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A comparative study is presented about the Adomian’s decomposition method (ADM), variational iteration method (VIM), and
fractional variational iteration method (FVIM) in dealing with fractional partial differential equations (FPDEs).The study outlines
the significant features of the ADM and FVIMmethods. It is found that FVIM is identical to ADM in certain scenarios. Numerical
results from three examples demonstrate that FVIM has similar efficiency, convenience, and accuracy like ADM. Moreover, the
approximate series are also part of the exact solution while not requiring the evaluation of the Adomian’s polynomials.

1. Introduction

Fractional differential equations (FDEs), as a generalization
of ordinary differential equations to an arbitrary (noninteger)
order, have been proved to be a valuable tool in mod-
elling many phenomena in the fields of physics, chemistry,
engineering, aerodynamics, electrodynamics of complex
medium, polymer rheology, and so forth [1–9]. The reasons
are that fractional derivatives provide an excellent instrument
for description of memory and hereditary properties of
various materials and processes.

Considerable attention has been paid to developing accu-
rate and efficient methods for solving fractional partial dif-
ferential equations (FPDEs). Most of the nonlinear fractional
differential equations do not have exact analytic solutions,
so approximation and numerical techniques must be used.
Recently, some approximate methods such as Adomian’s
decomposition method (ADM) [10–13], homotopy pertur-
bation method (HPM) [14–16], variational iteration method
(VIM) [17–22], homotopy analysis method (HAM) [23–26],
fractional complex transform (FCT) [27–31], and wavelets
method [32–34] have been given to find an analytical approx-
imation to FDEs.

The variational iteration method (VIM), which was first
proposed by He et al. [17–22] and has been shown to be very
efficient for handling a wide class of physical problems. As
early as 1998, the variational iteration method was shown to
be an effective tool for factional calculus [35]; hereafter, the
method has been routinely used to solve various fractional
differential equations [11, 36–41] for many years. In order
to improve the accuracy and efficiency of the VIM for
factional calculus, a modification called fractional variational
iteration method (FVIM) [42, 43] was proposed and some
successes [44, 45] have been achieved. In the field of fractional
differential equations, the main difference between VIM and
FVIM is the evaluation of Lagrange multipliers: VIM usually
get Lagrange multipliers by some approximations.

The three methods (i.e., VIM, FVIM, and ADM) are rel-
atively new and effective approaches to find the approximate
solution of PDEs, because they provide immediate and visible
symbolic terms of analytic solutions, as well as numerical
approximate solutions to both linear and nonlinear PDEs
without linearization or discretization. The prior work [46–
49] has performed a comparative study of ADM and VIM
and got two useful conclusions: on the one hand, ADMneeds
specific algorithms to evaluate the Adomian’s polynomials,
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whileVIMhandles linear and nonlinear problems in a similar
mannerwithout any additional requirement or restriction; on
the other hand, Adomian’s decomposition method provides
the components of the exact solution. However, it has to
be validated whether these conclusions are also true for the
scenario of FPDEs.

In this paper, we consider the following fractional initial
value problem:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝑁 [𝑢 (𝑥, 𝑡)] + 𝐿 [𝑢 (𝑥, 𝑡)] = 𝑔 (𝑥, 𝑡), 𝑡 > 0,

(1)

where 𝐿 is a linear operator,𝑁 is a nonlinear operator in 𝑥, 𝑡,
and𝐷

𝛼 is themodified Riemann-Liouville derivative of order
𝛼, subject to the initial conditions

𝑢
(𝑘)

(𝑥, 0) = 𝑐
𝑘
(𝑥),

𝑘 = 0, 1, 2, ⋅ ⋅ ⋅ , 𝑚 − 1, 𝑚 − 1 < 𝛼 ≤ 𝑚.

(2)

We will provide a comparative study of ADM and FVIM in
dealing with the above FPDEs. The remainder of the paper
is organized as follows. We begin by introducing some
necessary definitions and mathematical preliminaries for
the fractional calculus theory in Section 2. We present the
VIM/FVIM method and the ADM in Sections 3 and 4,
respectively. In Section 5, three examples are given to demon-
strate our conclusions. Finally, a brief summary is presented.

2. Preliminaries and Notations

In this section, we describe some necessary definitions and
mathematical preliminaries of the fractional calculus theory.

Definition 1. A real function ℎ(𝑡), 𝑡 > 0, is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ 𝑅, if there exists a real number 𝑝 > 𝜇, such that

ℎ(𝑡) = 𝑡
𝑝

ℎ
1
(𝑡), where ℎ

1
(𝑡) ∈ 𝐶(0,∞), and it is said to be in

the space 𝐶
𝑛

𝜇
if and only if ℎ(𝑛) ∈ 𝐶

𝜇
, 𝑛 ∈ 𝑁.

Definition 2. Riemann-Liouville fractional integral operator
(𝐽𝛼) of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1 is defined

as

𝐽
𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 𝑡 > 0,

𝐽
0

𝑓 (𝑡) = 𝑓 (𝑡) .

(3)

Γ(𝛼) is the well-known gamma function. Some properties of
the operator 𝐽

𝛼 can be found in [4, 8, 9, 50]. We only recall
the following ones:

𝐽
𝛼

𝐽
𝛽

𝑓 (𝑡) = 𝐽
𝛼+𝛽

𝑓 (𝑡),

𝐽
𝛼

𝐽
𝛽

𝑓 (𝑡) = 𝐽
𝛽

𝐽
𝛼

𝑓 (𝑡),

𝐽
𝛼

𝑡
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑡
𝛼+𝛾

,

(4)

for 𝑓 ∈ 𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and 𝛾 > −1.

The Riemann-Liouville derivative has certain disadvan-
tages when trying to model real-world phenomena with
FDEs. Therefore, we will introduce a modified fractional dif-
ferential operator 𝐷𝛼

𝑥
proposed by Caputo [51].

Definition 3. The fractional derivative of 𝑓(𝑥) in the Caputo
sense is defined as

(𝐷
𝛼

𝑥
𝑓) (𝑥)

=

{{{

{{{

{

1

Γ (𝑚 − 𝛼)
∫

𝑥

0

𝑓
(𝑚)

(𝜉)

(𝑥 − 𝜉)
𝛼−𝑚+1

𝑑𝜉, (𝛼>0,𝑚 − 1<𝛼<𝑚)

𝜕
𝑚

𝑓 (𝑥)

𝜕𝑥𝑚
, 𝛼 = 𝑚,

(5)

where 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denotes a continuous (but not
necessarily differentiable) function.

Some useful formulas and results of modified Riemann-
Liouville derivative, which we need here, are listed as follows:

𝐷
𝛼

𝑥
𝑐 = 0, 𝛼 > 0, 𝑐 = constant,

𝐷
𝛼

𝑥
[𝑐𝑓 (𝑥)] = 𝑐𝐷

𝛼

𝑥
𝑓 (𝑥) , 𝛼 > 0, 𝑐 = constant,

𝐷
𝛼

𝑥
𝑥
𝛽

=
Γ (1 + 𝛽)

Γ (1 + 𝛽 − 𝛼)
𝑥
𝛽−𝛼

, 𝛽 > 𝛼 > 0,

𝐷
𝛼

𝑥
[𝑓 (𝑥) 𝑔 (𝑥)] = [𝐷

𝛼

𝑥
𝑓 (𝑥)] 𝑔 (𝑥) + 𝑓 (𝑥) [𝐷

𝛼

𝑥
𝑔 (𝑥)],

𝐷
𝛼

𝑥
[𝑓 (𝑥 (𝑡))] = 𝑓



𝑥
(𝑥) 𝑥
(𝛼)

(𝑡) .

(6)

Lemma 4. Let n − 1 < 𝛼 ≤ n, n ∈ N, t > 0, ℎ ∈ Cn
𝜇
, 𝜇 ≥ −1.

Then

(J𝛼D𝛼) ℎ (t) = ℎ (t) −
n−1
∑

k=0
ℎ
(k)

(0
+

)
tk

k!
. (7)

3. VIM and FVIM

3.1. Variational Iteration Method. In this section, the basic
ideas of variational iteration method (VIM) are introduced.
Here a description of themethod (please refer to publications
[17–19] for more details) is given to handle the general
nonlinear problem as

𝐿 (𝑢) + 𝑁 (𝑢) = 𝑔 (𝑡) , (8)

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, and
𝑔(𝑡) is a known analytic function.

According to He’s variational iteration method [17–22],
we can construct a correction functional as follows:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡)

+∫

𝑡

0

𝜆 (𝜏) {𝐿 (𝑢
𝑛
(𝜏))+𝑁 (�̃�

𝑛
(𝜏))−𝑔 (𝜏)}, 𝑛≥0,

(9)

where 𝜆 is a general Lagrange multiplier which can be opti-
mally identified via variational theory and �̃�

𝑛
is a restricted
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variation which means 𝛿�̃�
𝑛

= 0. Therefore, the Lagrange
multiplier 𝜆 should be first determined via integration by
parts. The successive approximation 𝑢

𝑛
(𝑡) (𝑛 ≥ 0) of the

solution 𝑢(𝑡) will be readily obtained by using the obtained
Lagrange multiplier and any selective function 𝑢

0
.The zeroth

approximation 𝑢
0
may be selected by any function that just

meets, at least, the initial and boundary conditions. With
𝜆 determined, then several approximations 𝑢

𝑛
(𝑡), 𝑛 ≥ 0

follow immediately. Consequently, the exact solution may be
obtained as

𝑢 (𝑡) = lim
𝑛→∞

𝑢
𝑛
(𝑡) . (10)

The VIM depends on the proper selection of the initial
approximation 𝑢

0
(𝑡). Finally, we approximate the solution of

the initial value problem (1) by the 𝑛th-order term 𝑢
𝑛
(𝑡). It

has been validated that VIM is capable of effectively, easily,
and accurately solving a large class of nonlinear problems.

3.2. Fractional Variational Iteration Method. We can con-
struct a correction functional for (1) as follows:

𝑢
𝑘+1

(𝑥, 𝑡)

= 𝑢
𝑘
(𝑥, 𝑡)+∫

𝑡

0

𝜆 (𝑡, 𝜏) (𝐷
𝛼

𝜏
𝑢
𝑘
(𝑥, 𝜏)+𝑁 [�̃�

𝑘
(𝑥, 𝜏)]

+𝐿 [�̃�
𝑘
(𝑥, 𝜏)] − 𝑔 (𝑥, 𝜏)) 𝑑𝜏,

(11)

where �̃�(𝑥, 𝑡) is a restricted variation.
Taking Laplace transform to both sides of (11) as

𝑢
𝑘+1

(𝑥, 𝑡) = 𝑢
𝑘
(𝑥, 𝑡)

+ 𝐿 [∫

𝑡

0

𝜆 (𝑡, 𝜏) (𝐷
𝛼

𝑡
𝑢
𝑘
(𝑥, 𝜏) + 𝑁 [�̃�

𝑘
(𝑥, 𝜏)]

+𝐿 [�̃�
𝑘
(𝑥, 𝜏)] − 𝑔 (𝑥, 𝜏)) 𝑑𝜏],

(12)

where 𝑢
𝑘
(𝑥, 𝑡) is Laplace transform of 𝑢

𝑘
(𝑥, 𝑡) with respect to

𝑡 and 𝐿 is operator of Laplace transform.
By assuming that the Lagrange multiplier has the form as

𝜆(𝑡, 𝜏) = 𝜆(𝑡 − 𝜏), so that 𝐿[𝐽𝛼
𝜏
𝜆(𝐷
𝛼

𝜏
𝑢
𝑘
(𝑥, 𝜏) + 𝑁[�̃�

𝑘
(𝑥, 𝜏)] +

𝐿[�̃�
𝑘
(𝑥, 𝜏)] − 𝑔(𝑥, 𝜏))] is the convolution of the function 𝜆(𝑡)

and 𝐷
𝛼

𝑡
𝑢
𝑘
(𝑥, 𝑡) + 𝑁[�̃�

𝑘
(𝑥, 𝑡)] + 𝐿[�̃�

𝑘
(𝑥, 𝑡)] − 𝑔(𝑥, 𝑡).

Because �̃�(𝑥, 𝑡) is a restricted variation, we have

𝛿𝐿 [𝐽
𝛼

𝑡
𝜆 (𝑁 [�̃�

𝑘
(𝑥, 𝑡)] + 𝐿 [�̃�

𝑘
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡))] = 0. (13)

Taking the variation derivative 𝛿 on the both sides of (12),
we can derive

𝛿𝑢
𝑘+1

(𝑥, 𝑡)

= 𝛿𝑢
𝑘
(𝑥, 𝑡) + 𝛿𝐿 [𝐽

𝛼

𝑡
𝜆 (𝐷
𝛼

𝑡
𝑢
𝑘
(𝑥, 𝑡) + 𝑁 [�̃�

𝑘
(𝑥, 𝑡)]

+𝐿 [�̃�
𝑘
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡) )]

= (1 + 𝜆 (𝑠) 𝑠
𝛼

) 𝛿𝑢
𝑘
(𝑥, 𝑠) .

(14)

If setting the coefficient of 𝛿𝑢
𝑘
(𝑥, 𝑠) to zero, we can get

𝜆 (𝑠) = −
1

𝑠𝛼
, (15)

and the Lagrange multiplier can be identified by using the
inverse Laplace transform

𝜆 (𝑡, 𝜏) = −
(𝑡 − 𝜏)

𝛼−1

Γ (𝛼)
=

(−1)
𝛼

(𝜏 − 𝑡)
𝛼−1

Γ (𝛼)
. (16)

Substituting (16) into (12) and using the definition of Rie-
mann-Liouville fractional integral operator, we get the iter-
ation formula as follows:

𝑢
𝑘+1

(𝑥, 𝑡) = 𝑢
𝑘
(𝑥, 𝑡) − 𝐽

𝛼

𝑡
(𝐷
𝛼

𝑡
𝑢
𝑘
(𝑥, 𝑡) + 𝑁 [𝑢

𝑘
(𝑥, 𝑡)]

+𝐿 [𝑢
𝑘
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)) .

(17)

4. Adomian’s Decomposition Method

Applying the operator 𝐽
𝛼 and the inverse of the operator 𝐷

𝛼

𝑡

to both sides of (1) yields

𝑢 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝜕
𝑘

𝑢

𝜕𝑡𝑘
(𝑥, 0
+

)
𝑡
𝑘

𝑘!
+ 𝐽
𝛼

𝑔 (𝑥, 𝑡)

− 𝐽
𝛼

[𝐿𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡)] .

(18)

The Adomian’s decomposition method [52–55] suggests that
the solution 𝑢(𝑥, 𝑡) should be decomposed into the infinite
series of components as

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) , (19)

and the nonlinear function in (1) be decomposed as follows:

𝑁𝑢 =

∞

∑

𝑛=0

𝐴
𝑛
, (20)

where 𝐴
𝑛
are the so-called the Adomian’s polynomials.

Substituting the decomposition series equations (19) and
(20) into both sides of (18) gives

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝜕
𝑘

𝑢

𝜕𝑡𝑘
(𝑥, 0
+

)
𝑡
𝑘

𝑘!
+ 𝐽
𝛼

𝑔 (𝑥, 𝑡)

− 𝐽
𝛼

[𝐿(

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡)) +

∞

∑

𝑛=0

𝐴
𝑛
] .

(21)
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From this equation, the iterates are determined by the follow-
ing recursive way:

𝑢
0
(𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝜕
𝑘

𝑢

𝜕𝑡𝑘
(𝑥, 0
+

)
𝑡
𝑘

𝑘!
+ 𝐽
𝛼

𝑔 (𝑥, 𝑡),

𝑢
1
(𝑥, 𝑡) = −𝐽

𝛼

(𝐿𝑢
0
+ 𝐴
0
),

𝑢
2
(𝑥, 𝑡) = −𝐽

𝛼

(𝐿𝑢
1
+ 𝐴
1
),

...

𝑢
𝑛+1

(𝑥, 𝑡) = −𝐽
𝛼

(𝐿𝑢
𝑛
+ 𝐴
𝑛
) .

(22)

The Adomian’s polynomial𝐴
𝑛
can be calculated for all forms

of nonlinearity according to specific algorithms constructed
by Adomian [54]. The Adomian polynomials can be easily
calculated by the homotopy perturbation method (for more
details see [56]). The general formulation for an Adomian’s
polynomials is

𝐴
𝑛
=

1

𝑛!
[

𝑑
𝑛

𝑑𝜆𝑛
𝑁(

∞

∑

𝑛=0

𝜆
𝑘

𝑢
𝑘
)]

𝜆=0

. (23)

This formula is easy to compute by using mathematical
software or by writing a computer code to get as many
polynomials as we need in the calculation of the numerical as
well as explicit solutions. Finally, we approximate the solution
𝑢(𝑥, 𝑡) by the truncated series as

𝜙
𝑁

(𝑥, 𝑡) =

𝑁−1

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) , lim

𝑁→∞

𝜙
𝑁

(𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) .

(24)

5. Applications and Results

From (17) and according to Lemma 4,we could get an approx-
imate solution as

𝑢 (𝑥, 𝑡) = lim
𝑘→∞

𝑢
𝑘
(𝑥, 𝑡)

=

𝑚−1

∑

𝑖=0

𝜕
𝑖

𝑢

𝜕𝑡𝑖
(𝑥, 0
+

)
𝑡
𝑖

𝑖!

−𝐽
𝛼

𝑡
(𝑁 [𝑢 (𝑥, 𝑡)]+𝐿 [𝑢 (𝑥, 𝑡)])+𝐽

𝛼

𝑡
𝑔 (𝑥, 𝑡) .

(25)

From (21), we could get an approximate solution as

𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

⌣

𝑢
𝑘
(𝑥, 𝑡)

=

𝑚−1

∑

𝑖=0

𝜕
𝑖

𝑢

𝜕𝑡𝑖
(𝑥, 0
+

)
𝑡
𝑖

𝑖!

− 𝐽
𝛼

𝑡
[

∞

∑

𝑘=0

𝐴
𝑘
+ 𝐿(

∞

∑

𝑘=0

⌣

𝑢
𝑘
(𝑥, 𝑡))] + 𝐽

𝛼

𝑡
𝑔 (𝑥, 𝑡) ,

(26)

where 𝑢(𝑥, 𝑡) = ∑
∞

𝑘=0

⌣

𝑢
𝑘
(𝑥, 𝑡) and 𝑁[𝑢(𝑥, 𝑡)] = ∑

∞

𝑛=0
𝐴
𝑛
.

When ⌣𝑢
𝑘
(𝑥, 𝑡) = 𝑢

𝑘
(𝑥, 𝑡) − 𝑢

𝑘−1
(𝑥, 𝑡) and 𝐴

𝑘
=

𝑁(
⌣

𝑢
𝑘
(𝑥, 𝑡)) = 𝑁(𝑢

𝑘
(𝑥, 𝑡) − 𝑢

𝑘
(𝑥, 𝑡)), we could find that (25)

and (26) are identical.
In this section, we will provide three examples for

performing comparative studies. The exact solutions of these
examples are known for the special cases 𝛼 = 1 or 2 and have
been solved in [11, 12, 57] by using the VIM, HPM, ADM, and
some othermethods. It is to be noted that Lagrangemultiplier
of VIM in [11, 12] is an approximation.

Example 5. Consider the following linear time-fractional dif-
fusion equation:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
=

𝜕
2

𝑢

𝜕𝑥2
, 𝑡 > 0, 𝑥 ∈ 𝑅, 0 < 𝛼 ≤ 1, (27)

subject to the initial condition

𝑢 (𝑥, 0) = sin𝑥. (28)

Momani and Odibat [11, 12, 57] have made a study about this
equation by using the VIM, HPM, and the ADM and drew
a conclusion that using the modified HPM is the same as the
fourth-order term of theVIM solution.When𝛼 = 1, the VIM
solution and the decomposition solution are identical.

By using the VIM described in [6], the iteration formula
for (27) is given by

𝑢
𝑘+1

(𝑥, 𝑡) = 𝑢
𝑘
(𝑥, 𝑡) − ∫

𝑡

0

(
𝜕
𝛼

𝜕𝜉𝛼
𝑢
𝑘
(𝑥, 𝜉) −

𝜕
2

𝜕𝑥2
𝑢
𝑘
(𝑥, 𝜉)) 𝑑𝜉.

(29)

By employing the above variational iteration formula and
beginning with 𝑢

0
= sin𝑥, we can obtain the following

approximations:

𝑢
0
(𝑥, 𝑡) = sin (𝑥) ,

𝑢
1
(𝑥, 𝑡) = (1 − 𝑡) sin (𝑥) ,

𝑢
2
(𝑥, 𝑡) = (1 +

2𝑡
2−𝛼

Γ (3 − 𝛼)
− 2𝑡 +

1

2
𝑡
2

) sin (𝑥) ,

𝑢
3
(𝑥, 𝑡) = (1 −

𝑡
3−2𝛼

Γ (4 − 2𝛼)
+

3𝑡
2−𝛼

Γ (3 − 𝛼)
−

2𝑡
3−𝛼

Γ (4 − 𝛼)

−3𝑡 +
3

2
𝑡
2

−
1

6
𝑡
3

) sin (𝑥) ,

...

(30)

and so on. The rest components of the iteration formula (29)
can be obtained in the same manner.

To solve the problem with the ADM, the recurrence
relation is obtained as follows:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = sin (𝑥) ,

𝑢
𝑗+1

(𝑥, 𝑡) = 𝐽
𝛼

(𝐿
2𝑥

𝑢
𝑗
(𝑥, 𝑡)) , 𝑗 ≥ 0.

(31)
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Table 1: Numerical values when 𝛼 = 0.5, 0.75, and 1.0 for (27).

𝑡 𝑥
𝛼 = 0.50 𝛼 = 0.75 𝛼 = 1.0

FVIM VIM FVIM VIM FVIM VIM Exact

0.25

0.25 0.14640842 0.14180807 0.17120511 0.16836254 0.19264006 0.19264006 0.19267840
0.50 0.28371388 0.27479919 0.33176551 0.32625710 0.37330270 0.37330270 0.37337698
0.75 0.40337938 0.39070464 0.47169834 0.46386658 0.53075518 0.53075518 0.53086080
1.00 0.49796471 0.48231796 0.58230325 0.57263509 0.65520788 0.65520788 0.65533826

0.50

0.25 0.10790621 0.10407459 0.13273945 0.13274483 0.14947323 0.14947323 0.15005809
0.50 0.20910333 0.20167832 0.25722580 0.25723624 0.28965293 0.28965293 0.29078629
0.75 0.29729942 0.28674267 0.36571910 0.36573394 0.41182342 0.41182342 0.41343481
1.00 0.36701087 0.35397875 0.45147375 0.45149207 0.50838872 0.50838872 0.51037795

0.75

0.25 0.07031034 0.10263146 0.10053521 0.11682841 0.11403776 0.11403776 0.11686536
0.50 0.13624913 0.19888179 0.19481962 0.22639299 0.22098521 0.22098521 0.22646459
0.75 0.19371660 0.28276661 0.27699110 0.32188155 0.31419287 0.31419287 0.32198335
1.00 0.23913971 0.34907038 0.34194061 0.39735708 0.38786553 0.38786553 0.39748275

In view of (31), the first few components of the decompo-
sition series are derived as follows:

𝑢
0
(𝑥, 𝑡) = sin (𝑥),

𝑢
1
(𝑥, 𝑡) = 𝐽

𝛼

(𝐿
2𝑥

𝑢
0
(𝑥, 𝑡)) =

−𝑡
𝛼

Γ (𝛼 + 1)
sin (𝑥),

𝑢
2
(𝑥, 𝑡) = 𝐽

𝛼

(𝐿
2𝑥

𝑢
1
(𝑥, 𝑡)) =

𝑡
2𝛼

Γ (2𝛼 + 1)
sin (𝑥),

𝑢
3
(𝑥, 𝑡) = 𝐽

𝛼

(𝐿
2𝑥

𝑢
2
(𝑥, 𝑡)) =

−𝑡
3𝛼

Γ (3𝛼 + 1)
sin (𝑥),

...

(32)

and so on.The rest of components of the decomposition series
can be obtained in this manner.

The solution in series form is given by

𝑢 (𝑥, 𝑡) = sin (𝑥) −
𝑡
𝛼

Γ (𝛼 + 1)
sin (𝑥) +

𝑡
2𝛼

Γ (2𝛼 + 1)
sin (𝑥)

+ ⋅ ⋅ ⋅ =

∞

∑

𝑛=0

(−1)
𝑛

𝑡
𝑛𝛼

Γ (𝑛𝛼 + 1)
sin (𝑥) .

(33)

To solve (27) by means of FVIM, we construct a correc-
tional functional that reads as

𝑢
𝑘+1

= 𝑢
𝑘
(𝑥, 0) + 𝐽

𝛼
𝜕
2

𝑢
𝑘

𝜕𝑥2
. (34)

From the initial value, we can derive
𝑢
0
(𝑥, 𝑡) = sin (𝑥),

𝑢
1
(𝑥, 𝑡) = sin (𝑥) (1 −

𝑡
𝛼

Γ (𝛼 + 1)
),

𝑢
2
(𝑥, 𝑡) = sin (𝑥) (1 −

𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)
),

𝑢
3
(𝑥, 𝑡) = sin (𝑥) (1 −

𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)
−

𝑡
3𝛼

Γ (3𝛼 + 1)
),

...
(35)

Consequently, the exact solution can be obtained as

𝑢 (𝑡) = lim
𝑛→∞

𝑢
𝑛
(𝑡) =

∞

∑

𝑛=0

(−1)
𝑛

𝑡
𝑛𝛼

Γ (𝑛𝛼 + 1)
sin (𝑥), (36)

which is the same as that obtained by ADM.

Table 1 shows the approximate solutions for (27) obtained
for different values of 𝛼 using methods VIM, ADM, and
FVIM. The values of 𝛼 = 1 are the only case for which we
know the exact solution. From (33) and (36), it is obvious
that the solution of (27) obtained using the FVIM is the
same as the ADM.Moreover, when 𝛼 is a positive integer, the
Lagrange multiplier of FVIM is identical to that of VIM, so
the solutions obtained by the two methods are the same. It
should be noted that only the fourth-order term of the VIM
and FVIM is used in evaluating the approximate solutions.

Example 6. We next consider the following linear time-frac-
tional wave equation:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
=

1

2
𝑥
2
𝜕
2

𝑢

𝜕𝑥2
, 𝑡 > 0, 𝑥 ∈ 𝑅, 1 < 𝛼 ≤ 2, (37)
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Table 2: Numerical values when 𝛼 = 1.5, 1.75, and 2.0 for (37).

𝑡 𝑥
𝛼 = 1.5 𝛼 = 1.75 𝛼 = 2.0

FVIM VIM FVIM VIM FVIM VIM Exact

0.25

0.25 0.26622298 0.26599883 0.26593959 0.26590628 0.26578827 0.26578827 0.26578827
0.50 0.56489190 0.56399533 0.56375836 0.56362512 0.56315308 0.56315308 0.56315308
0.75 0.89600678 0.89398950 0.89345630 0.89315652 0.89209443 0.89209443 0.89209443
1.00 1.25956762 1.25598133 1.25503343 1.25450047 1.25261232 1.25261232 1.25261232

0.50

0.25 0.28474208 0.28393355 0.28340402 0.28328354 0.28256846 0.28256846 0.28256846
0.50 0.63896831 0.63573419 0.63361610 0.63313417 0.63027383 0.63027383 0.63027383
0.75 1.06267869 1.05540192 1.05063622 1.04955189 1.04311611 1.04311611 1.04311611
1.00 1.55587323 1.54293675 1.53446439 1.53253670 1.52109530 1.52109530 1.52109531

0.75

0.25 0.30690489 0.30527637 0.30361709 0.30335993 0.30139478 0.30139478 0.30139480
0.50 0.72761955 0.72110549 0.71446834 0.71343972 0.70557913 0.70557913 0.70557918
0.75 1.26214400 1.24748736 1.23255378 1.23023936 1.21255304 1.21255304 1.21255316
1.00 1.91047821 1.88442198 1.85787338 1.85375886 1.82231652 1.82231652 1.82231673

subject to the initial conditions

𝑢 (𝑥, 0) = 𝑥,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 𝑥
2

. (38)

By using the VIM described in [6], the iteration formula
for (37) is given by

𝑢
𝑘+1

(𝑥, 𝑡)=𝑢
𝑘
(𝑥, 𝑡)−∫

𝑡

0

(
𝜕
𝛼

𝜕𝜉𝛼
𝑢
𝑘
(𝑥, 𝜉)−

1

2
𝑥
2

𝜕
2

𝜕𝑥2
𝑢
𝑘
(𝑥, 𝜉))𝑑𝜉.

(39)

By using variational iteration formula and beginningwith
𝑢
0
= 𝑥 + 𝑥

2

𝑡, we can obtain the following approximations:

𝑢
1
= 𝑥 + 𝑥

2

(𝑡 +
𝑡
3

3!
) ,

𝑢
2
= 𝑥 + 𝑥

2

(𝑡 +
𝑡
3

3
+

𝑡
5

5!
−

𝑡
5−𝛼

Γ (6 − 𝛼)
) ,

𝑢
3
= 𝑥 + 𝑥

2

(𝑡 +
𝑡
3

2
+

𝑡
5

40
+

𝑡
7

7!
−

3𝑡
5−𝛼

Γ (6 − 𝛼)
−

2𝑡
7−𝛼

Γ (8 − 𝛼)

+
𝑡
7−2𝛼

Γ (8 − 2𝛼)
) ,

...
(40)

To solve the problembyusing the decompositionmethod,
we substitute (37) and the initial conditions equation (38) into
(22), and we obtain the following recurrence relation:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑥 + 𝑥

2

𝑡,

𝑢
𝑗+1

(𝑥, 𝑡) =
1

2
𝐽
𝛼

(𝑥
2

𝐿
2𝑥

𝑢
𝑗
(𝑥, 𝑡)) , 𝑗 ≥ 0.

(41)

In view of (22), the first few components of the decom-
position series are derived as follows:

𝑢
0
(𝑥, 𝑡) = 𝑥 + 𝑥

2

𝑡,

𝑢
1
(𝑥, 𝑡) =

1

2
𝐽
𝛼

(𝑥
2

𝐿
2𝑥

𝑢
0
(𝑥, 𝑡)) = 𝑥

2
𝑡
𝛼+1

Γ (𝛼 + 2)
,

𝑢
2
(𝑥, 𝑡) =

1

2
𝐽
𝛼

(𝑥
2

𝐿
2𝑥

𝑢
1
(𝑥, 𝑡)) = 𝑥

2
𝑡
2𝛼+1

Γ (2𝛼 + 2)
,

𝑢
3
(𝑥, 𝑡) =

1

2
𝐽
𝛼

(𝑥
2

𝐿
2𝑥

𝑢
2
(𝑥, 𝑡)) = 𝑥

2
𝑡
3𝛼+1

Γ (3𝛼 + 2)
.

(42)

By using fractional variational iteration formula (17) and
beginning with 𝑢

0
= 𝑥 + 𝑥

2

𝑡, we can obtain the following
approximations:

𝑢
0
= 𝑥 + 𝑥

2

𝑡,

𝑢
1
= 𝑥 + 𝑥

2

𝑡 +
1

Γ (2 + 𝛼)
𝑥
2

𝑡
1+𝛼

,

𝑢
2
= 𝑥 + 𝑥

2

[𝑡 +
𝑡
1+𝛼

Γ (2 + 𝛼)
+

𝑡
1+2𝛼

Γ (2 + 2𝛼)
] ,

𝑢
3
= 𝑥 + 𝑥

2

[𝑡 +
𝑡
1+𝛼

Γ (2 + 𝛼)
+

𝑡
1+2𝛼

Γ (2 + 2𝛼)
+

𝑡
1+3𝛼

Γ (2 + 3𝛼)
] ,

𝑢
4
= 𝑥 + 𝑥

2

× [𝑡+
𝑡
1+𝛼

Γ (2 + 𝛼)
+

𝑡
1+2𝛼

Γ (2 + 2𝛼)
+

𝑡
1+3𝛼

Γ (2 + 3𝛼)
+

𝑡
1+4𝛼

Γ (2 + 4𝛼)
] ,

...
(43)

Table 2 shows the approximate solutions for (37) obtained for
different values of 𝛼 using methods VIM, ADM, and FVIM.
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The values of 𝛼 = 2 are the only case for which we know
the exact solution 𝑢(𝑥, 𝑡) = 𝑥+𝑥

2 sinh(𝑡). From (42) and (43),
it is obvious that the solution of (37) obtained by using the
FVIM is the same as the ADM. As the previous example, the
fourth-order term of the VIM/FVIM is utilized in evaluating
the approximate solutions.

Example 7. Consider the following nonlinear time-fractional
advection partial differential equation [57]:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡) = 𝑥 + 𝑥𝑡

2

,

𝑡 > 0, 𝑥 ∈ 𝑅, 0 < 𝛼 ≤ 1,

(44)

subject to the initial conditions

𝑢 (𝑥, 0) = 0. (45)

By using the VIM described in [6], the iteration formula
for (44) is given by

𝑢
𝑘+1

(𝑥, 𝑡) = 𝑢
𝑘
(𝑥, 𝑡)−∫

𝑡

0

(
𝜕
𝛼

𝜕𝜉𝛼
𝑢
𝑘
(𝑥, 𝜉)+𝑢

𝑘
(𝑥, 𝜉)

𝜕𝑢
𝑘
(𝑥, 𝜉)

𝜕𝑥

− (𝑥 + 𝑥𝜉
2

) ) 𝑑𝜉.

(46)

By the variational iteration method, starting with
𝑢
0
(𝑥, 𝑡) = 0, we can obtain the following approximations:

𝑢
0
(𝑥, 𝑡) = 0,

𝑢
1
(𝑥, 𝑡) = 𝑥(𝑡 +

𝑡
3

3
) ,

𝑢
2
(𝑥, 𝑡) = 𝑥(2𝑡 +

𝑡
3

3
−

2𝑡
5

15
−

𝑡
7

63
−

𝑡
2−𝛼

Γ (3 − 𝛼)
−

Γ (4) 𝑡
4−𝛼

3Γ (5 − 𝛼)
) ,

...
(47)

In the same manner, the rest of components of the iteration
formula (46) can be obtained by using the Mathematica
package.

To solve the problem using the decomposition method,
we obtain the following recurrence relation:

𝑢
0
(𝑥, 𝑡)=𝑢 (𝑥, 0)+𝐽

𝛼

(𝑥 + 𝑥𝑡
2

)=𝑥(
𝑡
𝛼

Γ (𝛼 + 1)
+

2𝑡
𝛼+2

Γ (𝛼 + 3)
) ,

𝑢
𝑗+1

(𝑥, 𝑡) = −𝐽
𝛼

(𝐴
𝑗
) , 𝑗 ≥ 0,

(48)

where 𝐴
𝑗
are the Adomian’s polynomials for the nonlinear

function 𝑁 = 𝑢𝑢
𝑥
. In view of (22), the first few components

of the decomposition series are derived as follows:

𝑢
0
(𝑥, 𝑡) = 𝑥(

𝑡
𝛼

Γ (1 + 𝛼)
+

2𝑡
2+𝛼

Γ (3 + 𝛼)
) ,

𝑢
1
(𝑥, 𝑡)=−𝑥(

Γ (1+2𝛼) 𝑡
3𝛼

Γ(1+𝛼)
2

Γ (1+3𝛼)

+
4Γ (3+2𝛼) 𝑡

3𝛼+2

Γ (1+𝛼) Γ (3+𝛼) Γ (3+3𝛼)

+
4Γ (5 + 2𝛼) 𝑡

3𝛼+4

Γ(3 + 𝛼)
2

Γ (5 + 3𝛼)

) ,

𝑢
2
(𝑥, 𝑡) = 2𝑥(

Γ (1 + 2𝛼) Γ (1 + 4𝛼) 𝑡
5𝛼

Γ(1 + 𝛼)
3

Γ (1 + 3𝛼) Γ (1 + 5𝛼)

+
8Γ(5 + 2𝛼)

2

Γ (8 + 6𝛼) 𝑡
5𝛼+6

Γ(3 + 𝛼)
3

Γ (5 + 3𝛼) Γ (7 + 5𝛼)

+ ⋅ ⋅ ⋅) ,

...
(49)

The first three terms of the decomposition series (48) are
given by

𝑢 (𝑥, 𝑡) = 𝑥(
𝑡
𝛼

Γ (1 + 𝛼)
+

2𝑡
2+𝛼

Γ (3 + 𝛼)
−

Γ (1 + 2𝛼) 𝑡
3𝛼

Γ(1 + 𝛼)
2

Γ (1 + 3𝛼)

−
4Γ (3 + 2𝛼) 𝑡

3𝛼+2

Γ (1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼)
+ ⋅ ⋅ ⋅) .

(50)

By the FVIM and beginning with 𝑢
0
(𝑥, 𝑡) = 0, we can

obtain the following approximations:

𝑢
𝑘+1

(𝑥, 𝑡) = 𝑢
𝑘
(𝑥, 0) + 𝐽

𝛼

(𝑥 + 𝑥𝑡
2

) − 𝐽
𝛼

(𝑢
𝑘

𝜕𝑢
𝑘

𝜕𝑥
) , (51)

𝑢
0
(𝑥, 𝑡) = 0,

𝑢
1
(𝑥, 𝑡) = 𝑥(

𝑡
𝛼

Γ (1 + 𝛼)
+

2𝑡
2+𝛼

Γ (3 + 𝛼)
) ,

𝑢
2
(𝑥, 𝑡)

= 𝑥(
𝑡
𝛼

Γ (1 + 𝛼)
+

2𝑡
2+𝛼

Γ (3 + 𝛼)
−

Γ (1 + 2𝛼) 𝑡
3𝛼

Γ(1 + 𝛼)
2

Γ (1 + 3𝛼)

−
4Γ (3 + 2𝛼) 𝑡

3𝛼+2

Γ (1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼)

−
4Γ (5 + 2𝛼) 𝑡

3𝛼+4

Γ(3 + 𝛼)
2

Γ (5 + 3𝛼)

) ,
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Table 3: Numerical values when 𝛼 = 0.5, 0.75, and 1.0 for (44).

𝑡 𝑥
𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1.0

FVIM VIM FVIM VIM FVIM VIM Exact

0.25

0.25 0.12422501 0.12306887 0.09230374 0.09291265 0.06250058 0.06250058 0.062500
0.50 0.24845002 0.24613773 0.18460748 0.18582531 0.12500117 0.12500117 0.125000
0.75 0.37267504 0.36920660 0.27691122 0.27873796 0.18750175 0.18750175 0.187500
1.00 0.49690005 0.49227547 0.36921496 0.37165062 0.25000234 0.25000234 0.250000

0.50

0.25 0.18377520 0.19472445 0.15148283 0.15611713 0.12507592 0.12507592 0.125000
0.50 0.36755040 0.38944890 0.30296566 0.31223426 0.25015184 0.25015184 0.250000
0.75 0.55132559 0.58417334 0.45444848 0.46835139 0.37522776 0.37522776 0.375000
1.00 0.73510079 0.77889779 0.60593131 0.62446853 0.50030368 0.50030368 0.500000

0.75

0.25 0.27227270 0.22829012 0.21407798 0.20170432 0.18881843 0.18881843 0.187500
0.50 0.54454540 0.45658025 0.42815596 0.40340864 0.37763687 0.37763687 0.375000
0.75 0.81681810 0.68487037 0.64223394 0.60511296 0.56645530 0.56645530 0.562500
1.00 1.08909080 0.91316050 0.85631192 0.80681728 0.75527373 0.75527373 0.750000

𝑢
3
(𝑥, 𝑡)

= 𝑥(
𝑡
𝛼

Γ (1 + 𝛼)
+

2𝑡
2+𝛼

Γ (3 + 𝛼)
−

Γ (1 + 2𝛼) 𝑡
3𝛼

Γ(1 + 𝛼)
2

Γ (1 + 3𝛼)

−
4Γ (3 + 2𝛼) 𝑡

3𝛼+2

Γ (1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼)

−
4Γ (5 + 2𝛼) 𝑡

3𝛼+4

Γ(3 + 𝛼)
2

Γ (5 + 3𝛼)

+ 2(
Γ (1 + 2𝛼) Γ (1 + 4𝛼) 𝑡

5𝛼

Γ(1 + 𝛼)
3

Γ (1 + 3𝛼) Γ (1 + 5𝛼)

+
8Γ(5 + 2𝛼)

2

Γ (8 + 6𝛼) 𝑡
5𝛼+6

Γ(3 + 𝛼)
3

Γ (5 + 3𝛼) Γ (7 + 5𝛼)

+ ⋅ ⋅ ⋅)) .

(52)

Table 3 shows the approximate solutions for (44) obtained
for different values of 𝛼 using methods VIM, ADM, and
FVIM. The values of 𝛼 = 1 is the only case for which we
know the exact solution 𝑢(𝑥, 𝑡) = 𝑥𝑡. From (49) and (52), it
is obvious that the solution of (44) obtained using the FVIM
is the same as that of ADM. As the previous examples, the
fourth-order term of the VIM solution and four terms of the
FVIM are used in evaluating the approximate solutions for
Table 3.

6. Conclusion

The main goal of this work is to conduct a comparative
study between fractional variational iteration method and
the Adomian’s decomposition method. The two methods are
powerful and effective tools for the solution of fractional
partial differential equations, and both give approximations
of higher accuracy and closed form solutions if existing.There
are three important points to make here. First, FVIM is iden-
tical to the decomposition method in some sense. Second,

FVIM reduces the computational workload by avoiding the
evaluation of Adomian’s polynomials, hence the iteration is
straightforward. Third, FVIM provides the components of
the exact solution like the ADM, but there is no need to add
successive components to get the series solution. So, FVIM
is more effective than ADM in solving the fractional partial
differential equations.
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