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We introduced and studied 𝐺𝐹-regular modules as a generalization of 𝜋-regular rings to modules as well as regular modules (in
the sense of Fieldhouse). An 𝑅-module𝑀 is called 𝐺𝐹-regular if for each 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive integer
𝑛 such that 𝑟𝑛𝑡𝑟𝑛𝑥 = 𝑟

𝑛

𝑥. The notion of 𝐺-pure submodules was introduced to generalize pure submodules and proved that an 𝑅-
module𝑀 is𝐺𝐹-regular if and only if every submodule of𝑀 is𝐺-pure iff𝑀M is a𝐺𝐹-regular 𝑅M-module for each maximal ideal
M of 𝑅. Many characterizations and properties of 𝐺𝐹-regular modules were given. An 𝑅-module𝑀 is𝐺𝐹-regular iff 𝑅/ann(𝑥) is a
𝜋-regular ring for each 0 ̸= 𝑥 ∈ 𝑀 iff 𝑅/ann(𝑀) is a 𝜋-regular ring for finitely generated module𝑀. If𝑀 is a 𝐺𝐹-regular module,
then 𝐽(𝑀) = 0.

1. Introduction

Throughout this paper, unless otherwise stated, 𝑅 is a com-
mutative ring with nonzero identity and all modules are left
unitary. For an 𝑅-module𝑀, the annihilator of 𝑥 ∈ 𝑀 in 𝑅 is
ann
𝑅
(𝑥) = {𝑟 ∈ 𝑅 : 𝑟𝑥 = 0}. The symbol ◻ stands for the end

of the proof if the proof is given or the end of the statement
when the proof is not given.

Recall that a ring 𝑅 is said to be regular (in the sense of
von Neumann) if for each 𝑟 ∈ 𝑅, there exists 𝑡 ∈ 𝑅 such that
𝑟𝑡𝑟 = 𝑟 [1].The concept of regular ringswas extended firstly to
𝜋-regular rings byMcCoy [2], recall that a ring 𝑅 is 𝜋-regular
if for each 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive integer 𝑛
such that 𝑟𝑛𝑡𝑟𝑛 = 𝑟

𝑛 [2] and secondly to modules in several
nonequivalent ways considered by Fieldhouse [3], Ware [4],
Zelmanowitz [5], and Ramamurthi and Rangaswamy [6]. In
[7], Jayaraman and Vanaja have studied generalizations of
regular modules (in the sense of Zelmanowitz) by Rama-
murthi [8] and Mabuchi [9]. Following [10], we denoted
Fieldhouse’ regular modules by 𝐹-regular. An 𝑅-module 𝑀
is called 𝐹-regular if each submodule of𝑀 is pure [3].

Dissimilar to the generalizations that have been studied in
[7, 9] and [8], in this paper a new generalization of 𝜋-regular
rings to modules and 𝐹-regular modules was introduced,

called 𝐺𝐹-reular (generalized 𝐹-regular) modules. An 𝑅-
module𝑀 is called 𝐺𝐹-regular if for each 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅,
there exist 𝑡 ∈ 𝑅 and a positive integer 𝑛 such that 𝑟𝑛𝑡𝑟𝑛𝑥 =

𝑟
𝑛

𝑥. A ring 𝑅 is called 𝐺𝐹-regular if 𝑅 is 𝐺𝐹-regular as an
𝑅-module. On the other hand, 𝐺𝐹-regular modules are also
a generalization of 𝜋-regular rings. Thus, 𝑅 is a 𝜋-regular
ring if and only if 𝑅 is a 𝐺𝐹-regular 𝑅-module. Furthermore,
we introduced a new class of submodules, named, 𝐺-pure
submodules as a generalization of pure submodules. A
submodule 𝑃 of an 𝑅-module 𝑀 is said to be 𝐺-pure if
for each 𝑟 ∈ 𝑅, there exists a positive integer 𝑛 such that
𝑃 ∩ 𝑟
𝑛

𝑀 = 𝑟
𝑛

𝑃. Recall that a submodule 𝑃 of an 𝑅-module
𝑀 is pure if 𝑃 ∩ 𝐼𝑀 = 𝐼𝑃 for each ideal 𝐼 of 𝑅 [11]. We
find that the relationship between 𝐺𝐹-regular modules and
𝐺-pure submodules is an analogous relationship between 𝐹-
regular modules and pure submodules.

In Section 3.1 of this paper, after the concept of 𝐺𝐹-
regular modules was introduced, we obtained several char-
acteristic properties of 𝐺𝐹-regular modules. For instance, it
was proved that the following are equivalent for an 𝑅-module
𝑀: (1)𝑀 is𝐺𝐹-regular; (2) every submodule of𝑀 is𝐺-pure;
(3) 𝑅/ann(𝑥) is a 𝜋-regular ring for each 0 ̸= 𝑥 ∈ 𝑀; (4) and
for each 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive
integer 𝑛 such that 𝑟𝑛+1𝑡𝑥 = 𝑟

𝑛

𝑥. It is also shown that if 𝑀
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is a finitely generated 𝑅-module, then𝑀 is 𝐺𝐹-regular if and
only if 𝑅/ann(𝑀) is a 𝜋-regular ring.

Section 3.2 was devoted to investigate the relationship
between 𝐺𝐹-regular modules with the localization property
and semisimple modules. For example, we proved that𝑀 is a
𝐺𝐹-regular 𝑅-module if and only if𝑀M is a 𝐺𝐹-regular 𝑅M-
module for every maximal idealM of 𝑅 if and only if𝑀M is
a semisimple 𝑅M-module for every maximal idealM of 𝑅.

Finally, in Section 3.3 we studied some properties of the
Jacobson radical, 𝐽(𝑀), of 𝐺𝐹-regular modules. Thus we
proved that if𝑀 is a 𝐺𝐹-regular 𝑅-module, then 𝐽(𝑀) = 0,
and also we get that if 𝐽(𝑅) is a reduced ideal of a ring 𝑅 and
𝑀 is a 𝐺𝐹-regular 𝑅-module, then 𝐽(𝑅) ⋅ 𝑀 = 0.

2. The Notion of 𝐺𝐹-Regular Modules and
General Results

We start by recalling that an 𝑅-module𝑀 is 𝐹-regular if each
submodule of 𝑀 is pure [3], and a ring 𝑅 is 𝜋-regular if for
each 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive integer 𝑛 such that
𝑟
𝑛

𝑡𝑟
𝑛

= 𝑟
𝑛 [2].

Definition 1. An 𝑅-module𝑀 is called 𝐺𝐹-regular if for each
𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive integer 𝑛
such that 𝑟𝑛𝑡𝑟𝑛𝑥 = 𝑟

𝑛

𝑥. A ring 𝑅 is 𝐺𝐹-regular if and only if
𝑅 is 𝐺𝐹-regular as an 𝑅-module.

The following gives another characterization for 𝐺𝐹-
regular modules.

Proposition 2. An 𝑅-module 𝑀 is 𝐺𝐹-regular if and only if
𝑅/𝑎𝑛𝑛(𝑥) is a 𝜋-regular ring for each 0 ̸= 𝑥 ∈ 𝑀.

Proof. Suppose that𝑀 is a𝐺𝐹-regular 𝑅-module, so for each
𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive integer 𝑛
such that 𝑟𝑛𝑡𝑟𝑛𝑥 = 𝑟

𝑛

𝑥; hence, (𝑟𝑛𝑡𝑟𝑛 − 𝑟𝑛) ∈ ann(𝑥) which
means that 𝑟𝑛𝑡𝑟𝑛 = 𝑟

𝑛; therefore, 𝑅/ann(𝑥) is a 𝜋-regular
ring. Conversely, suppose that 𝑅/ann(𝑥) is a 𝜋-regular ring
for each 0 ̸= 𝑥 ∈ 𝑀, thus for each 𝑟 ∈ 𝑅/ann(𝑥), there exist
𝑡 ∈ 𝑅/ann(𝑥) and a positive integer 𝑛 such that 𝑟𝑛𝑡𝑟𝑛 = 𝑟

𝑛;
hence, 𝑟𝑛𝑡𝑟𝑛−𝑟𝑛 ∈ ann(𝑥)which implies that (𝑟𝑛𝑡𝑟𝑛−𝑟𝑛)𝑥 = 0;
therefore,𝑀 is a 𝐺𝐹-regular 𝑅-module.

It is clear that every 𝐹-regular module is 𝐺𝐹-regular, but
the converse may not be true in general; for example, by
applying Proposition 2 to the 𝑍-module 𝑍

4
, we can easily

see that it is 𝐺𝐹-regular; however, 𝑍
4
is not an 𝐹-regular

𝑍-module. In fact, the 𝑍-module 𝑍
𝑛
is 𝐺𝐹-regular for each

positive integer 𝑛 [12], while it is not 𝐹-regular for some
positive integer 𝑛. On the other hand, the 𝑍-module 𝑄 is
not 𝐺𝐹-regular because for each 0 ̸= 𝑥 ∈ 𝑄 we have that
ann
𝑍
(𝑥) = 0, but 𝑍/ann

𝑍
≃ 𝑍 which is not a 𝜋-regular ring

[12].

Remark 3.
(1) If 𝑅 is a 𝜋-regular ring, then every 𝑅-module is 𝐺𝐹-

regular.
(2) Every module over Artinian ring 𝑅 is 𝐺𝐹-regular

(because every Artinian ring is 𝜋-regular [12]).

(3) A ring 𝑅 is 𝜋-regular if and only if 𝑅 is 𝐺𝐹-regular as
an 𝑅-module.

(4) Every submodule of a 𝐺𝐹-regular module is 𝐺𝐹-
regular module. In particular, every ideal of a 𝜋-
regular ring 𝑅 is𝐺𝐹-regular 𝑅-module. Furthermore,
it follows from (1) that if 𝐼 is an ideal of a 𝜋-regular
ring 𝑅, then the 𝑅-module 𝑅/𝐼 is 𝐺𝐹-regular.

(5) The converse of (1) is true if the module is free, that
is, any free 𝑅-module𝑀 is𝐺𝐹-regular if and only if 𝑅
is a 𝜋-regular ring. For if,𝑀 is a free 𝑅-module, then
ann(𝑥) = 0 for each 0 ̸= 𝑥 ∈ 𝑀, so 𝑅 ≃ 𝑅/ann(𝑥) is a
𝜋-regular ring.

(6) If an 𝑅-module 𝑀 is 𝐺𝐹-regular and it contains a
nontorsion element, then 𝑅 is a 𝜋-regular ring. In
particular, if𝑀 is a𝐺𝐹-regular𝑅-module and𝑅 is not
a 𝜋-regular ring, then𝑀 is a torsion 𝑅-module.

Now from Proposition 2 and Remark 3(3), we conclude
the following.

Corollary 4. The following statements are equivalent for a
ring:

(1) 𝑅 is a 𝜋-regular ring;
(2) 𝑅/𝑎𝑛𝑛(𝑟) is a 𝜋-regular ring for each 0 ̸= 𝑟 ∈ 𝑅.

We have seen previously that every 𝐹-regular 𝑅-module
is 𝐺𝐹-regular. In the following we consider some conditions
such that the converse is true.

Remark 5.

(1) Let 𝑅 be a reduced ring. An 𝑅-module𝑀 is 𝐹-regular
if and only if𝑀 is a 𝐺𝐹-regular 𝑅-module.

(2) An 𝑅-module 𝑀 is 𝐹-regular if and only if 𝑀 is
a 𝐺𝐹-regular 𝑅-module and 𝐿(𝑅/ann(𝑥)) = 0 for
each 0 ̸= 𝑥 ∈ 𝑀, where 𝐿(𝑅/ann(𝑥)) is the prime
radical of the ring 𝑅/ann(𝑥).

Now, we describe 𝐺𝐹-regular modules over the ring of
integers 𝑍.

Proposition 6. A 𝑍-module𝑀 is 𝐺𝐹-regular if and only if𝑀
is a torsion 𝑍-module.

Proof. If𝑀 is a 𝐺𝐹-regular 𝑍-module, then by Remark 3(6)
𝑀 is a torsion 𝑍-module. Conversely, if 𝑀 is a torsion 𝑍-
module, then ann

𝑍
(𝑥) = 𝑛𝑍 for some positive integer 𝑛;

hence, 𝑍/ann
𝑍
(𝑥) ≃ 𝑍

𝑛
is a 𝜋-regular ring for each positive

integer 𝑛 [12], which implies that 𝑀 is a 𝐺𝐹-regular 𝑍-
module.

Proposition 7. Every homomorphic image of a𝐺𝐹-regular 𝑅-
module is 𝐺𝐹-regular.

Proof. Let 𝑀, 𝑀 be two 𝑅-modules such that 𝑀 is 𝐺𝐹-
regular and let𝑓 : 𝑀 → 𝑀

 be an𝑅-epimorphism. For every
𝑦 ∈ 𝑀

, there exists 𝑥 ∈ 𝑀 such that 𝑓(𝑥) = 𝑦. It is clear
that ann(𝑥) ⊆ ann(𝑦). Define 𝛼 : 𝑅/ann(𝑥) → 𝑅/ann(𝑦) by
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𝛼(𝑟+ann(𝑥)) = 𝑟+ann(𝑦) for each 𝑟 ∈ 𝑅. It is an easymatter to
check that 𝛼 is well defined 𝑅-epimorphism. Since 𝑅/ann(𝑥)
is a𝜋-regular ring, then𝑅/ann(𝑦) is also a𝜋-regular ring [12].
Therefore,𝑀 is a 𝐺𝐹-regular 𝑅-module.

Corollary 8. The following statements are equivalent for an𝑅-
module𝑀:

(1) 𝑀/𝑁 is a 𝐺𝐹-regular 𝑅-module for every nonzero
submodule𝑁 of𝑀.

(2) 𝑀/𝑅𝑥 is a 𝐺𝐹-regular 𝑅-module for every 0 ̸= 𝑥 ∈ 𝑀.

Another characterization of a 𝐺𝐹-regular 𝑅-module is
given in the next result.

Proposition 9. An 𝑅-module 𝑀 is 𝐺𝐹-regular if and only if
for each 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive
integer 𝑛 such that 𝑟𝑛+1𝑡𝑥 = 𝑟𝑛𝑥.

Proof. Suppose that𝑀 is a𝐺𝐹-regular 𝑅-module, so for each
𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑠 ∈ 𝑅 and a positive integer
𝑛 such that 𝑟𝑛𝑠𝑟𝑛𝑥 = 𝑟

𝑛

𝑥, then we can take 𝑡 = 𝑠𝑟
𝑛−1

∈ 𝑅

and hence 𝑟𝑛+1𝑡𝑥 = 𝑟
𝑛

𝑥. Conversely, for each 𝑥 ∈ 𝑀 and
𝑟 ∈ 𝑅, there exist 𝑠 ∈ 𝑅 and a positive integer 𝑛 such that
𝑟
𝑛+1

𝑠𝑥 = 𝑟
𝑛

𝑥. Now, 𝑟𝑛𝑠𝑛𝑟𝑛𝑥 = 𝑟𝑛+1𝑠𝑠𝑛−1𝑟𝑛−1𝑥 = 𝑟𝑛𝑠𝑛−1𝑟𝑛−1𝑥 =
𝑟
𝑛+1

𝑠𝑠
𝑛−2

𝑟
𝑛−2

𝑥 = 𝑟
𝑛

𝑠
𝑛−2

𝑟
𝑛−2

𝑥 = ⋅ ⋅ ⋅ = 𝑟
𝑛+1

𝑠𝑥 = 𝑟
𝑛

𝑥 (after 𝑛
times), thus 𝑟𝑛𝑡𝑟𝑛𝑥 = 𝑟𝑛𝑥 where 𝑡 = 𝑠𝑛 which implies that𝑀
is a 𝐺𝐹-regular 𝑅-module.

3. Main Results

3.1.𝐺𝐹-RegularModules and Purity. Recall that a submodule
𝑃 of an 𝑅-module 𝑀 is pure in 𝑀 if each finite system of
equations

𝑃
𝑖
= ∑

𝑗

𝑟
𝑖𝑗
𝑥
𝑗
, 𝑟
𝑖𝑗
∈ 𝑅, 𝑃

𝑗
∈ 𝑃, 1 ≤ 𝑗 ≤ 𝑚, (1)

which is solvable in𝑀, is solvable in 𝑃 [13]. It is not difficult
to prove that 𝑃 is pure in𝑀 if and only if for each ideal 𝐼 of 𝑅,
𝑃∩𝐼𝑀 = 𝐼𝑃 [11].Thismotivates us to introduce the following
definition as a generalization of pure submodules.

Definition 10. A submodule 𝑃 of an 𝑅-module𝑀 is called 𝐺-
pure if for each 𝑟 ∈ 𝑅, there exists a positive integer 𝑛 such
that 𝑃 ∩ 𝑟𝑛𝑀 = 𝑟

𝑛

𝑃.

It is clear that every pure module is 𝐺-pure.
The following theorem gives another characterization of

𝐺𝐹-regular modules in terms of 𝐺-pure submodules.

Theorem11. An𝑅-module𝑀 is𝐺𝐹-regular if and only if every
submodule of𝑀 is 𝐺-pure.

Proof. Suppose that𝑀 is a𝐺𝐹-regular𝑅-module and let 𝑃 be
any submodule of 𝑀. For each 𝑟 ∈ 𝑅 and for some positive
integer 𝑛, let 𝑥 ∈ 𝑃 ∩ 𝑟𝑛𝑀, then there exists 𝑦 ∈ 𝑀 such that
𝑥 = 𝑟
𝑛

𝑦. Since𝑀 is 𝐺𝐹-regular, then there exists 𝑡 ∈ 𝑅 such
that 𝑟𝑛𝑦 = 𝑟𝑛𝑡𝑟𝑛𝑦. Put 𝑒 = 𝑡𝑟𝑛, then 𝑟𝑛𝑦 = 𝑒𝑟𝑛𝑦which implies
that 𝑥 = 𝑒𝑥, but 𝑥 ∈ 𝑃, so 𝑥 = 𝑒𝑥 ∈ 𝑟𝑛𝑃 and hence 𝑃∩ 𝑟𝑛𝑀 ⊆

𝑟
𝑛

𝑃. On the other hand, it is clear that 𝑟𝑛𝑃 ⊆ 𝑃 ∩ 𝑟
𝑛

𝑀, thus
𝑃⋂𝑟
𝑛

𝑀 = 𝑟
𝑛

𝑃 which means that 𝑃 is a 𝐺-pure submodule.
Conversely, assume that every submodule is 𝐺-pure and

let 𝑥 ∈ 𝑀 and 𝑝 ∈ 𝑅 such that 𝑅𝑝𝑛𝑥 = 𝑃 which is a 𝐺-
pure submodule of 𝑀 for some positive integer 𝑛, then 𝑃 ∩

𝑟
𝑛

𝑀 = 𝑟
𝑛

𝑃 for each 𝑟 ∈ 𝑅. In particular, if 𝑟 = 𝑝 we get
𝑟
𝑛

𝑥 ∈ 𝑃 ∩ 𝑟
𝑛

𝑀 ⊆ 𝑟
𝑛

𝑃 = 𝑟
𝑛

𝑅𝑟
𝑛

𝑥 which implies that there
exists 𝑡 ∈ 𝑅 such that 𝑟𝑛𝑡𝑟𝑛𝑥 = 𝑟

𝑛

𝑥, so 𝑀 is a 𝐺𝐹-regular
𝑅-module.

Corollary 12. An 𝑅-module𝑀 is 𝐺𝐹-regular if and only if for
each 𝑥 ∈ 𝑀, there exist 𝑝 ∈ 𝑅 and a positive integer 𝑛 such that
𝑅𝑝
𝑛

𝑥 is a 𝐺-pure submodule.

Remark 13. Fieldhouse in [11] proved that for a submodule 𝑃
of an 𝑅-module𝑀, if𝑀/𝑃 is a flat 𝑅-module, then 𝑃 is pure.
On the other hand, if𝑀 is flat and 𝑃 is pure, then𝑀/𝑃 is flat.
So, immediately we have that for a flat 𝑅-module, if 𝑀/𝑃 is
a flat 𝑅-module for each submodule 𝑃 of𝑀, then𝑀 is 𝐺𝐹-
regular 𝑅-module. It is not difficult to prove that in case of 𝐹-
regular modules the converse of the latest statement is true;
however, we do not know whether it is true for 𝐺𝐹-regular
modules or not.

Remark 14. In [14], Mao proved that a right 𝑅-module 𝑁 is
𝐺𝑃-flat if and only if there exists an exact sequence 0 →

𝐾 → 𝑀 → 𝑁 → 0 with𝑀 free such that for any 𝑟 ∈ 𝑅,
there exists a positive integer 𝑛 satisfying 𝐾 ∩ 𝑀𝑟

𝑛

= 𝐾𝑟
𝑛,

where (1) a right 𝑅-module𝑁 is said to be generalized 𝑃-flat
(𝐺𝑃-flat for short) if for any 𝑟 ∈ 𝑅, there exists a positive
integer 𝑛 (depending on 𝑟) such that the sequence 0 →

𝑁 ⊗ 𝑅𝑟
𝑛

→ 𝑁 ⊗ 𝑅 is exact [15], (2) a right 𝑅-module 𝑁
is 𝑃-flat [16] or torsion-free [15] if for any 𝑟 ∈ 𝑅, the sequence
0 → 𝑁⊗𝑅𝑟 → 𝑁⊗𝑅 is exact. Obviously, every flat module
is 𝑃-flat [16] and every 𝑃-flat module is 𝐺𝑃-flat [14].

According to the above remark we get the following.

Corollary 15. An 𝑅-module 𝑁 is 𝐺𝑃-flat if and only if there
exists an exact sequence 0 → 𝑃 → 𝑀 → 𝑁 → 0 with 𝑃
is a submodule of a free 𝑅-module𝑀 such that 𝑃 is a 𝐺-pure
submodule.

Corollary 16. For every submodule 𝑃 of a free 𝑅-module 𝑀,
if there exists an exact sequence 0 → 𝑃 → 𝑀 → 𝑁 → 0

such that 𝑃 is a 𝐺-pure submodule in𝑀, then 𝑁 is a 𝐺𝑃-flat
𝑅-module if and only if𝑀 is 𝐺𝐹-regular.

Now, we recall that (1) an 𝑅-module 𝑀 is 𝑝-injective if
for every principal ideal 𝐼 of 𝑅, every 𝑅-homomorphism of 𝐼
into𝑀 extends to one of 𝑅 into𝑀 [17]. A ring 𝑅 is called 𝑝-
injective if 𝑅 is 𝑝-injective as an 𝑅-module. (2) An 𝑅-module
𝑀 is called 𝑌𝐽-injective if for any 0 ̸= 𝑟 ∈ 𝑅, there exists a
positive integer 𝑛 such that 𝑟𝑛 ̸= 0 and any 𝑅-homomorphism
of 𝑅𝑟𝑛 into𝑀 extends to one of 𝑅 into𝑀. A ring 𝑅 is called
𝑌𝐽-injective if 𝑅 is 𝑌𝐽-injective as an 𝑅-module [18]. 𝑌𝐽-
injective modules are called 𝐺𝑃-injective modules by some
other authors [19–22]. (3) An 𝑅-module 𝑀 is called 𝑊𝐺𝑃-
injective (weak 𝐺𝑃-injective) if for any 𝑟 ∈ 𝑅, there exists a
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positive integer 𝑛 such that every 𝑅-homomorphism of 𝑅𝑟𝑛
into𝑀 extends to one of 𝑅 into𝑀 (𝑟𝑛 may be zero). A ring 𝑅
is called𝑊𝐺𝑃-injective if𝑅 is𝑊𝐺𝑃-injective as an𝑅-module
[23–25]. (4) A ring𝑅 is called 𝑝.𝑝. if every principal ideal of𝑅
is projective. And 𝑅 is called 𝐺𝑃𝑃-ring if for any 𝑟 ∈ 𝑅, there
exists a positive integer 𝑛 (depending on 𝑟) such that 𝑅𝑟𝑛 is
projective [26, 27].

Note that 𝑝-injectivity implies 𝑌𝐽-injectivity (or 𝐺𝑃-
injectivity) and 𝑊𝐺𝑃-injectivity, as well as the concept of
𝑝.𝑝. rings implies the concept of 𝐺𝑃𝑃-rings. However, the
notion of 𝑌𝐽-injective (or 𝐺𝑃-injective) modules is not the
same notion of𝑊𝐺𝑃-injective modules.

It is known that a ring 𝑅 is 𝜋-regular if and only if every
𝑅-module is𝑊𝐺𝑃-injective [12, 22], so from all the above we
conclude the following theorem.

Theorem17. The following statements are equivalent for a ring
𝑅.

(1) 𝑅 is a 𝜋-regular ring.
(2) 𝑅/𝑎𝑛𝑛(𝑟) is a 𝜋-regular ring for each 0 ̸= 𝑟 ∈ 𝑅.
(3) Any free 𝑅-module is 𝐺𝐹-regular.
(4) Every 𝑅-module is𝑊𝐺𝑃-injective.

We end this section by the following two related results.

Proposition 18. Let𝑀 be an 𝑅-module. If 𝑅/𝑎𝑛𝑛(𝑀) is a 𝜋-
regular ring, then𝑀 is a 𝐺𝐹-regular 𝑅-module.

Proof. We have that ann(𝑀) ⊆ ann(𝑥) for each 𝑥 ∈ 𝑀, so
there exists an obvious 𝑅-epimorphism 𝜑 : 𝑅/ann(𝑀) →

𝑅/ann(𝑥) defined by 𝜑(𝑟 + ann(𝑀)) = 𝑟 + ann(𝑥). Since
𝑅/ann(𝑀) is a 𝜋-regular ring, then 𝑅/ann(𝑥) is a 𝜋-regular
ring [12]; therefore,𝑀 is a 𝐺𝐹-regular 𝑅-module.

In case of finitely generated modules, the converse of
Proposition 18 is true.

Proposition 19. Let 𝑀 be an 𝑅-module. If 𝑀 is a finitely
generated𝐺𝐹-regular𝑅-module, then𝑅/𝑎𝑛𝑛(𝑀) is a𝜋-regular
ring.

Proof. Let {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a finite set of generators of 𝑀.

Put 𝑁 = ann(𝑀), and 𝑁
𝑖
= ann(𝑥

𝑖
), 1 ≤ 𝑖 ≤ 𝑘, then 𝑁 =

∩
𝑖
𝑁
𝑖
. Now define 𝜑 : 𝑅/𝑁 → ⊕∑

𝑛

𝑖=1
𝑅/𝑁
𝑖
by 𝜑(𝑟 + 𝑁) =

(𝑟 + 𝑁
1
, 𝑟 + 𝑁

2
, . . . , 𝑟 + 𝑁

𝑛
) for each 𝑟 + 𝑁 ∈ 𝑅/𝑁. It is easily

checked that 𝜑 is a ring monomorphism. Thus, 𝑅/𝑁 can be
identified with a subring 𝑇 of ⊕∑𝑛

𝑖=1
𝑅/𝑁
𝑖
. In fact

𝑇 = {(𝑟 + 𝑁
1
, 𝑟 + 𝑁

2
, . . . , 𝑟 + 𝑁

𝑛
) : 𝑟 ∈ 𝑅} . (2)

We will show now that 𝑇, and hence 𝑅/𝑁 is a 𝜋-regular
ring. Since 𝑀 is a 𝐺𝐹-regular 𝑅-module, then 𝑅/𝑁

𝑖
is a 𝜋-

regular ring, thus for each 𝑟 ∈ 𝑅 and 1 ≤ 𝑖 ≤ 𝑘, there exist
𝑡
𝑖
∈ 𝑅 and a positive integer 𝑛 such that 𝑟𝑛𝑡

𝑖
𝑟
𝑛

+ 𝑁
𝑖
= 𝑟
𝑛

+

𝑁
𝑖
; this means that 𝑟𝑛𝑡

𝑖
𝑟
𝑛

𝑥
𝑖
= 𝑟
𝑛

𝑥
𝑖
. Define 𝑡 by the relation

1 − 𝑡𝑟
𝑛

= ∏
𝑘

𝑖=1
(1 − 𝑡

𝑖
𝑟
𝑛

), then 𝑟
𝑛

(1 − 𝑡𝑟
𝑛

)𝑥
𝑖
= 𝑟
𝑛

∏
𝑘

𝑖=1
(1 −

𝑡
𝑖
𝑟
𝑛

)𝑥
𝑖
= ∏
𝑘

𝑖=1
(𝑟
𝑛

− 𝑟
𝑛

𝑡
𝑖
𝑟
𝑛

)𝑥
𝑖
= 0 which implies that for each

𝑖, 𝑟𝑛+𝑁
𝑖
= 𝑟
𝑛

𝑡𝑟
𝑛

+𝑁
𝑖
, so 𝑇 is a 𝜋-regular ring and hence 𝑅/𝑁

is a 𝜋-regular ring.

3.2.𝐺𝐹-Regular Modules and Localization. In this section we
study the localization property and semisimple modules with
𝐺𝐹-regular modules and we give some characterizations of
𝐺𝐹-regular modules in the sense of them.

Theorem 20. Let 𝑀 be an 𝑅-module. 𝑀 is a 𝐺𝐹-regular 𝑅-
module if and only if𝑀M is a𝐺𝐹-regular 𝑅M-module for each
maximal idealM in 𝑅.

Proof. Let 𝑀 be a 𝐺𝐹-regular 𝑅-module, and let M be any
maximal ideal in 𝑅. Let 𝑥/𝑡 ∈ 𝑀M and 𝑟/𝑡

1
∈ 𝑅M, where 𝑥 ∈

𝑀, 𝑟 ∈ 𝑅 and 𝑡, 𝑡
1
∈ 𝑅−M. So there exist 𝑘 ∈ 𝑅 and a positive

integer 𝑛 such that 𝑟𝑛𝑘𝑟𝑛𝑥 = 𝑟
𝑛

𝑥. Hence, (𝑟/𝑡
1
)
𝑛

(𝑥/𝑡) =

𝑟
𝑛

𝑥/𝑡
𝑛

1
𝑡 = (𝑟

𝑛

𝑘𝑟
𝑛

𝑥/𝑡
𝑛

1
𝑡)(𝑡
𝑛

1
/𝑡
𝑛

1
) = (𝑟

𝑛

/𝑡
𝑛

1
)(𝑘𝑡
𝑛

1
/1)(𝑟
𝑛

/𝑡
𝑛

1
)(𝑥/𝑡) =

(𝑟/𝑡
1
)
𝑛

(𝑘𝑡
𝑛

1
/1)(𝑟/𝑡

1
)
𝑛, where 𝑘𝑡𝑛

1
/1 ∈ 𝑅M, then 𝑀M is 𝐺𝐹-

regular 𝑅M-module.
Conversely, suppose that 𝑀M is a 𝐺𝐹-regular 𝑅M-

module. Let 𝑃 be a submodule of𝑀 and letM be a maximal
ideal of 𝑅. ByTheorem 11, 𝑃M is a 𝐺-pure submodule of𝑀M;
therefore, 𝑃M ∩ (𝑅𝑟

𝑛

)M𝑀M = (𝑅𝑟
𝑛

)M𝑃M for each 𝑟 ∈ 𝑅

and for some positive integer 𝑛. But by [28], we have that
𝑃M ∩ (𝑅𝑟

𝑛

)M𝑀M = 𝑃M ∩ (𝑅𝑟
𝑛

𝑀)M = (𝑃 ∩ 𝑅𝑟
𝑛

𝑀)M and
(𝑅𝑟
𝑛

𝑃)M = (𝑅𝑟
𝑛

)M𝑃M, then (𝑅𝑟
𝑛

𝑀∩ 𝑃)M = (𝑅𝑟
𝑛

𝑃)M,
again by [28], we get that 𝑅𝑟𝑛𝑀 ∩ 𝑃 = 𝑅𝑟

𝑛

𝑃, which implies
that 𝑃 is a𝐺-pure submodule of𝑀 and byTheorem 11 𝑀, is
a 𝐺𝐹-regular 𝑅-module.

Recall that an 𝑅-module 𝑀 is simple if 0 and 𝑀 are the
only submodules of 𝑀, and an 𝑅-module 𝑀 is said to be
semisimple if𝑀 is a sum of simplemodules (may be infinite).
A ring𝑅 is semisimple if it is semisimple as an𝑅-module [29].
It is known that over any ring 𝑅, a semisimple module is 𝐹-
regular [4, 30], consequently it is 𝐺𝐹-regular. Furthermore,
it is known that over a local ring, every 𝐹-regular module is
semisimple [31]. We can generalize the latest statement as the
following.

Proposition 21. Every 𝐺𝐹-regular module over local ring is
semisimple.

Proof. LetM be the only maximal ideal of 𝑅. Since𝑀 is 𝐺𝐹-
regular, then for each 0 ̸= 𝑥 ∈ 𝑀 we have that 𝑅/ann(𝑥) is
𝐺𝐹-regular local ring which implies that 𝑅/ann(𝑥) is a field
[12]; hence, ann(𝑥) is a maximal ideal, so M = ann(𝑥) for
each 0 ̸= 𝑥 ∈ 𝑀. Therefore, M = ann(𝑥) = ann(𝑀). On
the other hand, 𝑅/M ≃ 𝑅/ann(𝑀) is a field, which implies
that 𝑀 is a vector space over the field 𝑅/ann(𝑀) which is a
simple ring. Then 𝑀 is a semisimple module over the ring
𝑅/ann(𝑀). Thus,𝑀 is a semismple 𝑅-module [29].

As an immediate result from Theorem 20 and
Proposition 21, we get the following.

Corollary 22. Let𝑀 be an 𝑅-module.𝑀 is 𝐺𝐹-regular if and
only if𝑀M is a semisimple𝑅M-module for eachmaximal ideal
M of 𝑅.

We mentioned before that every 𝐹-regular 𝑅-module is
𝐺𝐹-regular; the following gives us another condition such
that the converse is true.
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Corollary 23. Let 𝑅 be a local ring. An 𝑅-module 𝑀 is 𝐹-
regular if and only if𝑀 is a 𝐺𝐹-regular 𝑅-module.

Corollary 24. An 𝑅-module 𝑀 = 𝑁⨁𝐾 is 𝐺𝐹-regular if
and only if𝑁 and 𝐾 are 𝐺𝐹-regular 𝑅-modules.

Proof. Assume that𝑁 and𝐾 are𝐺𝐹-regular𝑅-modules, then
for each maximal ideal M in 𝑅, each of 𝑁M and 𝐾M is
a semisimple module (Proposition 21); hence, it is an easy
matter to check that 𝑁M + 𝐾M is a semisimple module, so
𝑀M = 𝑁M⨁𝐾M is a 𝐺𝐹-regular module. Thus,𝑀 is a 𝐺𝐹-
regularmodule (Theorem 20).Theother direction is obtained
directly from Proposition 7.

Finally we can summarize that the conditions under
which 𝐹-regular modules coincide with 𝐺𝐹-regular modules
and the characterizations of𝐺𝐹-regularmodules, of Section 2
with those of this section, in the following Proposition 25 and
Theorem 26, respectively:

Proposition 25. An 𝑅-module𝑀 is 𝐺𝐹-regular if and only if
𝑀 is an𝐹-regular module, if any of the following conditions are
satisfied.

(1) 𝑅 is a local ring.
(2) 𝑅 is a reduced ring.
(3) The prime radical of the ring 𝑅/𝑎𝑛𝑛(𝑥) is zero for each

0 ̸= 𝑥 ∈ 𝑀.

Theorem 26. The following statements are equivalent for a
ring 𝑅.

(1) 𝑀 is a 𝐺𝐹-regular 𝑅-module.
(2) 𝑅/𝑎𝑛𝑛(𝑥) is a 𝜋-regular ring for each 0 ̸= 𝑥 ∈ 𝑀

(3) For each 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and
positive integer 𝑛 such that 𝑟𝑛+1𝑥 = 𝑟𝑛𝑥.

(4) Every submodule of𝑀 is 𝐺-pure.
(5) For each 𝑥 ∈ 𝑀, there exist𝑝 ∈ 𝑅 and a positive integer

𝑛 such that 𝑅𝑝𝑛𝑥 is a 𝐺-pure submodule.
(6) 𝑁 is a 𝐺𝑃-flat 𝑅-module, if for every submodule 𝑃

of a free 𝑅-module 𝑀 there exists an exact sequence
0 → 𝑃 → 𝑀 → 𝑁 → 0 such that 𝑃 is a 𝐺-pure
submodule in𝑀.

(7) If𝑀 is a finitely generated 𝑅-module, then 𝑅/𝑎𝑛𝑛(𝑀)

is a 𝜋-regular ring.
(8) 𝑀M is a 𝐺𝐹-regular 𝑅M-module for each maximal

idealM in 𝑅.
(9) 𝑀M is a semisimple 𝑅M-module for each maximal

idealM of 𝑅.

3.3. The Jacobson Radical of 𝐺𝐹-Regular Modules. Let 𝑀 be
an 𝑅-module. A submodule𝑁 of𝑀 is said to be small in𝑀
if for each submodule 𝐾 of 𝑀 such that 𝑁 + 𝐾 = 𝑀, we
have 𝐾 = 𝑀 [32]. The Jacobson radical of a ring 𝑅 will be
denoted by 𝐽(𝑅). The following submodules of𝑀 are equal:
(1) the intersection of all maximal submodules of𝑀, (2) the
sum of all the small submodules of𝑀, and (3) the sum of all

cyclic small submodules of 𝑀. This submodule is called the
Jacobson radical of𝑀 and will be denoted by 𝐽(𝑀) [29, 32].

It is appropriate now to note that for each element 𝑟 ∈ 𝑅
it may happen that 𝑟𝑛 = 0. But some cases demand that 𝑟𝑛
must be nonzero element. For this purpose we introduce the
following concept.

Definition 27. An 𝑅-module 𝑀 is called 𝑆𝐺𝐹-regular if for
each 0 ̸= 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive
integer 𝑛with 𝑟𝑛 ̸= 0 such that 𝑟𝑛𝑡𝑟𝑛𝑥 = 𝑟𝑛𝑥. A ring 𝑅 is called
𝑆𝐺𝐹-regular if it is 𝑆𝐺𝐹-regular as an 𝑅-module.

It is clear that 𝑆𝐺𝐹-regularity implies 𝐺𝐹-regularity and
they are coincide if 𝑅 is a reduced ring.

Proposition 28. Let 𝑀 be an 𝑆𝐺𝐹-regular 𝑅-module, then
𝐽(𝑅).𝑀 = 0.

Proof. For each 0 ̸= 𝑥 ∈ 𝑀 and for each 0 ̸= 𝑟 ∈ 𝑅, there exist
𝑡 ∈ 𝑅 and a positive integer 𝑛 with 𝑟𝑛 ̸= 0 such that 𝑟𝑛𝑡𝑟𝑛𝑥 =

𝑟
𝑛

𝑥, then 𝑟𝑛𝑥(𝑟𝑛𝑥 − 1) = 0. If 𝑟 ∈ 𝐽(𝑅), then 𝑟𝑛 ∈ 𝐽(𝑅) and
(𝑟
𝑛

𝑡 − 1) is invertible, so 𝑟𝑛𝑥 = 0, but we have that 𝑟𝑛 ̸= 0 and
𝑥 ̸= 0; hence, 𝑟𝑥 = 0 which implies that 𝐽(𝑅) ⋅ 𝑀 = 0.

Recall that an 𝑅-module 𝑀 is faithful if for every 𝑟 ∈ 𝑅

such that 𝑟𝑀 = 0 implies 𝑟 = 0 [29], or equivalently, an 𝑅-
module𝑀 is called faithful if ann(𝑀) = 0 [33].

Corollary 29. If𝑀 is a faithful 𝑆𝐺𝐹-regular 𝑅-module, then
𝐽(𝑅) = 0.

Corollary 30. Let 𝑅 be a reduced ring and𝑀 be a𝐺𝐹-regular
𝑅-module, then 𝐽(𝑅) ⋅ 𝑀 = 0.

Corollary 31. Let 𝑅 be any ring such that 𝐽(𝑅) is a reduced
ideal of𝑅 and let𝑀 be a𝐺𝐹-regular𝑅-module, then 𝐽(𝑅)⋅𝑀 =

0.

Corollary 32. Let 𝑅 be a reduced ring. If𝑀 is a faithful 𝐺𝐹-
regular 𝑅-module, then 𝐽(𝑅) = 0.

It is suitable tomention that, in general, not everymodule
contains a maximal submodule; for example, 𝑄 as 𝑍-module
has no maximal submodule. So we have the next two results,
but first we need Lemma 33 which is proved in [29].

Lemma 33. An 𝑅-module𝑀 is semisimple if and only if each
submodule of𝑀 is direct summand.

Proposition 34. Let 𝑀 be a 𝐺𝐹-regular 𝑅-module, then
𝐽(𝑀) = 0.

Proof. Since 𝑀 is a 𝐺𝐹-regular 𝑅-module, then 𝑀M is a
semisimple 𝑅M-module for each maximal ideal M of 𝑅
(Corollary 22). Since each cyclic submodule of𝑀M is direct
summand (Lemma 33), then it cannot be small; therefore,
the Jacobson radical of a semisimple module is zero, so
𝐽(𝑀M) = 0 for each maximal ideal M of 𝑅. On the other
hand, 𝐽(𝑀)M ⊆ 𝐽(𝑀M) [28], thus 𝐽(𝑀)M = 0 for each
maximal idealM of 𝑅, and hence 𝐽(𝑀) = 0 [28].
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Corollary 35. Every nonzero 𝐺𝐹-regular 𝑅-module 𝑀 con-
tains a maximal submodule.

Proof. Suppose not, then 𝐽(𝑀) = 𝑀, but 𝐽(𝑀) = 0

(Proposition 34), so𝑀 = 0 which is a contradiction.

Corollary 36. Let𝑀 be a𝐺𝐹-regular𝑅-module, then for each
0 ̸= 𝑥 ∈ 𝑀, there exist a maximal submoduleM such that 𝑥 ∉
M.

Proof. If 𝑥 ∈ 𝑃, for each maximal submodule M of𝑀, then
𝑥 ∈ 𝐽(𝑀) = 0 which implies that 𝑥 = 0.

Corollary 37. Let 𝑀 be a 𝐺𝐹-regular 𝑅-module, then every
proper submodule of𝑀 contained in a maximal submodule.

Proof. Let 𝑁 be a proper submodule of 𝑀. Since 𝑀

is a 𝐺𝐹-regular 𝑅-module, then 𝑀/𝑁 ̸= 0 is 𝐺𝐹-regular
(Proposition 7), so 𝑀/𝑁 contains a maximal submodule
(Corollary 35), which means that there exists a submodule
𝐾 of 𝑀 such that 𝑁 ⊆ 𝐾, 𝐾/𝑁 is a maximal submodule
of 𝑀/𝑁; therefore, 𝐾 is a maximal submodule of 𝑀 and
contains𝑁.

Corollary 38. Every simple submodule of a 𝐺𝐹-regular 𝑅-
module is direct summand.

Proof. Let 𝑁 be a simple submodule of a 𝐺𝐹-regular 𝑅-
module𝑀, then 𝑁 is cyclic; say 𝑁 = 𝑅𝑥, then there exists a
maximal submoduleM of𝑀 such that𝑥 ∉ M (Corollary 37).
It is clear that 𝑀 = M + 𝑅𝑥. Now, if 𝑅𝑥 ∩ M ̸= (0), then
𝑅𝑥∩M = 𝑅𝑥 because𝑅𝑥 is a simple submodule.Thus,𝑥 ∈ M
which is a contradiction, so𝑀 = 𝑅𝑥⨁M.
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