reducing
technique. Let

Mean Δ
2

𝑖
=

1

𝑁

𝑁

∑
𝑗=1

Δ
2

𝑗𝑖 (51)

denotes the average measure of a large number of nonnormal
matrices in a statistical sense at 𝑖th iteration, where Δ2

𝑗𝑖
=

‖𝐴𝑇
𝑗𝑖
𝐴
𝑗𝑖
− 𝐴
𝑗𝑖
𝐴𝑇
𝑗𝑖
‖
2 is the measure of the nonnormal matrix

𝐴
𝑗
at 𝑖th iteration, Δ2

𝑗𝑖
= 0 if and only if 𝐴

𝑗
is normal matrix

at 𝑖th iteration. We also presented the dynamic behavior
trajectory of Mean Δ2 in Figure 2, from which we can see
that for most of nonnormal matrices, after 350 iterations, the
Mean Δ

2 is very close to zero.

3. Neural Implementation Description

In the presented paper, we mainly focus on the classical
neural network differential equation as shown in (2), where
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Figure 2: Average performance trajectory of norm-reducing tech-
nique.

𝐴 = (𝑎
𝑖𝑗
), 𝑖, 𝑗 = 1, 2, . . . , 𝑛 are symmetric matrices that need

to calculate eigenvalues and the corresponding eigenvectors,
𝑥(𝑡) = [𝑥

1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 is a column vector which

denotes the states of neurons in the neural network dynamic
system, and the elements of symmetric matrix 𝐴 denote the
connectionweights between those neurons.We presented the
schematic diagram of the neural network in Figure 3, from
which we can see that it is a recurrent neural network since
the input is just the output of the system.

In the practical applications, we often only need a nonzero
column vector 𝑥(0) = [𝑥

1
(0), 𝑥
2
(0), . . . , 𝑥

𝑛
(0)]
𝑇 to start the

neural network system by the following update rule:

𝑥 (𝑗 + 1) = 𝑥 (𝑗) + 𝜏 (𝑥(𝑗)
𝑇
𝑥 (𝑗)𝐴𝑥 (𝑗)

− 𝑥(𝑗)
𝑇
𝐴𝑥 (𝑗) 𝑥 (𝑗)) ,

(52)

where 𝑗 denote the 𝑗th iteration and 𝜏 is a small time step.
The iteration stops once ‖𝑥(𝑗 + 1) − 𝑥(𝑗)‖ < 𝜀, where 𝜀 is a
small constraint error that can be set in advance. If ‖𝑥(𝑗+1)−

𝑥(𝑗)‖ < 𝜀, we could regard that ‖𝑥(𝑗 + 1) − 𝑥(𝑗)‖ = 0, that is,
𝑥(𝑗)
𝑇
𝑥(𝑗)𝐴𝑥(𝑗) − 𝑥(𝑗)

𝑇
𝐴𝑥(𝑗)𝑥(𝑗) = 0; so we have 𝐴𝑥(𝑗) =

(𝑥(𝑗)
𝑇
𝐴𝑥(𝑗)/𝑥(𝑗)

𝑇
𝑥(𝑗))𝑥(𝑗), according to the theory in [23],

𝑥(𝑗) is the eigenvector corresponding to the modulus largest
eigenvalue which can be denoted as 𝑥(𝑗)𝑇𝐴𝑥(𝑗)/𝑥(𝑗)

𝑇
𝑥(𝑗).

4. Examples and Discussion

Three experiments are presented to verify our results. The
following real normal matrix 𝐴 (randomly generated) was
used in those three experiments:

𝐴 = (

1.8818 −2.1563 −0.5979 −0.4768 0.7270 0.4133
−1.4267 0.5258 1.4946 0.7125 0.4700 2.5384
0.4273 0.7784 2.8645 0.8587 1.3792 −1.0153
−0.1929 1.3273 −1.3125 3.1629 0.2573 0.6329
1.5966 −0.6593 −0.3799 0.2058 2.9845 0.6404
1.0627 1.9973 −0.0249 −1.5727 0.9289 2.3259

) .

(53)
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Figure 3: The schematic diagram of the neural network equation (2) for solving the eigenvector corresponding to the modulus largest
eigenvalues of real symmetric matrix 𝐴.

Using the [𝑉,𝐷] = eig(𝐴) function in Matlab, we got the
eigenvalues of 𝐴 as 𝜆

1
= −2.3420, 𝜆

2
= 1.005, 𝜆

3
= 𝜆
4

=

3.1967 + 1.7860𝑖, and 𝜆
5
= 𝜆
6
= 4.3445 + 1.2532𝑖, as well as

the corresponding eigenvectors 𝑢
1
, . . . , 𝑢

6
as follows:

𝑢
1
= (

(

0.3754

0.7510

−0.2146

−0.1664

0.0280

−0.4696

)

)

,

𝑢
2
= (

(

0.6657

−0.0242

0.2994

0.2594

−0.5888

0.2295

)

)

,

𝑢
3
= (

(

−0.0294 + 0.1297𝑖

−0.0243 − 0.1385𝑖

0.6165

−0.1917 + 0.5472𝑖

0.0913 + 0.2785𝑖

−0.2708 − 0.2950𝑖

)

)

,

𝑢
5
= (

(

0.3207 + 0.2956𝑖

0.0472 − 0.4424𝑖

0.0711 − 0.2167𝑖

−0.1146 − 0.3213𝑖

0.4903

0.3692 − 0.2583𝑖

)

)

,

𝑢
4
= 𝑢
3
,

𝑢
6
= 𝑢
5
.

(54)

We can see that all of (C1) to (C6) hold except (C2). For
simplicity, denote lim

𝑡→∞
𝑥(𝑡) by 𝑥(∞).

Example 19 (for Section 2.1). We used (10) with the following
initial condition (randomly generalized)

𝑥 (0) = [0.2329, −0.0023, −0.8601,

−0.2452, −0.1761, −0.1577]
𝑇

(55)

to get |𝑏
3
| (the largest absolute value of the imaginary

part among 𝜆
𝑖
) that √−𝑥(𝑡)

𝑇
(𝐴 − 𝐴𝑇)

2
𝑥(𝑡)/4𝑥(𝑡)

𝑇
𝑥(𝑡)

should converge to. From Lemma 5, 𝑥(𝑡)
𝑇
(𝐴 +

𝐴𝑇)𝑥(𝑡)/2𝑥(𝑡)
𝑇
𝑥(𝑡) → 𝑎

3
should hold. By Lemma 7,

𝑥(𝑡) and (𝐴−𝐴𝑇)𝑥(𝑡)/2|𝑏
3
| should converge to the imaginary
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Figure 4: Trajectories of 𝜙(𝑡) = √−𝑥(𝑡)
𝑇
(𝐴 − 𝐴𝑇)

2
𝑥(𝑡)/4𝑥(𝑡)

𝑇
𝑥(𝑡)

and 𝜓(𝑡) = 𝑥(𝑡)
𝑇
(𝐴 + 𝐴

𝑇
)𝑥(𝑡)/2𝑥(𝑡)

𝑇
𝑥(𝑡) based on (10) with initial

𝑥(0) as (55), which should converge to |𝑏
3
| and 𝑎

3
, respectively.

and real parts of an eigenvector corresponding to 𝜆
3
,

respectively. The transient behaviors of the above four
variables are shown in Figures 4, 5, and 6, respectively. After
convergence, we saw

(𝐴 − 𝐴𝑇) 𝑥 (∞)

2
󵄨󵄨󵄨󵄨𝑏3

󵄨󵄨󵄨󵄨
+ 𝑥 (∞) 𝑖

= (

(

0.1795 − 0.0005𝑖

−0.1747 + 0.0737𝑖

−0.1857 − 0.8107𝑖

0.7772 + 0.0872𝑖

0.3386 − 0.2039𝑖

−0.3064 + 0.4450𝑖

)

)

= (−0.3012 − 1.3149𝑖) 𝑢3.

(56)

Thus, the estimated complex vector is an eigenvector of 𝐴

corresponding to 𝜆
3
.

Although we can use (25) to get the smallest absolute
value of the imaginary part among 𝜆

𝑖
(it is zero in this

experiment), neither the corresponding real part nor the
eigenvector can be obtained from Lemmas 8 or 9 since (C2)
does not hold.

Example 20 (for Section 2.2). We used (33) with the same
𝑥(0) as (55) to get 𝑎

5
(the largest real part among 𝜆

𝑖
) that

𝑥(𝑡)
𝑇
(𝐴 + 𝐴𝑇)𝑥(𝑡)/2𝑥(𝑡)

𝑇
𝑥(𝑡) should converge to. Based

on Lemma 12, √(𝑥(𝑡)
𝑇
(𝐴𝐴𝑇)𝑥(𝑡)/𝑥(𝑡)

𝑇
𝑥(𝑡)) − 𝑎2

5
→ |𝑏

5
|

should hold. The transient behaviors of such two variables
are shown in Figure 7. Since 𝑏

5
̸= 0, from Lemma 13, 𝑥(𝑡) and

(𝐴 − 𝐴𝑇)𝑥(𝑡)/2|𝑏
5
| should converge to the imaginary and

real parts of an eigenvector corresponding to 𝜆
5
, as shown
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3
.
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Figure 6: Trajectories of 𝑦(𝑡) = (𝐴 − 𝐴𝑇)𝑥(𝑡)/2𝑏
3
based on (10)

with initial 𝑥(0) as (55), which should converge to the real part of an
eigenvector of 𝐴 corresponding to the eigenvalue 𝜆

3
.

in Figures 8 and 9. After convergence, we saw

(𝐴 − 𝐴𝑇) 𝑥 (∞)

2
󵄨󵄨󵄨󵄨𝑏5

󵄨󵄨󵄨󵄨
+ 𝑥 (∞) 𝑖

= (

(

−0.5695 − 0.1474𝑖

0.2254 + 0.5561𝑖

0.0534 + 0.3029𝑖

0.3407 + 0.3091𝑖

−0.5830 + 0.3120𝑖

−0.2746 + 0.5420𝑖

)

)

= (−1.1890 + 0.6363𝑖) 𝑢5.

(57)

Hence, the estimated complex vector is an eigenvector of 𝐴
corresponding to 𝜆

5
.

Based on (37), we got 𝑎
1

(the smallest real part
among 𝜆

𝑖
). After convergence, we saw that 𝑥(∞)

𝑇
(𝐴 +

𝐴𝑇)𝑥(∞)/2𝑥(∞)
𝑇
𝑥(∞) = 𝑎

1
= 𝜆

1
= −2.3420,

√(𝑥(∞)
𝑇
(𝐴𝐴𝑇)𝑥(∞)/𝑥(∞)

𝑇
𝑥(∞)) − 𝑎2

1
= |𝑏
1
| = 0, and
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𝑥(𝑡) and

𝜙(𝑡) = √(𝑥(𝑡)
𝑇
(𝐴𝐴𝑇)𝑥(𝑡)/𝑥(𝑡)

𝑇
𝑥(𝑡)) − 𝑎2

5
based on (33) with initial

𝑥(0) as (55), which should converge to 𝑎
5
and |𝑏

5
|, respectively.
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Figure 8: Trajectories of 𝑥(𝑡), the solution of (33) with initial 𝑥(0) as
(55), which should converge to the imaginary part of an eigenvector
of 𝐴 corresponding to the eigenvalue 𝜆

5
.

𝑥(∞) was equal to

𝑥 (∞) = (

(

−0.3581

−0.7165

0.2048

0.1588

−0.0267

0.4480

)

)

= −0.9541𝑢
1
, (58)

just as expected from Lemma 14.

Example 21 (for Section 2.3). Based on (39) and
Lemma 16, we can get 𝜆

5
and one corresponding

eigenvector again because |𝜆
5
| is the largest modulus

of 𝜆
𝑖
. In addition, we used (40) with the same 𝑥(0)

as (55) to get |𝜆
2
|, the smallest modulus of 𝜆

𝑖
. By

Lemma 17, 𝑎
2

= 𝑥(∞)
𝑇
(𝐴 + 𝐴𝑇)𝑥(∞)/2𝑥(∞)

𝑇
𝑥(∞)

and |𝑏
2
| = √(𝑥(∞)

𝑇
(𝐴𝐴𝑇)𝑥(∞)/𝑥(∞)

𝑇
𝑥(∞)) − 𝑎2

2
should

hold.The transient behaviors of such two variables are shown
in Figure 10. After convergence, we saw that 𝑏

2
= 0. Hence,

from Lemma 17, 𝑥(𝑡) should converge to a constant multiple
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Figure 9: Trajectories of 𝑦(𝑡) = (𝐴 − 𝐴
𝑇
)𝑥(𝑡)/2|𝑏

5
| based on (33)

with initial 𝑥(0) as (55), which should converge to the real part of an
eigenvector of 𝐴 corresponding to the eigenvalue 𝜆

5
.
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Figure 10: Trajectories of 𝜓(𝑡) = 𝑥(𝑡)
𝑇
(𝐴 + 𝐴𝑇)𝑥(𝑡)/2𝑥(𝑡)

𝑇
𝑥(𝑡) and

𝜙(𝑡) = √(𝑥(𝑡)
𝑇
(𝐴𝐴𝑇)𝑥(𝑡)/𝑥(𝑡)

𝑇
𝑥(𝑡)) − 𝑎2

2
based on (40) with initial

𝑥(0) as (55), which should converge to 𝑎
2
and |𝑏

2
|, respectively.

of 𝑢
2
, which is shown in Figure 11. As expected, 𝑥(∞) was

equal to

𝑥 (∞) = (

(

−0.6337

0.0230

−0.2850

−0.2469

0.5605

−0.2185

)

)

= −0.9519𝑢
2
. (59)

Example 22 (for extension to arbitrary real matrices).
According to the theory in Section 2.1, we present here
an experiment for arbitrary real matrices to verify the
effectiveness of the norm-reducing technique in Section 2.4.
Considering the following nonnormal matrix 𝐴:

𝐴 = (

3.4633 −3.7487 2.9281 −0.5106 −0.0455

4.4860 3.4259 −3.2010 5.0625 1.2120

0.5268 −1.0311 1.5386 −0.4766 −1.4478

−2.4768 1.2585 2.0525 2.3539 −0.8487

0.0498 −3.1267 −6.5297 −1.5106 2.2083

),

(60)
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Figure 11: Trajectories of 𝑥(𝑡), the solution of (40), with initial 𝑥(0)
as (55), which should converge to an eigenvector of𝐴 corresponding
to the eigenvalue 𝜆

2
.
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Figure 12: Trajectories of 𝜙(𝑡) =

√−𝑥(𝑡)
𝑇
(𝐴
𝑝
− 𝐴𝑇
𝑝
)
2
𝑥(𝑡)/4𝑥(𝑡)

𝑇
𝑥(𝑡) and 𝜓(𝑡) = 𝑥(𝑡)

𝑇
(𝐴
𝑝

+

𝐴𝑇
𝑝
)𝑥(𝑡)/2𝑥(𝑡)

𝑇
𝑥(𝑡) based on (10) with initial 𝑥(0) as (65), which

should converge to |𝑏
2
| and 𝑎

2
, respectively.

the Frobenius norm of 𝐴 is ‖𝐴‖ = √187.8869 > √∑
5

𝑖=1
𝜆2
𝑖
=

97.1780, where 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 5 are the eigenvalues of

matrix 𝐴, so matrix 𝐴 is a nonnormal matrix. According
to the theory in Section 2.4, the eigenpairs problem of
nonnormal real matrix can be converted into the eigenpairs
problem of the corresponding normal matrix 𝐴

𝑝
, which can

be calculated by norm-reducing technique:

𝐴
𝑝
= (

2.3438 0.7915 1.1071 1.8624 −2.6867

−1.5918 2.1016 1.7249 2.2067 1.9843

0.8659 −1.7434 4.5103 −1.2708 0.0408

1.7777 −2.3015 −0.9898 3.5815 0.7201

−2.4688 −2.3136 −0.4746 0.0545 0.4528

) ,

(61)
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Figure 13: Trajectories of𝑥(𝑡), the solution of (10)with initial𝑥(0) as
(65), which should converge to the imaginary part of an eigenvector
of 𝐴
𝑝
corresponding to the eigenvalue 𝜆

2
.
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Figure 14: Trajectories of 𝑦(𝑡) = (𝐴
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− 𝐴𝑇
𝑝
)𝑥(𝑡)/2𝑏

2
based on (10)

with initial 𝑥(0) as (65), which should converge to the real part of an
eigenvector of 𝐴

𝑝
corresponding to the eigenvalue 𝜆

2
.

and the corresponding 𝑃
∞

as follows:

𝑃
∞

= (

28.2974 −28.8442 115.6698 16.4765 13.5575
−35.9689 48.5475 4.3465 58.1384 9.0642
−10.2373 −14.2976 14.1168 23.6416 −40.2882
−3.4360 −25.4122 −114.2417 15.0191 15.1720
−79.1532 −35.3465 75.4347 −24.8455 −48.2893

) ,

(62)

which satisfies the relationship 𝐴
𝑝

= 𝑃
−1

∞
𝐴𝑃
∞
. In order

to solve the eigenpairs of matrix 𝐴, we have to calculate
the eigenpairs of the matrix 𝐴

𝑝
at first. Direct calculations
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of the eigenvalues of matrix 𝐴
𝑝
are 𝜆
1

= −1.8342, 𝜆
2

=

𝜆
3

= 2.1114 + 3.786𝑖, 𝜆
4

= 𝜆
5

= 5.3007 + 0.1328𝑖 and
those are just the eigenvalues of nonnormal matrix𝐴 and the
corresponding eigenvectors as follows:

𝑢
1
= (

0.6079

0.0886

−0.1195

−0.2805

0.7278

) , 𝑢
2
= (

0.0035 − 0.2240𝑖

0.7020

0.0189 + 0.3280𝑖

0.0502 + 0.4231𝑖

−0.0660 + 0.4040𝑖

) = 𝑢
3
,

𝑢
4
= (

0.1769 − 0.4835𝑖

−0.0129 + 0.0561𝑖

0.6204

−0.2522 − 0.4643𝑖

−0.1415 + 0.2181𝑖

) = 𝑢
5
.

(63)

The eigenvectors of nonnormal matrix 𝐴, which corre-
sponding to the eigenvalues with largest imaginary parts in
absolute are

𝑢
𝐴

2
= (

−0.2353 − 0.5331𝑖

−0.6416

0.0449 − 0.0581𝑖

0.3856 + 0.0270𝑖

0.0747 − 0.2973𝑖

) = 𝑢𝐴
3
. (64)

According to the results above, the eigenvalues with
largest imaginary in absolute are 𝜆

2
and 𝜆

3
, and let 𝑎

2
± |𝑏
2
|𝑖

denote them.
We used (10) with the following initial condition (ran-

domly generalized):

𝑥 (0) = [0.3891, 0.0856, 0.2215, 0.3151, 0.4929]
𝑇 (65)

to get |𝑏
2
| (the largest absolute value of the imaginary

part among 𝜆
𝑖
) that √−𝑥(𝑡)

𝑇
(𝐴
𝑝
− 𝐴𝑇
𝑝
)
2
𝑥(𝑡)/4𝑥(𝑡)

𝑇
𝑥(𝑡)

should converge to. From Lemma 5, 𝑥(𝑡)
𝑇
(𝐴
𝑝

+

𝐴
𝑇

𝑝
)𝑥(𝑡)/2𝑥(𝑡)

𝑇
𝑥(𝑡) → 𝑎

2
should hold. By Lemma 7,

𝑥(𝑡) and (𝐴
𝑝

− 𝐴𝑇
𝑝
)𝑥(𝑡)/2|𝑏

2
| should converge to the

imaginary and real parts of an eigenvector corresponding to
𝜆
2
, respectively. The transient behaviors of the above four

variables are shown in Figures 12, 13, and 14, respectively.
After convergence, we saw

(𝐴
𝑝
− 𝐴𝑇
𝑝
) 𝑥 (∞)

2
󵄨󵄨󵄨󵄨𝑏2

󵄨󵄨󵄨󵄨
+ 𝑥 (∞) 𝑖

= (

0.0394 − 0.2317𝑖

0.7277 + 0.1121𝑖

−0.0327 + 0.3430𝑖

−0.0155 + 0.4466𝑖

−0.1329 + 0.4083𝑖

)

= (1.0367 + 0.1597i) 𝑢2.

(66)

Thus, the estimated complex vector is an eigenvector of 𝐴
𝑝

corresponding to 𝜆
2
. According to the theory in Section 2.4,

the estimated complex eigenvector of nonnormal matrix 𝐴

corresponding to the eigenvalue 𝜆
2
should be

𝑃
∞

(
(𝐴
𝑝
− 𝐴𝑇
𝑝
) 𝑥 (∞)

2
󵄨󵄨󵄨󵄨𝑏2

󵄨󵄨󵄨󵄨
+ 𝑥 (∞) 𝑖)

= (

−25.7189 + 42.7862𝑖

31.6606 + 44.9313𝑖

−6.2833 − 0.2807𝑖

−17.1372 − 28.3402𝑖

−24.5113 + 9.4386𝑖

)

= (−49.3476 − 70.0318𝑖) 𝑢
𝐴

2
,

(67)

from which we can see that the estimated complex vector is
an eigenvector of 𝐴 corresponding to 𝜆

2
.

5. Conclusion

This paper introduces a neural network based approach for
computing eigenvectors of real normal matrices and the
corresponding eigenvalues that have the largest or smallest
modulus, have the largest or smallest real part, and have
the largest or smallest imaginary part in absolute value. All
the computation can be carried out in real vector space
although eigenpairs may be complex, which can reduce the
scale of networks a lot. We also shed light on extending this
method to the case of general real matrices by employing the
norm-reducing technique proposed in other literatures. Four
simulation examples verified the validity of our proposed
algorithm.
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